Formal Verification of Complex Systems based on SysML
Functional Requirements

Hoda Mehrpouyanl, Irem Y. Tumer?, Chris Hoylez, Dimitra Giannakopoulou3, Guillaume Brat?

L TSYS School of Computer Science, Columbus State University, Columbus, GA, USA

mehrpouyan_hoda @ columbusstate.edu

2 School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, OR, USA
irem.tumer @oregonstate.edu, chris.hoyle@oregonstate.edu

3 NASA Ames Research Center, Moffett Field, CA, USA

dimitra.Giannakopoulou@nasa.gov, guillaume.p.brat@nasa.gov

ABSTRACT

As modern systems continue to increase in size and complex-
ity, they pose increasingly significant safety and risk manage-
ment challenges. A model-based safety approach is an effi-
cient way of coping with the increasing system complexity.
It helps better manage the complexity by utilizing reasoning
tools that require abstract models to detect failures as early
as possible during the design process. This paper develops a
methodology for the verification of safety requirements for
design of complex engineered systems. The proposed ap-
proach combines a SysML modeling approach to document
and structure safety requirements, and an assume-guarantee
technique for the formal verification purpose. The assume-
guarantee approach, which is based on a compositional and
hierarchical reasoning combined with a learning algorithm,
is able to simplify complex design verification problems. The
objective of the proposed methodology is to integrate safety
into early design stages and help the system designers to con-
sider safety implications during conceptual design synthesis,
reducing design iterations and cost. The proposed approach
is validated on the quad-redundant Electro-Mechanical Actu-
ator (EMA) of a Flight Control Surface (FCS) of an aircraft.

1. INTRODUCTION

In recent years, technological advancements and a growing
demand for highly reliable complex engineered systems, e.g.,
space systems, aircrafts, and nuclear power plants have made
the safety assessment of these systems even more important.
Moreover, the growing complexity of such systems has made
it more challenging to achieve design solutions that satisfy

Hoda Mehrpouyan et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

safety and reliability requirements (Wiese & John, 2003; Zio,
2009; N. Leveson, 2011). Hollnagel et al. (Hollnagel, Woods,
& Leveson, 2007) recognize the fact that safety violation in
complex systems is not necessarily a consequence of com-
ponents’ malfunction or a faulty design. Rather it could be
a result of a network of ongoing interactions between all the
components and subsystems that introduce undesired behav-
ior. For this reason, Baroth et al. (Baroth et al., 2001) recom-
mends the Prognostic and Health Management System (PHMS)
as a new technology to replaces the traditional build-in test
(BIT) with intelligent prognostics tools to predict the occur-
rence of unexpected faults. However, given the local safety
properties of each component, it is not a trivial matter to infer
the safety and reliability of the whole system (N. G. Leve-
son, 2009). Well-specified verification formalism and rea-
soning tools are needed to study the emerging behavior and
to perform exhaustive verification of safety properties. A se-
ries of safety standards emerged in recent years that recognize
this issue and strongly recommended the use of formal veri-
fication methods to control the complexity of safety-critical
systems, i.e., the international standard on safety related sys-
tems (IEC, 1998) and the SAE & EUROCAE standards in the
avionic industry (ARP4761, 1996; ARP4754, 1996). How-
ever, these standards do not specify how to implement formal
approaches throughout the design process.

Strategies for engineered system design emerge from a pro-
cess of requirement decomposition and transforming require-
ment models into the conceptual models (Blanchard, 2012;
Buede, 2011). Requirement models, noted R, capture the de-
sign problem being solved and conceptual models, noted S,
represent the specific solution for the design problem. There-
fore, the first step in specifying and formulating a complex
system is to capture its requirements R and decompose it into
the requirements of its sub-systems and components, noted

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

R = {Ry,Rs,...,R,}. The second step is to create a re-
lationship between design requirements and the system that
consists of heterogenous sub-systems, i.e., electrical, mechan-
ical, and software ..., noted S = {S1, So, ..., Sp }. However,
this relationship between the set of design requirements and
the set of sub-systems and components is a non bijective re-
lationship. A commonly used formalism to address this prob-
lem is to focus on discrete event system dynamics. This for-
mulation is extended (Hirtz, Stone, McAdams, Szykman, &
Wood, 2002; Nagel, Stone, Hutcheson, McAdams, & Don-
ndelinger, 2008; Kurtoglu & Campbell, 2009) by considering
other system features such as structures and functions, so that
the predicate (S; A Se A ... A S, = Design’s Objective) is
preserved and satisfied throughout the design process. So the
formulation can be summarized as below:

S; satisfies a sub-set of
requirements.

{Sk}rep..m) = Ri R; satisfied by sub-set of
sub-systems or components.

Si = {Rk}rep..n

The process of identifying and proving the correctness of these
relationships with regards to design safety requirements is
the objective of this paper. The remainder of this paper is
structured as follows: section 2 discusses the system oriented
approaches and their ability in modeling multi-domain com-
plex engineered system and being exploitable for safety anal-
ysis. Furthermore, formal verification methods and the def-
inition of compositional reasoning and its commonly used
terminologies and operators are introduced as a complemen-
tary technique to design requirement analysis. In section 3
an overview of the step-by-step implementation of the com-
positional reasoning algorithm on the components of the de-
sign architectures is explained. Further, section 3 outlines
the application of the proposed methodology in the analysis
and verification of the safety properties of the quad-redundant
Electro Mechanical Actuator (EMA) system design. The pa-
per ends with conclusion.

2. RELATED WORK

Different standards, e.g., (IEEE1220, 2005; ISO-IEC15288,
2002) have defined system design as a multidisciplinary col-
laborative process that defines, develops, and verifies a sys-
tem solution which satisfies different stakeholders’ expecta-
tions and meets public safety and acceptability. Therefore,
identification and analysis of the system requirements and
designing a system according to the identified requirements
are the two inter-correlated and complementary processes of
system design. While these standards precisely specify the
processes involved in the design of a safety critical systems,
Lundteigen et al. (Lundteigen, Rausand, & Utne, 2009) agree
that they do not provide methods and tools for efficient design

of complex engineered systems. This highlights the need for
appropriate methods and tools to support the integration of
safety into the design solution.

