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ABSTRACT

Electrical rotating machines are among the most common
assets used in industry. In railways applications these de-
vices are present in fixed and rolling stock systems, such as
turnouts and traction components. Condition based mainte-
nance (CBM) of rotating machines may significantly improve
the availability of critical railway assets. Moreover, by effi-
ciently assessing the state of health of targeted components,
it becomes possible to introduce advanced asset management
strategies for life cycle cost optimization. In comparison with
traditional maintenance approaches, health monitoring en-
ables better maintenance scheduling, fleet size optimization
and maintenance costs reduction. CBM applied to rotating
machines has been actively studied by many researchers in a
wide variety of fields such as: signal processing, anomaly de-
tection, failure diagnostic and failure prognostics. However,
there is still a considerable gap between the methods stud-
ied in research and the ones successfully applied in industry,
and especially in the railway field. This paper discusses the
challenges and opportunities for application of CBM methods
to electrical rotating machines in railway applications. For
the purpose of illustration, a case study focusing on traction
motor bearings is considered. Time domain and frequency
domain signal processing techniques are employed to extract
features from bearing degradation data. The data analyzed in
the present study have been obtained in a bearing test bench
and during a test conducted on a real traction motor used in
trains. The results of the considered methods are discussed
and future research directions are suggested.

1. INTRODUCTION

Maintaining railway equipment in operational condition is an
industrial, economical and societal need. Fulfilling this re-
quirement represents a challenge because railway systems are
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complex and subject to stress factors affecting their behavior
and aging process (e.g. temperature, humidity, varying load,
imperfect maintenance, etc.). The operation of railways re-
quires several fundamental assets (Bonnett, 2005):

e The rolling stock: this stands for the vehicles (metros,
tramways, locomotives, etc.) that convey passengers and
goods.

e The infrastructure: refers to the fixed installations neces-
sary to operate the railway, such as:
— The tracks: which support and guide the rolling
stock without active steering
— The signaling: that is used for traffic control and to
avoid collisions
— The power supply: responsible of transforming and
carrying the current to the rolling stock by using
overhead cables or a third rail
— The facilities: which serve as areas where the pas-
sengers may board or step off from trains (stations)
or where the trains are maintained and overhauled
(depots)

Railway assets are made from engineered systems. For ex-
ample, rolling stock are formed by means of train systems
and comfort systems. Without being exhaustive, the formers
provide main functions such as: current collection, traction,
air supply and communications. The latter perform auxiliary
functions like: heat ventilation and air conditioning (HVAC),
toilets and doors operation. Some of the previous systems
embed electrical rotating machines in order to provide the
key energy or movement required to perform their main
function. HVAC units use electrical motor-fans to create the
heating/cooling air flow. Doors and pantograph operation
rely on a kinematic chain controlled by brushless motors.
Vacuum for toilet flushing and pressurized air for braking
system is provided by an electrical compressor driven by
a motor. Finally, trains are moved using powerful electric
motors.
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Bearings are one of the most critical components in electrical
rotating machines. The survey performed by the the Institute
of Electrical and Electronics Engineers (IEEE) Motor relia-
bility working group (O’Donnell, 1985) showed that bearings
accounts for 41% of failures in powerful motors as presented
in figure 1.
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Figure 1. Failure distribution of motors of power greater than
200 HP.

Therefore, the system’s availability is conditioned by the
health of the motor’s bearings and their capacity to accom-
plish the expected mission. The maintenance of electrical
rotating machines is a critical operation for the railways op-
erators. Traditionally, the maintenance strategies performed
in the workshops are corrective or preventive. In the first
case, the maintenance interventions are performed after the
failure. However, this may lead to undesired or dangerous
situations. Preventive maintenance seeks to perform the
maintenance intervention before the failure’s appearance.
This approach aims at preserving equipment reliability by
replacing worn components before their failure. However,
preventive maintenance may be costly and decrease system
availability due to the regular maintenance operations. To
improve previous approaches, Condition Based Maintenance
(CBM) can be applied and consequently achieve significant
benefits (Lebold & Thurston, 2001). CBM focuses its efforts
in determining the equipment’s health condition, estimated
or measured through sensors present on the equipment.
Through this information it becomes possible to track the
evolution of the system’s health state, detect its abnormal
behaviors, diagnose the type of anomaly and predict its Re-
maining Useful Life (RUL). The comprehensive literature
reviews performed by (Sikorska, Hodkiewicz, & Ma, 2011)
and (Javed, Gouriveau, & Zerhouni, 2017) show that CBM
has been an active research field for academics and indus-
trials. In the research community, the published literature
for bearings covers fields such as: signal processing, feature
extraction, anomaly detection, diagnostic and prognostic as-
sessment by mainly using vibration data (Randall & Antoni,
2011; Kan, Tan, & Mathew, 2015; Tobon-Mejia, Medjaher,
Zerhouni, & Tripot, 2012). Railway companies have been

