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ABSTRACT

Maintenance of railway infrastructures represents a major
cost driver for any infrastructure manager since reliability and
dependability must be guaranteed at all times. Implementa-
tion of predictive maintenance policies relies on the avail-
ability of condition monitoring systems able to assess the
infrastructure health state. The core of any condition mon-
itoring system is the a-priori knowledge about the process
to be monitored, in the form of either mathematical models
of different complexity or signal features characterizing the
healthy/faulty behavior. This study investigates the identi-
fication of a low-complexity behavioral model of a railway
turnout capable of capturing the dominant dynamics due to
the ballast and railpad components. Measured rail accelera-
tions, acquired through a receptance test carried out on the
switch panel of a turnout of the Danish railway network, have
been utilized together with the Eigensystem Realization Al-
gorithm – a type of subspace identification – to identify a
fourth order model of the infrastructure. The robustness and
predictive capability of the low-complexity behavioral model
to reproduce track responses under different types of train ex-
citations have been successfully validated. It is anticipated
that the identified model will be instrumental for the devel-
opment of methods for diagnosis and prognosis of faults and
degradation process in switches and crossings.

1. INTRODUCTION

Railway networks heavily rely on the dependability of infras-
tructure components to safely control the train traffic and op-
timize the network capacity. Therefore the reliability of track
components must be guaranteed at all times. This clearly
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Figure 1. Railway maintenance cost for European countries
with track utilization similar to Denmark. Track utilization is
defined as the ratio between the total train kilometers and the
track kilometers (data refers to year 2012).

makes railway infrastructure components a major cost driver
of maintenance and renewal actions for all railway infrastruc-
ture managers (EIM-EFRTC-CER Working Group, 2012).
Figure 1 shows the maintenance cost in European countries
with track utilization (total train kilometers divided by track
kilometers) similar to Denmark. The reported data were se-
lected from (Juul Andersen, 2012; EIM-EFRTC-CER Work-
ing Group, 2012) following the clustering proposed in (Steer
Davies Gleave, 2015), where countries are grouped accord-
ing to socioeconomic and railway infrastructure parameters.
A large amount of this expenditure is assigned to mainte-
nance and renewal actions of switches and crossings (S&Cs).
Banedanmark, the Danish railway infrastructure manager, es-
timates that each year one third of the total track mainte-
nance cost is spent on turnouts. S&Cs are complex elements
whose failure weighs heavily on transport safety, as reported
in the RSSB Annual Safety Performance Report (Clinton,
2014, Section 8.5) where 31% of the track-related derail-
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ments are due to S&Cs malfunctioning in the period 2009–
2014 in Great Britain. Failure data recorded in the UK in
2009 (Hassankiadeh, 2011, Chapter 7) showed that ballast
degradation is the third most important component affecting
the turnouts performance with a failing frequency of 7.9%1.

As railway is expected to play a key role for the future de-
velopment of sustainable transport in Europe, it is essential to
keep improving safety while reducing cost. There is a grow-
ing interest in changing maintenance policies from reactive
or periodic to predictive; this occurs in connection with the
widespread digitalization of the infrastructure that gives the
operators access to information and field data previously un-
available. Predictive maintenance relies on methods and al-
gorithms that, based on measured data and a-priori knowl-
edge, can forecast with low uncertainty the remaining use-
ful lifetime of components and systems. Condition monitor-
ing (CM) systems, capable to provide early warnings of the
development of deterioration processes and the inception of
faults, become then a valuable asset to reduce maintenance
cost and ensure the efficient utilization of the railway infras-
tructure.

1.1. State of the art

Operational experience and research studies point out that a
key element affecting the infrastructure performance is the
track stiffness, which to greater extent is attributed to the bal-
last and subballast layers. Monitoring of these track com-
ponents is challenging since degradation processes affecting
their elastic behavior are hard to assess through non destruc-
tive measurement methods. In literature several approaches
to monitoring of track stiffness for the open track were pro-
posed; these methods are categorized as direct and indirect.