2.1. SysML for Complex Engineered Systems

Traditional methods and tools used by system engineering
are mostly based on a formalism that capture a variety of
system features, i.e., requirements engineering, behavioral,
functional, and structural modeling, etc. Those with particu-
lar focus on requirements engineering are the Unified Model-
ing Language (UML) (OMG, 2007) to support various aspect
of system modeling, Rational Doors (IBM, 2010) to express
the requirements, and Reqtify (GeenSys, 2008) to trace the
requirements through design and implementation. UML is
developed by the Object Management Group (OMG) in co-
operation with the International Council of Systems Engi-
neering (INCOSE). UML is an Object-oriented modeling lan-
guage that allows hierarchical organization of system compo-
nent models, which in turn results in easier reuse and main-
tenance of the system model. However, UML was originally
developed for software engineers and its primary application
is software-oriented; therefore it does not meet all the system
engineer’s expectations. For example, UML does not provide
a notion to represent continuous flows exchanged within the
system, i.e., Energy, Material, and Signal (EMS). The analy-
sis of EMS flows are crucial in system design safety verifica-
tion for identifying the failure propagation path and identify-
ing the common failure modes. For this reason, the SysML
profile was developed borrowing a subset of the UML lan-
guage to meet the requirements of a general purposed lan-
guage for system engineering.

SysML is an efficient modeling language for constructing mod-
els of complex, multidisciplinary, and large-scale systems.
SysML enables the designers of a complex system to model
the system requirements, structures, behaviors, and paramet-
ric values for a more rigorous description of a system under
consideration. SysML focuses on the global features of ar-
chitectural views, whereas other modeling languages such as
he Architecture Analysis and Design language (AADL) ad-
dresses the more detailed platform-oriented and physical as-
pects of such systems. Nevertheless, the wide variety of no-
tations provided by SysML lacks formal and detailed seman-
tics required for requirements verification. The goal of this
paper is to bridge the gap between semi-formal approaches,
e.g., SysML and formal verification methods, e.g., model-
checkers to provide the system designers an integrated method
to manage and verify the safety properties of complex engi-
neered systems.

2.2. Model Checking and Formal Verification

Model checking is one of the approaches to formal verifica-
tion of finite state hardware and software systems (Henzinger,

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

[

Mechanical Linkage Which
can be disengaged

Load 1

Sensor

Load
Sensor
2

Load
Sensor
3

Load

» Diagnostics
ot
z9
685 <——| Position Sensor 1 :
O
— — Position Sensor 2 f
Position Response]
—| Position Sensor 3
|2 < —] Position Sensor 4
Ols
= g
j=]
=(3
- Actuator
«|—| Controller 1
-
Actuator
2
Actuator
3
1
Actuator
4

Sensor

G (KA
5558

Figure 1. Quad-Redundant EMA Scheme.

Ho, & Wong-Toi, 1997; Henzinger, Nicollin, Sifakis, & Yovine,

1994). In this approach, a design will be modeled as a state
transition system with a finite number of states and a set of
transitions. The design model is in essence a finite-state ma-
chine, and the fact that it is finite makes it possible to ex-
ecute an exhaustive state-space exploration to prove that the
design satisfies its requirements. Since there is an exponential
relationship between the number of states in the model and
number of components that make up the system, the compo-
sitional reasoning approach is used to handle the large state-
space problem. The compositional reasoning technique de-
composes the safety properties of the system into local prop-
erties of its components. These local properties are subse-
quently verified for each component. However, Barragan et
al. (Barragan, Roth, Faure, et al., 2006) emphasizes the dif-
ficulty of transforming the global system requirements into
multi-level sub-system and component’s local safety proper-
ties that need to be verified by a model checker for the design
of large scale complex engineered systems. More specifi-
cally, the decomposition of complex engineered systems into
multi-domain sub-systems involving electrical, mechanical,
and software components makes the refinement and traceabil-
ity of the global safety properties very difficult. Therefore, a
systematic approach is required to acquire abstract require-
ments along with safety properties, and map them to sys-
tem components (Evrot, Petin, & Mery, 2006). Following
the work of many researchers, it is concluded that the early
stages of system design are the most critical in ensuring that
the designed system satisfies its safety requirements (Tumer,
Stone, & Bell, 2003; Stone, Tumer, & Stock, 2005; Kurtoglu
& Tumer, 2008; Tumer & Smidts, 2011), this paper aims at
addressing this challenge using the system-oriented SysML-
based modeling approach combined with formal verification

technique.

2.3. Case Study

As depicted in Fig. 1, a quad-redundant Electro-Mechanical
Actuator (EMA) (Balaban et al., 2009) for the Flight Con-
trol Surfaces (FCS) of an aircraft, developed in a program
sponsored by NASA, is used to illustrate and validate the pro-
posed approach. The positions of the surfaces, A, C, and D,
in Fig. 2, are usually controlled using a quad-redundant actu-
ation system. The FCS actuation system responds to position
commands sent from the flight crew, B in Fig. 2, to move the
aircraft FCS to the command positions.

Figure 2. Basic Aircraft Control Surfaces.