actively working in CBM. In 2015, Alstom launched the
HealthHub! program in order to develop dedicated technol-
ogy for condition based maintenance and prognostics and
health management (PHM). Successful applications have
been reported in the field of health monitoring of traction
blowers (Trilla, Gratacos, Guinart, Alessi, & Lamoureux,
2016) and turnouts (Alessi, La-Cascia, Lamoureux, Pug-
naloni, & Dersin, 2016), among others.

This paper will focus in the signal processing, feature extrac-
tion and anomaly detection applied to electrical rotating ma-
chines. The main aim is to extract useful bearing’s health
information from the raw signals obtained by sensors. The
following sections present the results obtained by using time
domain and frequency domain feature extraction methods, in
vibration signals generated by means of a research test bench
and by a real train system. Time domain analysis and fre-
quency domain analysis are chosen and investigated because
they are the most discussed approaches in the literature. The
paper is structured as follows: Section 2 gives the necessary
background about the feature extraction methods; Section 3
describes the different test platforms; Section 4 presents, dis-
cusses and compares the results obtained. Finally, conclusion
remarks and future research directions are given.

2. SIGNAL PROCESSING AND FEATURE EXTRACTION

As presented in the previous section, bearing failure is one
of the most common cause of problems in rotating machines.
Bearing fault usually starts as small indentations or material
breaks (spalls). In order to track the level of degradation sev-
eral physical variables have been investigated in the literature,
such as: temperature, wear measurement (debris), magnetic
field and vibrations (Kurfess, Billington, & Liang, 2006). At
each passage of the rolling elements over the defect, a sharp
high energy impulse is generated. Thus, local defects in a
bearing produce repeated impulses (measurable trough an ac-
celeration signal) as the bearing elements repeatedly strike
the fault. The figure 2 illustrates how the vibration is ex-
cited by local faults in the different bearing elements. In order
to extract useful information from the acceleration signals, a
large variety of methods have been published in the litera-
ture. The existing literature on the subject may be classified
in three classes:

e Time domain: these methods focus on extracting the sta-
tistical information of the vibration signal.

e Frequency domain: also known as spectral analysis
which rely on the frequency characteristics of the vibra-
tion signal.

e Time-Frequency domain: here the methods consider the
vibration signal as a non-stationary process.

Thttp://www.alstom.com/press-centre/2014/646105/innotrans2014-alstom-
launches-healthhub-an-innovative-tool-for-predictive-maintenance-/
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Figure 2. Typical signals and envelope signals from local
faults in rolling element bearings.

This paper focuses on the most spread techniques in the lit-
erature, namely time domain and frequency domain because
they have been successfully applied in “real world” applica-
tions (Randall & Antoni, 2011). The following subsections
give the background of the studied approaches.

2.1. Time Domain

The vibration signals produced by rotating machines are
considered as cyclostationary signals. This implies that the
measured signal is produced by a hidden periodic mechanism.
Time domain approaches aim to compute signal statistics and
signal shape factors characterizing such periodic behavior.
As reviewed by (Kurfess et al., 2006), the most used time
domain features are: root mean square o RMS Eq. (1), mean
Eq. (2), peak value Eq. (3), crest factor Eq. (4), skewness
Eq. (5) and kurtosis Eq. (6).
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Where z is the discrete sampled vibration signal of length
N where each measured point is denoted as z; and i €
{i ¢ N|i < N}. The RMS is used to compute the average
power of the system’s vibrations. The mean is estimated in
the rectified vibration signal because in raw signals the mean
remains close to zero. The previous features are expected to
increase when the bearing deteriorates. Peak value and crest
factor catches instantaneous accelerations or burst closely re-
lated with cracks and indentations. Skewness and kurtosis are
respectively the third order and the fourth order signal’s statis-
tical moment, they characterize the bearing’s surface quality.
Machined bearings are supposed to have random asperities
which are commonly approximated to a normal distribution.
Thus, for normally distributed data x5, = 0 and s = 3;
these reference values allow to track shifts in the bearing’s
condition.