Direct approaches include the scanning of the subsurface
through the ground penetrating radar (GPR) (Smekal,
Berggren, & Silvast, 2006; Berggren, 2009; Kind, 2011);
the assessment of the bearing capacity of the soil through
the cone penetration test2 (CPT) (Brough, Stirling, Ghataora,
& Madelin, 2003); the visual inspection of track condi-
tion at surface level (Labarile, Stella, Ancona, & Distante,
2004; Yella, Dougherty, & Gupta, 2009; Asplund, Larsson,
Rantatalo, Nissen, & Kumar, 2013). Although these tech-
niques may support infrastructure managers to schedule and
perform maintenance tasks, they have some significant lim-
itations. The GPR method presents difficulties in properly
locating the ballast damage due to challenges in selecting a
suitable frequency range for the electromagnetic waves. The
CPT method is a destructive and time consuming test that
affects train operations. Last, the visual inspection is only
1The first two components affecting turnout performance are the switch rail
(45.3%) and the slide chair (30.4%).

2In geotechnical engineering the bearing capacity of the soil is the ability of
the soil to withstand loads applied to the ground. The cone penetration test
uses mechanical measurements of total penetration resistance to pushing a
tool with a conical tip into soil.

effective in detecting damage when it has already surfaced.
Indirect techniques rely on the “smart processing” of mea-
sured quantities gathered on the railway superstructure (track
and sleepers) by non destructive methods. Hosseingholian
et al. (2009) proposed the use of a vibrating rolling wheel to
excite the track and compute its stiffness based on measured
wheel accelerations. Berggren et al. (2014) used two inde-
pendent measurements of longitudinal track level acquired
through a track recording car to estimate and monitor track
displacement and stiffness due to train loading.

Recently, model-based approaches to ballast damage detec-
tion have been proposed by Lam et al. (2012, 2014), where
the rail-sleeper-ballast system was modeled as Timoshenko
beam on an elastic foundation and changes in the ballast
stiffness were monitored through a model update procedure.
In (Lam et al., 2012) a feasibility study was performed us-
ing both simulated and experimental data; whereas the es-
timate of the ballast stiffness was robustified in (Lam et al.,
2014) by casting the model update in the Bayesian framework
to account for model uncertainty. The author also proposed
Bayesian approach based on Monte Carlo method to identify
the stiffness of the railway ballast. The results were validated
utilizing the measured acceleration in a field test (Lam, Alabi,
& Yang, 2017). Although some attempts have been made for
condition monitoring of ballast stiffness using model-based
techniques, the proposed mechanical models have a large di-
mensionality resulting in a high complexity of the diagnostic
method. Low-complexity data-based behavioral models may
be preferred to high-fidelity mechanical models since they en-
able portability of results across the entire railway network
despite natural presence of uncertainties due to e.g. geograph-
ical location and physical age of the components.

1.2. Main contribution

This work focuses on the generation of a low-complexity be-
havioral model of the track dominant dynamics by means
of subspace identification techniques. Full-scale accelera-
tion data, collected during a receptance test carried out on the
switch panel of a turnout of the Danish railway network, are
utilized for model identification. The obtained model prop-
erly captures the dynamic behavior of the infrastructure in
the frequency range [0, 1000] Hz. In particular, the resonant
peaks corresponding to the ballast layer and the railpad are
correctly identified providing the model with good predictive
capabilities. These are tested by validating the model on full-
scale acceleration data recorded during a train passage.

All measured data presented in the paper are anonymized to
comply with the policy of the Danish railway infrastructure
manager.
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2. EXPERIMENTAL CAMPAIGN

In this section, the receptance test campaign performed at one
of the switches and crossings belonging to the Danish railway
network is described. The receptance test is commonly used
for railway tracks to characterize the main dynamic properties
of the different track components. Through this, it is possible
to determine the health state of a particular railway turnout
by means of the assessment of its dynamic response to im-
pact excitation. Data coming from the aforementioned test
is used in this study to identify a low-complexity behavioral
model, which is anticipated to be a key element for the devel-
opment of a condition monitoring system for the predictive
maintenance of S&Cs.

The receptance test consists in the excitation of the railway
track by impacting the top of the rail with an instrumented im-
pact hammer and the measurement of the response by using
accelerometers, typically placed on the rail head. Measured
forces and accelerations are then combined and analyzed, in
the frequency domain, to identify the main resonant and an-
tiresonant frequencies of the track. The informative level of
the measured acceleration is assessed by means of the co-
herence function, which allows to determine the frequency
ranges where the receptance data are significant.