The EMAs are arranged in a parallel fashion; therefore, each
actuator is required to tolerate a fraction of the overall load.
To meet safety requirements, each actuator is required to take
on the full expected load from the FCS in the extreme case
where all three of the four actuators become non-operational.
In addition, the design should also consider other issues such
as the possibility of the actuators becoming jammed. If one
actuator becomes jammed in this parallel arrangement, it will
prevent the other ones from moving. Therefore, a mechanism

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

«requirement»

High Level Abstraction

ld = "Req 1"

Text = "Requirement specification"

A
«deriveReqt»

«deriveReqt» :
]
"]
' 1
]
«requirement»

More Detailed Spec 2
Id = "Req 1_Detail 2"
Text = "Requirement

More Detailed Spec 1

Id = "Req 1_Detail 1"
Text = "Requirement

«requirement» |

LB R
L}

]
]
]
]
«requirement»
More Detailed Spec n

Id = "Req 1_Detail n"
Text = "Requirement

Specification" Specification”
Specification"
Figure 3. Requirements Decomposition.
«requirement»
More Detailed Spec n-k
Id = "Req 1_Detail n-k"
Text = "Requirement Specification"
)) &
«satisfy» asatisfy» M
--------.----------------.---r-----r--------------.
!] {] [
i]
[] 1 ' "
satis' satisfy «satisfyy 1
[i «satisfyj eaptistys ' «satisfys
f 1 ! [] [} i
«block» «block» «block» «block» «block» «block»
Sub-System 1| Sub-System 2 'Sub-System S ‘Component1 Component 2 Component J
@D ~—

Figure 4. Requirements Mapping.

to disengage faulty actuators from the rest of the system is
required to avoid the faulty actuators from becoming dead-
weights. Once an EMA is disengaged from the system it can-
not be re-engaged automatically. It is envisioned that this will
happen on the ground, once the aircraft has landed.

In order for the design to be reliable, additional redundancies
in other components of the system, such as load and position
sensors are required. Thus, a fully quad-redundant scheme is
envisioned, as depicted in Fig. 1. As illustrated, the design
features redundancy in the EMAs and the sensor feedback
signals. The position command is fed to the control loop,
while the load from the FCS is shared by the EMAs. The
individual load, current, and position response signals from
each EMA are used to perform separate diagnostics on each
EMA. Therefore, faults are isolated to the individual actua-
tors, which facilitates adaptive on-the-fly decisions on discon-
necting degraded EMAs from the load. A dedicated diagnos-
tics block performs actuator health assessments, and makes
decisions on whether or not to disengage any faulty actuators
from the flight control surface. The disengagement is made
possible by mechanical linkages, which can be disconnected
from the output shaft coupling.

3. METHODOLOGY

Design requirements are the specification of safety constraints
initially defined in the design. Requirements are modeled at
different levels of abstractions. For example, a higher level of
abstraction is used when expressing the global system prop-
erties and a low level of abstraction is used when expressing
the required features for each system component, i.e. the bar-
riers and materials to be used. Managing this set of specifica-
tions is based on iterative decomposition and substitution of
the abstract requirements by the requirements that are more
concrete.

3.1. Safety Requirements Modeling Using SysML

A SysML requirement diagram enables the transformation of
text-based requirements into the graphical modeling of the re-
quirements which can be related to other modeling elements.
Fig. 3 depicts the decomposition of a single abstract require-
ment into several more explicit ones. A study by Blaise et
al. (Blaise, Lhoste, & Ciccotelli, 2003) confirms the effective-
ness of such diagrams to facilitate the structuring and man-
agement of requirements that are traditionally expressed in
natural languages.

The next step in the requirement analysis phase consists of
mapping the requirements to the corresponding system com-
ponents or functions. System components are modeled as

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

part of the structural design of a system. The structural de-
sign model corresponds to the system hierarchy in terms of
systems and subsystems, which are modeled using the Block
Definition diagram (BDD). SysML blocks are the best mod-
eling elements to model multi-disciplinary systems and are
especially effective during system specification and design.
They are effective because blocks are not only able to model
logical or physical decomposition of a system, they also en-
able designers to define specification of software, hardware,
or human elements.

Fig. 4 illustrates how a single requirement can be satisfied
by a set of sub-systems and components. The requirement
diagram is connected to the structure diagram by a cross con-
necting element known as satisfy. A requirement can be sat-
isfied by a component or subsystem. Furthermore, the de-
tailed modeling of sub-systems and components are possible
through the use of Internal Block Diagram (IBD). In addi-
tion, blocks are a reusable form of description that can be ap-
plied throughout the construction of system modeling if nec-
essary. Another advantage of using blocks during the design
process is their ability to include both structural and behav-
ioral features, such as properties and operations that represent
the state of the system and behavior that the system may dis-

play.

Including properties as part of the requirement modeling is
specifically important when verifying safety requirements. As
Madni. (Madni, 2007) demonstrated, safety is a changing char-
acteristic of complex systems that, once integrated into the
design, is not preserved unless enforced throughout system
operation. Hollnagel et al. (Hollnagel et al., 2007) also con-
firms that safety is a feature that results from what a system
does, rather than a characteristic that the system has. There-
fore, the proof of safety is provided by the absence of fail-
ures and accidents. For this reason, ”safety-proofing” a sys-
tem design is never absolute or complete. Consequently, the
proposed approach does not guarantee safe system operation,
instead provides formal proof that certain very specific be-
havioral parameters will be achieved. It is for this reason that
in this paper safety is viewed as a system property.

A complete proof of safety is possible through a formal def-
inition of different properties that are linked to each high-
level abstract and low-level detailed requirements. Fig. 5 rep-
resents how a requirement, property, block, and behavioral
model are connected to one another. For example, allocate
as a cross connecting principle in SysML is used to connect a
behavior to a component in a structure diagram.

In the proposed approach, individual components’ behavior
in the system are modeled as Labeled Transition Systems
(LTSs), LTSs basically represent a finite state system. The
properties of the LTSs make it ideal for expressing the be-
havioral model of system components. The LTS model is ex-
pressed graphically, or by its alphabet, transition relation, and

wverify» Requirement Name «refine»
(mmmmm-- Pg="1r = fm——————
' Text =
«Property» &
[
¥ «satisfy»
1
[
r S — wblock»
b «satisfy» B
CmmmE .- -

«labelled transition system»
LTS

«requirement»

Figure 5. Requirements Traceability.

states including single initial state. The LTS of the system is
constructed from the LTS of its subsystems, and is verified
against safety properties of the design requirements (Fig. 5).