2.2. Frequency domain

Vibration signals also contain frequency information that
may be extracted by transforming the temporal sampled sig-
nal in to the frequency domain. Faults in rolling element
bearings produce a series of broadband vibrations as the
bearing elements repeatedly strike faults. As presented in
figure 2, the location of the fault determines the origin of the
vibration response. This means that each bearing element has
its own characteristic rotational frequency. If a defect appears
on a particular bearing element, an increase in the vibrations
level at the element’s rotational frequency may be observed.
The characteristic fault frequencies can be calculated from
kinematic considerations; mainly the geometry of the bearing
and its rotational speed (Smith & Randall, 2015). For a
bearing with a fixed outer race, the bearing fault frequencies
are: ball pass frequency over the outer race (BPFO) Eq. (7),
ball pass frequency over the inner race (BPFI) Eq. (8), funda-
mental train frequency or cage speed (FTF) Eq. (9) and ball
(roller) spin frequency (BSF) Eq. (10).

BPFO = ”éf (1- %cos(qb)) 7
BPFI = ”éf (1+ %cos(qb)) )
FTF — %(1 - %cos(qs)) ©)
BSF = DQ‘Q (1- [%cos(¢>]2) (10)

In the previous equations f, is the shaft speed, n is the num-
ber of rolling elements, and ¢ is the angle of the load from
the radial plane. D, d, BPFO, BPFI, FTF and BSF are shown
in figure 2. As explained by (Smith & Randall, 2015), it is
worth to noticing that the previous fault frequencies are based
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on kinematic relationships assuming no slip, but in practice
there is always some slip, so a variation up to 1-2% of the
calculated frequency is common.

Bearing’s fault frequencies are in general “low” and fall in
the interval [1 - 1000] Hz. One may reasonably consider
to transform the raw signal in to the frequency domain (e.g.
by means of the Fourier transform) and directly search the
fault frequencies. However, this method is limited and gives
poor results. This is because the bearing fault signals have
low magnitude and are masked by other components in the
spectrum (e.g. gears, axles, belts, noise, etc.). Bearing’s vi-
bration signals are generally acquired using a sampling rate
comprised in the range 1 Hz - 25 kHz. The sensed acceler-
ations contains rich information. This, enables the possibil-
ity of finding an uncontaminated frequency band dominated
by the fundamental bearing’s frequencies in higher frequency
range. The most powerful bearing fault detection techniques
depend on enhancing the impulsiveness of vibration signals.
As explained by (Tandon & Choudhury, 1999), each time a
defect strikes its mating element, a pulse of short duration is
generated that excites system’s resonances periodically (e.g.
electrical motor) at the element frequency. The resonances
are thus amplitude modulated at the characteristic defect fre-
quency. By demodulating one of these resonances, a signal
indicative of the bearing condition can be recovered. In prac-
tice, the signal is bandpass-filtered around one of the resonant
frequencies, thus eliminating most of the unwanted vibration
signals from other sources. This bandpass-filtered signal is
then demodulated by an envelope detector in which the sig-
nal is rectified and smoothed by low-pass filtering to elimi-
nate the carrier or bandpass-filtered resonant frequency. The
spectrum of the envelope signal in the low-frequency range
is then obtained to get the characteristic defect frequency of
the bearing. The envelope detector is given in the Eq. (11),
where B(t) is the envelope signal, x;(t) is the raw signal
filtered around the resonant frequency and &(¢) is the Hilbert
transform of x ¢ (¢). The Hilbert transform is available in com-
mercial software such as Matlab®? and and its theoretical
background is well described in (Benitez, Gaydecki, Zaidi, &
Fitzpatrick, 2001).