The analysis of the receptance function – also known as
dynamic flexibility or mobility (Ewins, 2000) – is a non-
destructive methodology that gives insight into the dynamic
properties of the track by pinpointing the main resonant
frequencies (De Man, 2002; Kaewunruen & Remennikov,
2007). Furthermore, the data gathered during the experimen-
tal receptance campaigns can be used to calibrate sophisti-
cated numerical models of the track by setting up the stiffness
and damping values of the different components that are part
of the track (Alves Costa, Calçada, & Silva Cardoso, 2012;
Verbraken, Degrande, Lombaert, Stallaert, & Cuellar, 2013).
Results from receptance test can be also used to detect defects
on the rail surface (Oregui, Li, & Dollevoet, 2015) or to ana-
lyze the effect of substructure changes in the lower frequency
content of the receptance curve (Arlaud, Costa D’Aguiar, &
Balmes, 2016).

2.1. Receptance test at Tommerup station’s turnout

The receptance test was carried out using a large sledge im-
pulse hammer (Model nr: 086D50 PCB Piezometrics, range:
±22.240 N, sensitivity: 0.2083 mV/N, mass: 5.5 kg, hard
tip). The location of the impact along the switch and cross-
ing is coincident with point A1, just before the switch panel,
as illustrated in Fig. 2. The rail was impacted right above
the sleeper such that the main vibration modes of the track
could be properly excited. To verify the measured accelera-
tion two different accelerometers were utilized for the recep-
tance test, both located near the impact point. The first is a
2-axis accelerometer (KISTLER 8702B500, range:±500 g,
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A: 2 - axis accelerometers
D: Displacement sensors
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Figure 2. Layout of the sensors location along the turnout
at Tommerup station. The data utilized in this work refer to
accelerations measured by accelerometers A1 and A4 on the
straight track.

(a) Overview of the turnout in proximity of Tommerup station

(b) Setup for the receptance test including hammer and accelerometers

Figure 3. Pictures from the receptance test carried out in
February 2017 nearby Tommerup station (Fyn - Denmark).
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Figure 4. Outcome of the receptance test: (top) measured ac-
celeration on the rail head; (bottom) measured impact force.

sensitivity:10 ±0.05 mV/g , weight: 8.2 grams) magnetically
attached to the rail web; whereas the second is a single axis
accelerometer (Type: 4339 Brül & Kjær, range: ±50 g, sen-
sitivity: 10.02 mV/g, weight: 12.7 grams) located on the top
of the rail and used for verification purposes (see Fig. 3b). A
set of measurements was carried out considering a minimum
of 5 impacts. The sampling frequency used to log both force
and acceleration was set to 20 kHz. An example of input-
output data gathered during a single receptance test is shown
in Fig. 4, where the acceleration is measured atop the rail.

Combining the input force F and the output acceleration a it
is possible to determine the coherence function, which evalu-
ates in the frequency domain how well the measured accelera-
tion corresponds to the applied force. The coherence function
is given by

CFa(ω) =
| GFa(ω)

2 |
GFF (ω)Gaa(ω)

(1)

whereGaa(ω) is the auto power spectrum of the acceleration,
GFF (ω) is the auto power spectrum of the force and GFa (ω)
is the cross power spectrum between the force and the accel-
eration (Ewins, 2000). The coherence function always satis-
fies the constraint 0 ≤ CFa(ω) ≤ 1. It is common practice to
threshold the coherence function to determine the frequency
ranges where the input-output relation is “well defined”; how-
ever the threshold value is application dependent. Accord-
ing to Oostermeijer and Kok (2000) coherence between 0.85
and 1 indicates that results coming from a hammer test are
reliable; whereas Arlaud et al. (2016) rejected results when
the coherence dropped below 0.9. A threshold of 0.9 is here
chosen to indicate a low quality of the results due to exter-
nal nuisance factors that may have affected the measurement
campaign.