3.2. Safety Requirements Verification

A model-based verification approach is proposed based on the
behavioral models of design components, where behavioral
specifications are associated with each component. These
specifications are then used to analyze the overall design ar-
chitecture. In this approach, a design will be modeled as a
state transition system with a finite number of states and a
set of transitions. The design model is in essence a finite-
state machine, and the fact that it is finite makes it possible
to execute an exhaustive state-space exploration to prove that
the design satisfies its requirements. Since there is an ex-
ponential relationship between the number of states in the
model and number of components that make up the system,
the compositional reasoning approach is used to handle the
large state-space problem. The compositional reasoning tech-
nique decomposes the safety properties of the system into lo-
cal properties of its components. These local properties are
subsequently verified for each component. The combination
of these simpler and more specific verifications guarantees
the satisfaction of the global safety of the overall system ar-
chitecture design. It is important to note that, the safety re-
quirements of the components are satisfied only when explicit
assumptions are made on their environment. Therefore an
assume-guarantee (Cobleigh, Giannakopoulou, & Pasireanu,
2003; Giannakopoulou, Pédsdreanu, & Barringer, 2005; Nam
& Alur, 2006; Chaki, Clarke, Sinha, & Thati, 2005) approach
is utilized to model each component with regards to its in-
teraction with its environment, i.e, the rest of the system and
outside world.

Since, the LTSs are based on graphical modeling, they can
easily become unmanageable for large complex systems. There-
fore, an algebraic notation known as Finite State Process (FSP)
(Rodrigues, 2000) is used to define the behavior of processes
in a design. FSP is a specification language as opposed to a
modeling language, with semantics defined in terms of LTSs.
Every FSP model has a corresponding LTS description and
vice versa. An example FSP and LTS model of the Elec-
tro Mechanical Actuator (EMA) unit of the quad-redundant

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

EMA of Fig. 1 is provided in Table 1 and Fig. 6 respectively.

Table 1. FSP Description of EMA

: EMA = (recLoad — ApplyLoad — (allLoadsCompleted — EMA
| jam — block — Jammed)),
Jammed (recLoad — Jammed
| disengage — unblock — Disengaged),
Dlsengaged (recLoad, allLoadsCompleted, timeout — Disen-
gaged)

MAWI\)N

recLoad applyload jam block disengage unblock

recLoad
allLoadsCompleted
recLoad
timeout

Figure 6. LTS Model of the EMA Subsystem.

allLloadsCompleted

In the defined model, a EMA receives the load command
from the controller and carries out the operation. The Elec-
tro Mechanical Actuator is modeled in Table 6 with Jammed
and Disengaged as part of its definition. If during the time
of maintaining the specified torque or load the EMA func-
tions according to specification, the signal “all loads are com-
pleted” is sent to the controller. Otherwise, the EMA is con-
sidered non-operational or jammed. In the jammmed mode,
the EMA is incapable of maintaining the required load and
prevents the rest of the EMAs from moving. Therefore, it
needs to be disengaged from the system.

After system modeling, the actual analysis of the models is
carried out utilizing the Assume Guarantee Reasoning (AGR)
verification technique. In the assume-guarantee methodol-
ogy, a formula contains a triple (A) M (P), where M is de-
fined as a component, P is a safety property, and A is an
assumption or constraint on M’s environment. The formula
is proven correct if whenever M is a component within a sys-
tem satisfying A, then the system also guarantees P.

The simplest assume guarantee rule for checking a safety
property P on a system with two components M; and M,
can be defined as following (Henzinger, Qadeer, & Rajamani,
1998; Chaki et al., 2005):

Rule ASYm

1: (A) M (P)
2: (true) My (A)
(true) My || My (P)

The first rule is checked to ensure that the generated assump-
tion restricts the environment of component M; to satisfy
P. For example, the assumption A is that there is no Elec-
tromagnetic Interference (EMI) or Radio Frequency Interfer-
ence (RFI) in the environment where component M; oper-
ates; hence, P is satisfied. The second rule ensures that com-
ponent Ms respects the generated assumption. For example,

M will not generate any EMI and RFI while operating. If
both rules hold then it is concluded that the composition of
both components also satisfies property P ((true) My || Mz (P)).

Failure Propagation Path - Strengthen the Assumption

Model Checking

\ 4
Learning A False
Algorithm

3
/ True
True . L
> P is satisfied in M4 | I M,

¢ False

No Yes

P P is violated in M, | IM;,
Failure Propagation
Path — Weaken the
Assumption

Figure 7. An Overview of the Algorithm that Generates As-
sumptions.

In this research, the algorithm in (Giannakopoulou, Pasare-
anu, & Cobleigh, 2004) is used to automatically generate
assume-guarantee reasoning at the component, subsystem, and
system level. The objective is to automatically generate as-
sumptions for components and their compositions, so that the
assume-guarantee rule is derived in an incremental manner.
The framework of Figure 7 depicts the steps involved in per-
forming automated assume-guarantee reasoning while gener-
ating the assumptions. If rule (1) is violated, it means that the
assumption is too weak, so it does not prevent M; from reach-
ing its failure state. Based on the generated failure propaga-
tion path, the algorithm learns a new assumption with more
restriction on the environment which makes the assumption
stronger than the previous one. The iteration continues until
the first rule of (A) M; (P) is addressed. The next step is to
check the second rule (true) My (A). If the rule still holds,
then it is concluded that (true) My || My (P). If the check
fails, the algorithm performs analysis on the returned failure
propagate path to determine the reason for the failure. If the
analysis reveals that A is not the weakest assumption, i.e.,
elimination of both EMI and RFI is not necessary and only
the elimination of EMI suffices to satisfy P, then the learning
algorithm will generate a new assumption. If the rules are not
satisfied with the generated assumptions, it is concluded that
(true) My || My (P) violates the property P.

4. APPLICATION ON THE CASE STUDY

In the case study of Fig. 2, the Flight Control Surface (FCS)
must meet rigorous safety and availability requirements be-

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Table 2. Requirement Mapping.

Requirement | Component(s)

Safety Requirement 1 quad-redundant EMAs

Safety Requirement 1.2 quad-redundant EMAs

Safety Requirement 1.2.1 | Diagnostics

Safety Requirement 1.2.2 | EMAs

Safety Requirement 1.2.3 | Controller, Position Sensor, and Shaft

fore it can be certified. The FCS has two types of dependabil-
ity requirements:

o [Integrity: the FCSs must address safety issues such as
loss-of control resulting from aircraft system failures, or
environment disturbances.

e Availability: the system must have a high level of avail-
ability.