B(t) = y/x}(t) +22(t) (11)

3. EXPERIMENTAL SETUP

In order to assess the suitability, performance and robustness
of the previous signal processing methods the data obtained
in two different bearing test benches were studied. The ex-
perimental test benches were used to run bearings from the
brand new state up to the failure state. The first data set comes
from a research test bed called Pronostia developed by the
FEMTO-ST Institute. The measurements performed during

Zhttps://www.mathworks.com/help/signal/ref/hilbert.html

the experiments were provided to the IEEE PHM 2012 Prog-
nostic Challenge and are available on line. The second data
set was obtained using an industrial test bench of a train trac-
tion motor manufactured by Alstom.

3.1. Research test bench

The figure 3 displays the Pronostia platform where acceler-
ated run-to-failure bearing experiments under constant op-
erating conditions were performed (Nectoux et al., 2012).
Thus, a radial load was applied to the bearing in order to boost
its degradation. The acquired experimental data is suitable
for fault detection, diagnostic and prognostic studies because
it covers the entire bearing’s life. The test bench is composed
of three main elements:

e The rotating parts: mainly the asynchronous motor, a
speed reducer (belt) and the shafts. The electric mo-
tor drives the whole system and introduces the rotating
movement which is reduced and transmitted to the shaft
where the tested bearing is placed;

e The degradation devices: a lever arm and a pneumatic
jack with its control devices is used to create the radial
load. This force is indirectly applied on the outer bearing
race using a clamping ring;

e The measurement chain: several sensors are disposed in
the test bed in order to measure the bearing’s operating
condition and its behavior. The bearing’s environment
is characterized by: the radial force, the rotation speed
and the torque. While the bearing’s condition is assessed
through accelerations (horizontal and vertical) and tem-
perature.

: ‘i" B

Torquemeter upling | Platinum RTD

Figure 3. Overview of the Pronostia platform.

3http://www.femto-st.fr/en/Research-departments/AS2M/Research-
groups/PHM/IEEE-PHM-2012-Data-challenge.php
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3.2. Railway test bench

A traction motor test bench was developed at the Alstom’s
motor engineering center*. The setup was used to generate
data, in order to study the previously mentioned signals pro-
cessing methods in heavy railway material as shown in the
figure 4. Similarly to the Pronostia platform an accelerated
run-to-failure bearing experiment was conducted. Thus, an
electrical asynchronous motor of 140 kW and 2130 N.m @
4200 RPM was instrumented with sensors and coupled to an
old DC locomotive motor of 800 kW used as load genera-
tor. The Alstom’s test bench is composed of the following
elements:

e The rotating parts: these elements are visible in the figure
4, the asynchronous motor is on the left side and painted
in red, the speed reducer is in the middle and painted in
light blue and the load generator is in the right side and
painted in blue;

e The electrical devices: in order to feed the asynchronous
motor an electrical AC/AC converter was used allowing
to control the speed. A DC/AC power inverter was dis-
posed to create the traction load and to recover the load
energy which was returned to the grid;

e The degradation devices: the bearing was stressed
mainly by temperature variations. A hot air blower
was used to heat the bearing up to 250°C;

e The measurement chain: sensors were used to measure
the motor operating condition and its behavior. The mo-
tor environment is characterized by: the phase voltage,
the phase current and the rotation speed. The motor be-
havior is assessed trough horizontal and vertical acceler-
ations measured on the motor’s body shell in each bear-
ing plan and the internal temperature (stator).

Figure 4. Traction motor test bench.

4. RESULTS AN DISCUSSION

The obtained data sets are used in this section to assess the
performance and suitability of the methods introduced in the

“http://www.alstom.com/products-services/product-catalogue/rail-
systems/components/motors/

section 2. First, the data obtained in the Pronostia test bench
is used to identify the most sensible features for fault detec-
tion. Then, the retained features are computed in the Alstom’s
data set.

4.1. Research test bench

The presented time domain and frequency domain ap-
proaches were applied using the data set named Bearing
1.5. This choice is based in the fact that this is one of the
longest data sets in the repository and it was performed
several months after the first test. Thus, this data set has
abundant measurement points. Additionally, one can expect
that after 5 months of testing the bench elements were less
tight making the spectrum richer and the detection more
difficult due to the vibrations coming from other elements
similarly to the industrial applications. The figure 5 present
the results after the calculation of the temporal features given
in Eq. (1) - Eq. (6) using the horizontal accelerometer. The
horizontal axis was chosen because it is aligned with the
radial load direction.
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Figure 5. Extracted temporal features using the Pronostia test
bench data.