To reduce the influence of uncontrollable nuisance factors
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Figure 5. Analysis of receptance data: (top) input-output co-
herence, (mid) magnitude of H2,d, (bottom) phase of H2,d.

possibly affecting the outcome of the experimental data, as
e.g. the natural differences in the magnitude and width of the
impacts3, the coherence function CFa(ω) is computed by av-
eraging the coherence functions associated with each impact
response, i.e.

Cavg
Fa (ω) =

1

M

M∑
i=1

CFa,i(ω) (2)

whereCFa,i is the coherence function of the i-th input-output
pair (Fi, ai) and M is the total number of impacts.

Figure 5 shows the coherence function with the 95% confi-
dence interval. From its analysis it can be concluded that
across all experiments there is a clear input-output relation up
to 1 kHz. Therefore, the following model identification pro-
cedure should consider information content of the measured
acceleration only within the frequency range [0, 1000] Hz.

By means of Gaa(ω) and GFa(ω) an estimator of the fre-
quency response function is computed

H2,a(ω) =
Gaa(ω)

GFa(ω)
, (3)

which, in turn, is used to obtain the displacement frequency
response function

H2,d(ω) =
H2,a(ω)

−ω2
. (4)

H2,d(ω) is a good indicator for detecting presence of reso-
nant frequencies (Ewins, 2000). By analyzing its magnitude
and phase in the frequency range [0, 1000] Hz (Fig. 5) two
significant peaks are distinguished. The first peak detected

3The impact hammer is manually operated as shown in Fig. 3b; hence despite
all efforts it is not possible to ensure the exact repeatability of the test.
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around 200 Hz may be linked to the full track resonant mode
shape. Dahlberg (2006) locates this frequency in the range
of [50, 300] Hz, whereas Choi (2014) detects this resonant
frequency within the interval [40, 400] Hz. The second res-
onant frequency of interest can be detected around 600 Hz
and it may correspond to the mode shape in which the rail
bounces on the railpads. This matches the results by Dahlberg
(2006) that locate this frequency in the range [200, 600] Hz
and (Choi, 2014), where it is stated that in frequency inter-
vals above 400 Hz the railpad behavior is dominant.

Notwithstanding, a third peak located between the two afore-
mentioned resonant frequencies can be observed in Fig. 5
(mid plot), around 400 Hz. In the literature there are indi-
cations that this frequency may correspond to an additional
vibration mode caused by intermediate elements located be-
tween the ballast layer and the railpad, as it is the case of
the elastic baseplate. This element, belonging to the fasten-
ing system, is not within the scope of the present work and
therefore its characteristic frequency is conveniently omitted
in the following sections. Summarizing, from the frequency
analysis of the receptance test results it can be concluded that:
[0, 1000] Hz is the frequency range where measured acceler-
ations data can be utilized reliably; there are two resonant
frequencies associated to the ballast layer and the railpads
around 200 Hz and 600 Hz, respectively.

3. SUBSPACE IDENTIFICATION

The track vertical acceleration measured during the recep-
tance test is the free impulse response of the track and as
such it contains information about the natural eigenmodes of
the system. Receptance tests are seldom performed by in-
frastructure managers due to cost and potential disruption of
service; hence S&Cs’ motion data are generally available in
connection with train passages. However, in this case no in-
formation about the exciting force is accessible since the load
exerted by the train wheel sets is unknown. This suggests that
the measured acceleration should be rather considered as the
zero-input output response of the track, where the initial con-
dition coincides with the magnitude of the response induced
at the time of impact.

Consider the linear time-invariant discrete time system

xi+1 = Axi + bui (5)
yi = cxi (6)

where xi ∈ Rn, ui ∈ R and yi ∈ R are the state vector,
the input and output at time i ∈ N. The matrices A, b and
c are of opportune dimensions related to the former vectors.
Said x0 the system’s initial condition, the zero-input output

response and the free pulse response are given by

yi = cAix0 (7)

yi = cAi−1b (8)

i.e. at each time step the system output is given by a linear
combination of the system eigenmodes. This implies that by
exploiting the measured outputs it is possible to reconstruct a
minimal realization of the system (Â, b̂, ĉ) that is equivalent
to the true realization (A,b, c) through a similarity transfor-
mation.