Therefore, it is critical for the FCS to continue operation with-
out degradation following a single failure, and to fail safe
or fail operative in the event of a related subsequent failure.
The movement of the FCS is controlled by a quad-redundant
EMAs. A block diagram of the quad-redundant EMAs is de-
picted in Fig. 8. As seen from the figure, the model consists
of an EMA block which is an hierarchical representation of
four independent EMAs. Each EMA is modeled via the In-
ternal Block Definition diagram (IBD). The individual EMA
legs receive the common position command, but act indepen-
dently of each other and share the flight control surface load
among themselves.

Fig. 9 depicts a set of high-level requirements. To facilitate
the verification process, each level of requirements are asso-
ciated with a formal FSP using property stereotype in SysML.
Therefore, satisfying a property P/ is the same as satisfying
properties P1.1, P1.2, and P1.3.

The next phase consists of identifying the design architecture
(Fig. 8), including sub-systems and components to map each
requirement to a traceable source. As depicted in Fig. 4, re-
quirements mapping are made possible by using the satisfy
relationship to link a single or set of blocks to one or more
requirements. The requirements mapping of quad-redundant
EMAs is presented in Table. 2.

In order to transform the requirements and the design archi-
tecture presented in Fig. 8 into a finite model, we use FSP. As
an example, consider the following FSP model of a controller
subsystem of the quad-redundant EMAs: The controller gets
the load command from the command unit and actively reg-
ulates the current to each EMA at every time step. The dif-
ference between the external load and the total actuator load
response is used to accelerate or decelerate the output shaft. If
the controller perceives that the output shaft position response
is falling behind the commanded position, it will increase the
current flow to the EMAs. As depicted in Table 3, in the FSP

description of the controller, a repetitive behavior is defined
using a recursion. In this context, recursion is recognized as a
behavior of a process that is defined in terms of itself, in order
to express repetition.

Table 3. FSP Description of Controller

1: Controller = (getLoad[l:L] — Controller[l]),
2: Controller[t:L] = (timeout — Controller

3: | sendLoad—allLoadsCompleted—getShaftPosition[x:Positions]
4: —if (x > t) then (missionComplete— Controller)
5 else Controller[t]).

The partial LTS model of the controller is depicted in Fig. 10.
The controller performs action <getLoad[l..4]>, and then
behaves as described by <Controller(l]>. Controller[l] is
a process whose behavior offers a choice, expressed by the
choice operator ”|”. Controller[l] initially engages in either
<timeout> or <SendLoad>. The action <timeout> is
performed when all actuators fail, otherwise <SendLoad>
is utilized. Subsequently, after sending the required load to
each EMA, feedback signals are sent to inform the controller
of completion of tasks by labeling the action with <all Loads
Completed>. This results in the controller to perform the ac-
tion <get Shaft Position>. At this stage, the controller com-
pares the new position with the required shaft position, if the
shaft has reached the required position then the <mission is
completed>. Otherwise, the behavior is repeated until the
shaft reaches the required position.

getload[4] sendload jllLoadsCompleted 8etShaftPosition[4]

getShaftPosition[0..3]

missionCompleted

Figure 10. LTS Model of the Controller Subsystem.

After modeling the behavior of each component and sub-system,

the design is described by a composition expression. In the
context of system design engineering, the term composition
is similar to the coupled model. The coupled model defines
how to couple several component models together to form a
new model, similarly, composition groups together individual
state machines. Such an expression is called a parallel com-
position, denoted by ”||”. The ”||” is a binary operator that
accepts two LTSs as an input argument. In the joint behavior
of the two LTSs, the transition can be performed by any of
the LTS if the action that labels the transition is not shared
with the other LTS. Shared actions have to be performed con-
currently. Table 4 depicts the FSP of the joint behavior of
EMA and controller. The composed LTS model of the two
subsystems consists of 161 states and 62 transitions. The
shared action between the two models is the <sendLoad>
action from the controller and the <recLoad> action from

«block» ‘

Command Unit Command Load -cblock:.u
[om o o o o o o | D|agnost|c_s |
I
: EMA Jammed
I
Mission Completed] T «block»
; |"<------'--| ! _‘ Sensors
Resetl :] : -
] 0 é Faulty EMA To Be Disengaged)
h = et Shaft Psition 1" {ih 4 iy
IbBCkl “ - em o o e o e [gblock» Hi T
Shaft ! 4 Controller | «block» i I
N [} - oondLoad | EMAs | -
[y 1] 5 s Monitor EMAs
\ ' {
| \ (] |
\ [}
| A (] e «All Loads Are Applied |
| \ShaftPositionls / I semeT
P ——
L e 7Q
A A¥< ~ - -7]
]] ~ -]
~ -]
] (] s g - -] 1
i | ~ EMAls Blocked o o< | I
] S -
i ~-- \
[EMA Is Unblocked :
L N~ ... IO .Y e

Figure 8. Structural Model of the Quad-redundant EMAs.

req [Fackage] rIgrt LOnirol SUMTace | ARSITacTNeq |

Property 1

«requirements
Protect FCS
Id = "SafetyReq 1"
Text = "FCS shall be operational
throughout the duration of the flight"

everifys

"command Load" action
eventually shall be
followed by a "mission
Complete" action.”

ederiveReqt» f «deriveReqt»

1
«requirement»
quad-redundant EMAs: Failure Model of Operation
Id = "SafetyReq 1.2"
Text = "Any "Command Load" Action shall be
followed by a "Mission Complete" action. "

.
«requirement»
quad-redundant EMAs: Neminal Medel of Operation
Id = "SafetyReq 1.1"
Text = "Any "Command Load" Action shall be
followed by a "Mission Complete" action. "

L)
«deriveReqt»

ederiveReqts «deriveReqt»

Property 1.1 1

the diagnostics shall detect
the failure, and send out an
appropriate disengagement
command.