The results presented in the figure 5 show that crest factor and
the peak value features are extremely sensitive to the bearing
evolution. They capture better than the other features the vi-
bration change. These two features clearly show the vibration
increase around 50 min (defect apparition), 160 min (defect
evolution) and 390 min (close to failure). However, the draw-
back of these features is the measurement range. For instance,
the crest factor and the peak value generates the same feature
magnitudes for the different vibration increase instants. In
contrast to this, the RMS and the mean shown a more regu-
lar behavior, but their trend modification occurs at the very
end of the run-to-failure test. Skewness and kurtosis behave
as described in the theory. Skewness remains equal to zero
and shows changes at the three vibration increase moments.
However, its behavior is not monotonic, this is clearly visible
at the end of the test were its values goes above and below
zero. Finally, kurtosis is more constant in its behavior, as ex-
pected its value is generally equal to 3. The kurtosis value
changes in the three vibrations increase moments. Moreover,
the kurtosis has a tendency to increase with the fault progres-
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sion zys(t = 50) < zps(t = 160) < zps(t = 390) with
t in minutes, but at each vibration increase moment after the
fault progression the kurtosis goes down to constant value.
This phenomenon may be explained by the fact that bearings
defects generally initiates as small pits or spalls producing
energetic impulses. Then, due to the rolling element passage
there is a tendency for the spalled area to become worn, in
which case the impacts might be smaller (less energetic).

As described in the section 2.2 the envelope analysis could
be used to search for the bearing fault frequencies. The NSK
6804DD bearing was used to conduct the tests in the pronostia
platform, using its dimensions and the shaft speed during the
test (1800 RPM or f, = 30 Hz) the following fault frequen-
cies were calculated: BPFO = 168.34 Hz, BPFI = 221.66 Hz,
FTF = 12.95 Hz and BSF = 215.33 Hz. The 25 kHz sampled
accelerations were used to compute the envelope spectrum.
One of the difficulties of performing the envelope analysis
lies in the choice of the most suitable band for demodula-
tion, some experts recommends the use of hammer tap testing
to find bearing housing resonances. However, the pronostia
data set didn’t contain such information. In this paper the de-
modulation band was chosen using a set of data considered
as healthy. Thus, the spectrum after 10 minutes was com-
puted and used to define the healthy baseline. The figure 6
presents the complete frequency spectrum where three reso-
nant frequencies are visible, they are approximately centered
at: 1800 Hz, 3600 Hz and 5400 Hz. The chosen demodulation
frequency is the third burst because it is the highest frequency
peak in the response spectrum.

Healthy response spectrum

Demodulation band

Acceleration (g)

Figure 6. Baseline spectrum obtained after 10 minutes of test.

The envelope signal was estimated using the chosen demod-
ulation frequency. The envelopes for the healthy state and
faulty state are displayed in the figure 7. The baseline spec-
trum is given in the figure 7(a) where no bearing frequency
components are present. In contrast to the baseline, the spec-
trum in the figure 7(b) obtained 10 minutes before the failure
clearly shows a sharp component at the BPFI and its harmon-
ics. A non dominant (low) component at the BPFO is also
present. Thus, the envelope analysis successfully localize the
defects in this data set prior to the failure.

Baseline envelope spectrum

Acceleration (g)
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Figure 7. Envelope spectrum: (a) baseline and (b) 10 minutes
before the failure.

4.2. Railway test bench

The previous feature extraction methods were assessed using
the data obtained in the traction motor test bench. The stud-
ied data set is related to a run-to-failure test under a constant
speed of 1500 RPM and an air blowing temperature of 200°C.
After 11 hours and 29 minutes one of the bearings failed
blocking the motor axle. The faulty rolling element bearing
was removed and the cage was found totally destroyed as pre-
sented in the figure 8.

Figure 8. Faulty traction motor bearing.