In this work the Eigensystem Realization Algorithm (ERA)
proposed by Juang and Pappa (1985) is adopted to identify a
low-complexity behavioral model of the track based on mea-
sured vertical accelerations. The ERA is a system identi-
fication technique that is largely adopted in civil engineer-
ing, in particular for structural health monitoring purposes.
The method was applied for the system identification of e.g.
aerospace structures (Pappa & Juang, 1984) and civil struc-
tures (Caicedo, Dyke, & Johnson, 2004).

In structural engineering ERA is used to identify natural fre-
quencies, mode shapes and damping ratios. The ERA is com-
monly used in conjunction with the natural excitation tech-
nique to identify modal parameters from ambient vibration.
The technique has been applied to buildings, bridges, and
other types of structural systems. In the area of structural
health monitoring ERA and other modal identification tech-
niques play an important role in developing a model for struc-
tures from experimental data. The state space representation
or the modal parameters are used for further analysis and to
identify possible deterioration in structures.

3.1. Overview of ERA method

The following review of the Eigensystem Realization Algo-
rithm is based on the original formulation by Juang and Pappa
(1985). It is worth noting that the identification methodology
does not change if the zero-input output response is used in-
stead of the free pulse response, since in the former case the
b vector represent the information of the initial condition x0

(compare Eq. (7) with Eq. (8)).

Given the free pulse response in Eq. (8) the Hankel matrix H0

and the shifted Hankel matrix H1 of the Markov parameters
are constructed as follows (Juang & Pappa, 1985)

H0 =


y1 y2 . . . yn
y2 y3 . . . yn+1

...
...

. . .
...

yn yn+1 . . . y2n−1



5
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=


cb cAb . . . cAn−1b

cAb cA2b . . . cAnb
...

...
. . .

...
cAn−1b cAnb . . . cA2n−2b

 (9)

H1 =


y2 y3 . . . yn+1

y3 y4 . . . yn+2

...
...

. . .
...

yn+1 yn+2 . . . y2n

 (10)

where the dimension of the Hankel matrices is n × n. The
matrix H0 can be rewritten as

H0 =


c

cA
...

cAn−1

 [b Ab . . . An−1b
]

= ΦoΦc, (11)

where Φo and Φc are the observability and controllability
matrices, which can be obtained through the Singular Value
Decomposition (SVD) of H0

H0 = UΣ2VT = (UΣ)(ΣVT ) = PQ. (12)

Noteworthy that this decomposition is not unique.

Using Eq. (11) into Eq. (10) the shifted Hankel matrix is
rewritten as

H1 = ΦoAΦc (13)

from which the system matrix A can be computed

A = Φ−1
o H1Φ

−1
c . (14)

The inverse of the controllability and observability matrices is
guaranteed to exist because they are square matrices by con-
struction and full rank due to the minimality of the realization
of the system.

Since P and Q ar equivalent to Φo and Φc by a similarity
transformation then an estimate of the system matrix A is
obtained as

Â = P−1H1Q
−1. (15)

Estimates of the input and output vectors b and c are then
obtained by taking the first column of the matrix Q and the
first row of the matrix P.

Given the identified system realization (Â, b̂, ĉ) the modal
properties of the system in terms of natural frequencies and
damping ratios can be computed by

wnk =
| ln(λk(Â)) |

2πTs
(16)

ζk =
−Re(ln(λk(Â))/Ts)

| ln(λk(Â)) |
(17)

where Ts is the sampling time and λk(Â) is k-th eigenvalue

0 0.05 0.1 0.15
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0

0.5

1

Figure 6. The selected identification data set.

of the matrix Â. Further, by using the identified model the
system output is estimated as (Majji, Juang, & Junkins, 2010)

Y = Px̂. (18)

4. LOW-COMPLEXITY BEHAVIORAL MODEL

By applying the ERA identification method to the measured
track vertical acceleration data gathered during the receptance
test a low-complexity behavioral model of the turnouts dom-
inant dynamics is now developed. The analysis of the co-
herence function Cavg

Fa (ω) addressed [0 , 1000] Hz as the fre-
quency range where the acceleration is clearly related to the
impact force; hence the measured acceleration is pre-filtered
using a low-pass filter with cut-off frequency of 2 kHz.