1
«requirement»
. EMA Failure
averifys
= = = = Jld = "SafetyReq 1.2.1"
Text = "Lateral
protection”

«requirements
Share the Loads

«requirements
Position control

Id = "SafetyReq 1.2.2"
Text = "During failure
mode of operation the
EMA(s) shall take on the
FCS load."

: averify»

Id = "SafetyReq 1.2.3"

Text = "controller for the EMAs
which are still engaged with the load
shall maintain a minimal difference
between the position response and
the commanded position"

Property 1.2

System shall not reach the
"total lost" state

A
«verifys 1
1

Property 1.3

1 <
Position sensor shall
provide the current
position of the shaft at all
times

Figure 9. Quad-redundant EMAs High-Level Requirements.

Table 5 presents some of the state transitions (or sequence
of actions) produced by the composed model. Two possible
executions under the EMA’s nominal and faulty conditions
are considered. In nominal mode, the EMA receives a re-
quest from a controller to provide two unit loads. At each

the EMA, therefore, these two are required to be performed
synchronously. In order to change action labels of an LTS, the
relabeling operator "/ is used, e.g., { recLoad / sendLoad }.

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

Table 4. Parallel Composition of EMA (Table 1) and Con-
troller (Table 3)

1: || Leg = (EMA || Controller)/ { recLoad / sendLoad }.

time step, EMA performs one unit load and repeats until the
output shaft reaches the required position that is when the
<missionComplete> actions is performed. In the failed
mode, initial actions are the same as in nominal mode until an
EMA jams. The jammed EMA blocks the rest of the system
from moving until it is disengaged. The process is followed
by the <Unblock> action which unblocks the shaft allowing
the rest of the system to be freed. By this time, the EMA has
provided one unit load before being disconnected from the
rest of the system. Since, the <Sha ftPositionIS> shows
the current position of the shaft being one instead of two, the
EMA is required to perform one more unit of load. However,
the disengaged EMA is incapable of doing so resulting in a
<timeout>. The <timeout> occurs only when there are no
EMAs to perform the required load.

Table 5. Leg Subsystem: Two Possible Transitions

EMA: Nominal Mode EMA Failure Mode

EMA _performLoad
LoadsCompleted
getShaftPosition.2
10: EMA _performLoad
11: missionComplete

: Shaft_Unblock
: LoadsCompleted
: ShaftPositionls.1
: timeout

1: ctrl_getLoad.2 . ctrl_getLoad.2

2: EMA recLoad : EMA recLoad

3: EMA performLoad : EMA _performLoad
4: LoadsCompleted : EMA _jam

5: ShaftPositionls.1 : Shaft_block

6: EMA recLoad : EMA Disengage
7:

8:

9:

| \OOO\IO\MAWMAI\.)N

So far, we provided the basis for decomposing and modeling
the system based on the modular description of the design
components and subsystems. In the next phase, the process
of expressing the desired safety properties in terms of a state
machine or LTS is described. The advantage is that both the
design and its requirements are modeled in a syntactically
uniform fashion. Therefore, the design can be compared to
the requirements to determine whether its behavior conforms
to that of the specifications. In the context of this work, the
properties of a system are modeled as safety a FPS. A safety
FPS contains no failure states. In modeling and reasoning
about complex systems, it is more efficient to define safety
properties by directly declaring the desired behavior of a sys-
tem instead of stating the characteristics of a faulty behavior.
In a FSP, the definition of properties is distinguished from
those of subsystem and component behaviors with the key-
word property.

Based on the requirement decomposition model of Fig. 9, the
composition model of the properties P1.1, P1.2, and P1.3 is
presented by the following generic (or parameterized) safety
property with the following constants and a range definitions
is used:

e const N =4 \\ number of faulty EMAs '
e const M =4 \\ number of EMAs
e range EMAs = 1.M \\ EMA identities

In order to prevent the system from reaching the catastrophic
event of <timeout>, it is essential to complete the mission
and provide the required loads based on the command signal.
The property of Table 6, maintains a count of faulty EMAs
with the variable f. To model the fact that every command
signal must be followed by a <missioncomplete>, property
P1, the processes in lines 3 and 8 are required to constrain
the number of faulty EMAs (f) to a number defined by the
parameter of the property (e.g. N=4).

Table 6. FSP Model of Safety Property

property
: Fault_Tolerance(N=4) = Jammed[0],

|when (f>N) commandLoad[L] — Jammed|[f]

|d[EMAs].jam — Jammed[f+1]

|missionComplete — Jammed[f]),
CompleteMlsswn[f 0.M] = (mlsswnComplete — Jammed([f]

|when (f<N) d[EMAs].j Jam — CompleteMission[f+1]

|when (f==N) d[EMAs].jam — Jammed[f+1]).

\e%\IQ\MkwNN

If the above property is predefined with N = 2, permitting
only two out of four EMAs to fail during the system opera-
tion, the verification algorithm of Fig. 7 verifies that the safety
property is satisfied.

However, when the property is instantiated allowing four EMAs
to fail, the safety analysis verifies that the property is violated
and a failure propagation path is produced. Therefore, the
generic safety property modeled in Table 6 verifies that the
system never reaches the failure condition of toral loss if and
only if N < M-1 where N is the number of faulty EMAs and
M is the total number of EMAs.

From the result of case study: the characterization of the sys-
tem architecture by its subsystems and components improves
requirements specification, tracking, and modeling. In addi-
tion, the FSP annotation of the failure behavior of each of
component, and the system level safety analysis based on
components’ interaction lead to achieving a manageable veri-
fication procedure. As the compositional reasoning approach
significantly reduces the number states to be explored, ex-
haustive checking of the entire state space is made feasible
without the need for a exhaustive search. This is especially
important where the exhaustive simulation is too expensive
and non-exhaustive simulation can miss the critical safety vi-
olation.

5. CONCLUSION

There is a growing demand for formal methods and tools that
facilitate the specification and verification of complex engi-

Iby default is set to 4 but it can be redefined during the instantiation process.

Jammed[f 0..M] =(when(f < N)commandLoad[L] — CompleteMission|[f]

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

neered systems design. Also, safety standards for the de-
sign of safety-critical systems strongly recommend the use of
formal verification approach as part of the certification pro-
cess. However, these standards do not specify how formal
approaches can be implemented. Alternatively, system engi-
neering semi-formal techniques for elicitation and structuring
the requirements of complex engineered systems are essential
part of the design for electing the conceptual design that sat-
isfies the identified requirements.

In this paper, we have proposed a system modeling and verifi-
cation approach that combines these apparently contradictory
views. The semi-formal SysML techniques based on require-
ment and block diagrams combined with formal verification
methods based on the assume-guarantee reasoning are used
to prove that the behavior of sub-systems and components
satisfies the design requirements. The proposed approach is
based on the mapping between the hierarchical decomposi-
tion model of the requirements and properties to be satisfied,
functions and behaviors to be realized, and sub-systems and
components to be implemented.

The future work will continue in verifying more sophisti-
cated system, while taking into consideration safety proper-
ties that are formulated using the temporal operators, i.e., un-
til, before, or after. More complex temporal properties will
be tested. In the case of temporal properties, satisfying the
system property is not always equivalent to satisfying a local
composition of sub-properties. The modified verification al-
gorithm will use linear temporal logic (LTL) as a specification
formalism.

REFERENCES

ARPA4754, S. (1996). Certification considerations for highly-
integrated or complex aircraft systems. Society of Au-
tomotive Engineers Inc.

ARP4761, S. (1996). Guidelines and methods for conducting
the safety assessment process on civil airborne systems
and equipment. SAE International, December.

Balaban, E., Saxena, A., Goebel, K., Byington, C., Watson,
M., Bharadwaj, S., ... Amin, S. (2009). Experimen-
tal Data Collection And Modeling For Nominal And
Fault Conditions On Electro-mechanical Actuators. In
Annual conference of the prognostics and health man-
agement society (pp. 1-15).

Baroth, E., Zakrajsek, J., Powers, W., Fox, J., Prosser, B., Pal-
lix, J., & Schweikard, K. (2001). Ivhm (Integrated Ve-
hicle Health Management) techniques for future space
vehicles. In 37th joint propulsion conference.

Barragan, I. S., Roth, M., Faure, J.-M., et al. (2006). Obtain-
ing temporal and timed properties of logic controllers
from fault tree analysis. In Proceedings of the 12th ifac
symposium on information control problems in manu-
Sfacturing, incom 2006, saint-etienne, france.

Blaise, J.-C., Lhoste, P., & Ciccotelli, J. (2003). Formali-
sation of normative knowledge for safe design. Safety
Science, 41(2), 241-261.

Blanchard, B. S. (2012). System engineering management
(Vol. 64). Wiley. com.

Buede, D. M. (2011). The engineering design of systems:
Models and methods (Vol. 55). John Wiley & Sons.

Chaki, S., Clarke, E., Sinha, N., & Thati, P. (2005). Au-
tomated Assume-guarantee Reasoning for Simulation
Conformance. In Computer aided verification (pp.
241-246).

Cobleigh, J. M., Giannakopoulou, D., & Piasdreanu, C. S.
(2003). Learning Assumptions For Compositional Ver-
ification. In Tools and algorithms for the construction
and analysis of systems (pp. 331-346). Springer.

Evrot, D., Petin, J.-F., & Mery, D. (2006). Formal spec-
ification of safe manufacturing machines using the b
method: Application to a mechanical. In Information
control problems in manufacturing (Vol. 12, pp. 281—
286).

GeenSys. (2008). Regtify. www.geensys.com.

Giannakopoulou, D., Pasareanu, C. S., & Barringer, H.
(2005). Component Verification With Automatically
Generated Assumptions. Automated Software Engi-
neering, 12(3), 297-320.

Giannakopoulou, D., Pasareanu, C. S., & Cobleigh, J. M.
(2004). Assume-guarantee verification of source code
with design-level assumptions. In Proceedings of the
26th international conference on software engineering
(pp- 211-220).

Henzinger, T. A., Ho, P., & Wong-Toi, H. (1997). Hytech:
A Model Checker for Hybrid Systems. Electronics Re-
search Laboratory, College of Engineering, University
of California..

Henzinger, T. A., Nicollin, X., Sifakis, J., & Yovine, S.
(1994). Symbolic Model Checking for Real-time Sys-
tems. Information and Computation, 111(2), 193-244.

Henzinger, T. A., Qadeer, S., & Rajamani, S. K. (1998). You
assume, we guarantee: Methodology and case studies.
In Computer aided verification (pp. 440—451).

Hirtz, J., Stone, R. B., McAdams, D. A., Szykman, S., &
Wood, K. L. (2002). A Functional Basis For Engi-
neering Design: Reconciling And Evolving Previous
Efforts. Research in engineering Design, 13(2), 65—
82.

Hollnagel, E., Woods, D. D., & Leveson, N. (2007). Re-
silience engineering: Concepts and precepts. Ashgate
Publishing, Ltd.

IBM. (2010). Rational doors. Available from: http://www-
01.ibm.com/software/awdtools/doors.

1IEC. (1998). 61508 functional safety of electri-
cal/electronic/programmable electronic safety-related
systems. International electrotechnical commission.

IEEE1220. (2005). IEEE standard for application and man-

10

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

agement of the systems engineering process. IEEE New
York, NY, USA.

ISO-IEC15288. (2002). Systems engineering system life cy-
cle processes. International Standardization Organiza-
tion.

Kurtoglu, T., & Campbell, M. I. (2009). Automated Synthe-
sis Of Electromechanical Design Configurations From
Empirical Analysis Of Function To Form Mapping.
Journal of Engineering Design, 20(1), 83—104.

Kurtoglu, T., & Tumer, I. Y. (2008). A graph-based fault iden-
tification and propagation framework for functional de-
sign of complex systems. Journal of Mechanical De-
sign, 130(5), 051401.

Leveson, N. (2011). Engineering a safer world: Systems
thinking applied to safety. MIT Press.

Leveson, N. G. (2009). The need for new paradigms in safety
engineering. In Safety-critical systems: Problems, pro-
cess and practice (pp. 3-20). Springer.