Track responses to a single hammer excitation chosen from
all the receptance tests are merged and considered as an iden-
tification data set (see Fig. 6).

Figure 7 shows the estimated auto power spectrum Gaa of
the vertical acceleration and its 95% confidence interval. To
account for possible variations across the different tests, Gaa
is computed as the average over all the auto power spectra
associated with each hammer impact. The 95% confidence
interval is obtained using a chi-squared approach. When the
spectrum is plotted on a logarithmic scale, the (1− α)× 100
percent confidence interval is constant at every frequency and
it is given by (Manolakis, Ingle, & Kogon, 2005, Chapter 5)(

10 ln(Gaa(ejω))− 10 ln
χ2
ν(1− α/2)

ν
,

10 ln(Gaa(ejω)) + 10 ln
ν

χ2
ν(α/2)

)

6
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Figure 7. Estimate of the acceleration power spectrum based
on the average of all measured responses.

where Gaa is the estimate of the auto power spectrum and

ν =
2N∑L

l=−(L−1) ω
2
a(l)

is the degree of freedom of a χ2
ν distribution. N , L and ωa

are the number of observations, window size and correlation
window, respectively.

The auto power spectrum Gaa has three significant peaks.
Among these, two are located around frequencies lower
than 1000 Hz, where the coherence function CFa confirmed
the validity of the receptance test. Consequently, the low-
complexity behavioral model should be of fourth order in
agreement with the two resonance peaks. In other words, the
power spectrum analysis shows that the model to be identi-
fied should have one resonance frequency below 200 Hz and
another resonance frequency between 200 Hz and 1000 Hz.

As can be seen in Fig. 7, the amplitude of the second reso-
nance peak is significantly larger than the amplitude of the
first. Due to this disparity in power levels, to prevent the pos-
sible erroneous estimate of the dynamics associate with the
low frequency peak, the identification data set is divided in
two employing a low-pass and high-pass filter with the cut-
off and cut-in frequencies of 200 Hz. Consequently, low (10
- 200 Hz) and high (200 - 1000 Hz) frequency models are
identified and their parameters are

Ml :

 Âl =

[
0.9701± 0.0018 −0.05308± 0.0007
0.05308± 0.0007 1.0031± 0.009

]
Ĉl =

[
−0.7995± 0.0062 −0.0208± 0.0002

]
(19)

Mh :

 Âh =

[
0.9342± 0.0298 0.1759± 0.0049
−0.1759± 0.0049 1.0210± 0.025

]
Ĉh =

[
−1.9931± 0.007 −0.1689± 0.005

]
(20)

The two models are then combined in order to provide the
final identified model describing the dominant behavior of the
vertical track dynamics

M :

 Â =

[
Âl 0
0 Âh

]
Ĉ =

[
Ĉl Ĉh

] . (21)

Using Eq. (16) and considering the model uncertainty the res-
onance frequencies of the identified model are estimated to
be 167.59± 9.11 Hz and 549.96± 23.20 Hz. Table 1 reports
the identified model characteristics: ζ and ωn are the damp-
ing factor and natural frequency associated with the identified
eigenmodes.

Table 1. Identified models characteristics.

Model λ [−] ωn [Hz] ζ [−]

Ml 0.988± 0.0509i 167.59 0.201

Mh 0.978± 0.1704i 549.96 0.044

5. MODEL VALIDATION

The predictive capability and the robustness of the identified
model is validated on additional data collected during the re-
ceptance test as well as on measured accelerations logged
during train passages. The model performance is evaluated
through the fitting score in percentage calculated as

fit = 100× 1− | a− â |
| a− ā |

(22)

where a is the measured acceleration, â is the estimated accel-
eration and ā is the mean value of the measured acceleration.

Figure 8 illustrates the model validation against additional re-
ceptance test measurements both in the time and frequency
domains. Each impact in the validation data set is treated in-
dividually as zero-input output response; therefore the initial
condition x0,j is also estimated, where j is the impact index.
The auto power spectrum Ĝaa of the model output is com-
puted as an average of the power spectra associated with each
estimated impact response.