Lundteigen, M. A., Rausand, M., & Utne, 1. B. (2009). In-
tegrating rams engineering and management with the
safety life cycle of iec 61508. Reliability Engineering
& System Safety, 94(12), 1894—1903.

Madni, A. (2007). Designing for resilience. ISTI Lecture
Notes on Advanced Topics in Systems Engineering.

Nagel, R. L., Stone, R. B., Hutcheson, R. S., McAdams,
D. A., & Donndelinger, J. A. (2008). Function De-
sign Framework (FDF): Integrated Process And Func-
tion Modeling For Complex Systems. In Asme 2008
international design engineering technical conferences
& computers and information in engineering confer-
ence (idetc/cie 2008) (pp. 273-286).

Nam, W.,, & Alur, R. (2006). Learning-based Symbolic
Assume-guarantee Reasoning With Automatic decom-
position. In Automated technology for verification and
analysis (pp. 170-185). Springer.

OMG, O. (2007). Unified modeling language (omg uml).
Superstructure.

Rodrigues, R. W. (2000). Formalising UML Activity Dia-
grams Using Finite State Processes. In Proc. of the 3rd
intl. conf. on the unified modeling language, york, uk.

Stone, R. B., Tumer, 1. Y., & Stock, M. E. (2005). Link-
ing product functionality to historic failures to improve
failure analysis in design. Research in Engineering De-
sign, 16(1-2), 96-108.

Tumer, . Y., & Smidts, C. S. (2011). Integrated design-stage
failure analysis of software-driven hardware systems.
Computers, IEEE Transactions on, 60(8), 1072-1084.

Tumer, 1. Y., Stone, R. B., & Bell, D. G. (2003). Require-
ments for a failure mode taxonomy for use in concep-
tual design. In Proceedings of the international confer-
ence on engineering design, iced (Vol. 3).

Wiese, P. R., & John, P. (2003). Engineering design in the
multi-discipline era: A systems approach. Wiley.

Zio, E. (2009). Reliability engineering: Old problems

and new challenges. Reliability Engineering & System
Safety, 94(2), 125-141.

BIOGRAPHIES

Hoda Mehrpouyan Dr. Hoda Mehrpouyan is a Professor in
TSYS School of Computer Science at Columbus State Uni-
versity. Her research focuses on model-based systems en-
gineering, resilience and safety analysis, information tech-
nology, simulation and verification to support the design of
complex systems. She received her Ph.D. from Oregon State
University in 2014 and holds a M.S. degree in Software En-
gineering from Linkoping University in 2011. Prior to retur-
nung to academia, She spent 7 years in industry as a system
delivery consultant and programmer analyst.

Irem Tumer Dr. Irem Y. Tumer is a Professor in Mechan-
ical, Industrial, and Manufacturing Engineering at Oregon
State University, where she leads the Complex Engineered
System Design Laboratory, and Associate Dean for Research
and Economic Development for the College of Engineering at
OSU. Her research focuses on the overall problem of design-
ing highly complex and integrated engineering systems with
reduced risk of failures, and developing formal methodolo-
gies and approaches for complex system design and analysis.
Since moving to Oregon State University in 2006, her funding
has largely been through NSF, AFOSR, DARPA, and NASA.
Prior to accepting a faculty position at OSU, Dr. Tumer led
the Complex Systems Design and Engineering group in the
Intelligent Systems Division at NASA Ames Research Cen-
ter, where she worked from 1998 through 2006 as Research
Scientist, Group Lead, and Program Manager. Dr. Tumer
has been Conference Chair for ASME Design for Manufac-
turing and the Lifecycle conference in 2000, Program Chair
for IEEE Reliability Society?s Prognostics and Health Man-
agement Conference in 2008, and Program Chair (2011) and
Conference Chair (2012) for ASME?s International Design
Theory and Methodology Conference; and is current Asso-
ciate Editor for ASME Journal of Mechanical Design and the
International Journal of Prognostics and Health Management,
and guest editor for AEIDAM journal. She received her Ph.D.
in Mechanical Engineering from The University of Texas at
Austin in 1998.

Christopher Hoyle Dr. Hoyle’s research focuses on decision
making in engineering design, with emphasis on the early
design phase when uncertainty is high and the potential de-
sign space is large. More specifically, he works in the areas
of decision-based design (linking consumer preferences and
enterprise-level objectives with the engineering design pro-
cess), uncertainty quantification and management, and com-
plex system design. Areas of technical expertise include un-
certainty propagation methodologies, Bayesian statistics and
modeling, stochastic consumer choice modeling, optimiza-
tion, and design automation. Prior to returning to academe,
Dr. Hoyle spent 15 years in industry as a project engineer

11

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014

and engineering manager, concerned primarily with electron-
ics packaging and with managing the trade-offs between per-
formance, manufacturability, and cost.

Dimitra Giannakopoulou Dr. Giannakopoulou is a Research
Computer Scientist with the NASA Ames Research Center,
and a member of the Robust Software Engineering Group.
Her work is concerned with applying modular and composi-
tional formal verification techniques to autonomous systems
and architectures. Before joining Ames, she was a Research
Associate with the Department of Computing, Imperial Col-
lege, University of London, UK, working on methods for
the specification and automatic verification of distributed sys-
tems. She has graduated from the Dept of Computer Engi-
neering and Informatics, University of Patras, Greece. She
hold an MSc with distinction from Imperial College, in ”Foun-

dations of Advanced Information Technology”, and since March
1999, a PhD degree from Imperial College, University of
London.

Guillaume Brat Dr. Brat is employed by Carnegie-Mellon
University and he conduct research in software verification
within the Robust Software Engineering group in the Intel-
ligent Systems Division at NASA Ames. He received an
M.Sc. and Ph.D. from the ECE Department at The Univer-
sity of Texas at Austin. He is Principal Systems Scientist at
CMU Silicon Valley serving as an IPA at NASA Ames Re-
search Center. He has been the Assistant Area lead for Robust
Software Engineering since October 2009. The group con-
ducts research on new verification and validation techniques,
mostly based on formal methods.

12