It is evident that the identified low-complexity behavioral
model well predicts the behavior of the measured accelera-
tion in correspondence of the two resonant peaks. The pre-

7
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Figure 8. Validation data compared with the identified model
and the corresponding frequency responses with 95% of con-
fidence interval.

dicted output â fits the validation data set with a fitting score
of 75%.

To assess the robustness of the model, its predicting capabil-
ity is tested on measured vertical accelerations in response
to a train excitation recorded at the turnout position A4 (see
Fig. 2). Data recorded during 10 train passages differing for
train type, traveling speed and loading condition have been
considered, and the fitting scores achieved in each case are
listed in Table 2. The comparison between predicted output
and measured acceleration for an additional data set is shown
in Fig. 9 and the fitting score is 67%.

Table 2. Validation result for 10 train passages.

Train type Speed interval [km/h] Fitting score [%]

IR4 [110, 120] 56.48

IC4 [140, 150] 70.45

IC3 [110, 120] 59.87

IR4 [50, 60] 65.42

IC4 [50, 60] 63.58

IC3 [50, 60] 52.35

IR4 [150, 160] 51.50

IC4 [150, 160] 72.53

IC3 [150, 160] 55.68

IC3-IC2 [150, 160] 61.24

Based on the obtained results it is concluded that the identi-
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Figure 9. Comparison of the measured and identified accel-
erations; IC4 train, 110 km/h (a) The whole train passage, (b)
Zoom in on a two-wheel set passage.

fied low-complexity behavioral model can appropriately pre-
dict the dominant behavior of the track response around the
matched resonance frequencies and it is robust to different
types of excitations.

5.1. Discussion

To analyze the dynamic interaction between the train and
track, two different types of modeling approaches are com-
monly used. The first is the finite element method (FEM),
which is suitable when an in-depth theoretical knowledge of
the track components is required. Conversely, if a better un-
derstanding of the train-track interfaces is desired then multi-
body simulation softwares (MBS) represent a more conve-
nient solution due to their lower computational time. MBS
thus represents a suitable methodology to assess dynamic in-
teractions, especially in track sections with a high degree of
geometrical complexity such as switches and crossings. Nev-
ertheless, the amount of time and parameters required by
MBS to carry out the preprocessing of the numerical model,
including its calibration and validation, hinders its portability
across the whole railway network and, hence, the use of MBS
models as part of condition monitoring systems. The strength
of the proposed low-complexity behavioral model is the abil-
ity to be accurate despite its simple structure. This is possible
thanks to the blending of a model structure rooted into the
dynamical behavior of the infrastructure with measured data
through the adopted subspace identification method.

The identification of the 4-th order model representing the
vertical track dynamics opens opportunities for the develop-
ment of a condition monitoring system to supervise the oc-
currence of degradation processes affecting the ballast layer
and the railpads. Long-term monitoring of the model natural
frequencies and damping ratios through e.g. recursive estima-
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tion of the model parameters could provide valuable insight
on how the ballast layer deteriorates over time.

The obtained model is based on data from receptance test,
which are seldom performed by infrastructure managers due
to their cost in terms of time and money. Hence, to achieve
true portability of the proposed model, a natural extension of
this work is to use only measured accelerations due to train
passages to identify the vertical track dynamics.

6. CONCLUSION

The paper contributes to the identification of a low-
complexity behavioral model of the vertical track dynamics
in correspondence of the switch panel of a railway turnout.
The behavioral model was obtained by utilizing measured
track accelerations collected during a receptance test in
conjunction with the Eigensystem Realization Algorithm.

Analysis of the coherence function between the impact force
and the measured acceleration addressed that the collected
data are reliably informative about the dominant dynamics of
the turnout up to 1 kHz. Therefore the bandwidth of the iden-
tified model has been limited to this value. A 4-th order model
with two resonance frequencies has been consistently identi-
fied. The estimated resonance frequencies ωn,1 = 167.59 Hz
and ωn,2 = 549.96 Hz are attributed to the ballast layer and
the railpad. These values are in line with the state-of-the-art
know-how for such type of structures.

The model was successfully validated on measured acceler-
ations collected during normal train passages; this demon-
strated the robustness and predictive capability of the low-
complexity behavioral model.
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