The time features displayed on the figure 9 were computed
using the data set. The figure 9(a) present the evolution of the



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

vertical acceleration RMS from ¢ = 0 min til the failure at
t = 629 min. After the beginning of the test, the RMS shows
an increasing trend displaying a first sharp peak at ¢ = 147
min, this instant is designed as A. Then, the RMS level goes
down to a constant level around 50 m/ s2, then a second peak
appears at ¢ = 415 min, this event is denoted B. After the
peak, the RMS level goes down and increase again up to an-
other peak at ¢ = 516 min (instant C). Finally, the feature
decreases and increases again and a peak appear at t = 594
min (instant D), then the RMS continues the increasing trend
stooping at the failure. The kurtosis is presented in figure
9(b), its behavior is coherent with the theory and the instants
A, B and C are clearly visible. However, it fails to detect
the instant D prior to the failure. It shall be noticed that dur-
ing the test at the instants previously designated as: A, B, C
and D a high frequency noise was heard by the testing staff.
The authors suspects that the noise was closely related with
destruction of the cage’s elements.

Vertical Acceleration RMS

300 T T T T
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00 +

RMS

1501 +

A B CD ]
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5 , , , , , ,
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Figure 9. Traction motor time domain features: (a) RMS and
(b) kurtosis.

The frequency domain analysis was performed using the data
set in order to search for the fault frequencies. The accel-
erations were sampled at 20 kHz and hammer tap test was

performed in order to identify the resonant frequencies. The
figure 10 shows the acceleration spectrum obtained during the
resonance test. One frequency response is noticed and is cen-
tered around 1100 Hz. The vertical response is slightly higher
than the horizontal response. Hence, the envelope analysis
was performed on the vertical acceleration signal.

Hammer structural resonance test

FTCCl - Demodulatipn band ‘ Vertical accelerometer
¢ | Horizontal accelerometer
I
th i
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Figure 10. Traction motor resonance spectrum.

The bearing deterministic fault frequencies were calculated
using the bearing geometry and the test speed of 1500 RPM
or f. = 25 Hz. Using the equations presented in the section
2.2 the following frequencies were estimated: BPFO = 192
Hz, BPFI = 258 Hz, FTF = 10.7 Hz and BSF = 169 Hz. The
figure 11 present the results of the different spectra estimated
at different time stamps during the run to failure test, where
a cage failure was reported. A baseline was taken 20 minutes
after the beginning of the test and is presented in the figure
11(a), this graph points out a component related to the shaft
frequency f, the amplitude at the cage frequency (FTF) and
its harmonics are low. As a reminder, at the time instants pre-
viously designed as: A, B, C and D the test engineers noticed
an audible noise accompanied by an increase of the RMS and
kurtosis values. Figures 11(b)-(e) present the envelope spec-
trum at these instants. In these spectra the components re-
lated with the FTF fault and its harmonics are clearly visible.
Moreover, their magnitude is greater compared to the base-
line envelope spectrum. The spectrum presented in the fig-
ure 11(e) contains also frequencies responses matching with
the: BPFO, BPFI, BSF with high amplitudes compared to
the other envelopes spectrum. This may be explained by the
cage’s level of degradation. During the bearing removal pro-
cedure the technicians found brass powder (cage’s material)
in the bearing housing and some rolling separators were miss-
ing. The test engineers suspect that at the instant D the cage
started to disintegrate. We believe that the cage elements were
grinded by the rolling elements. Thus, at each passage of the
rolling element over the cage’s chunks the whole bearing’s
frequencies were excited.

4.3. Challenges and opportunities

In the previous section two kinds of data sets were studied.
The first data set was obtained in a research laboratory test
bench where the sensors were placed close to the bearing.
The second data set was generated in an industrial test bench
where the sensors where disposed in the best accessible lo-
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cation, in this case the traction motor body shell for the ac-
celerometers. The signal processing methods were applied
and the following comments may be done:

e The temporal features behave similarly in both cases;

e The kurtosis detect almost all the different degradation
instants, while the RMS catch the energy increase prior
to the failure;

e The bearing’s fault frequencies are more visible in the
research data set as presented in the figure 7(b), than in
the traction motor spectrum as shown in the figure 11(e).

An effective method for bearing health assessment which
could allow to perform condition based maintenance in rail-
way assets may be developed by combing the strengths of
the time and frequency domain methods. In the forthcoming
works a special focus will be done in:

e Choosing the demodulation band by tracking the most
energetic bandwidth for the envelope analysis and over-
come the signal damping issues;

e Combining the features in order to increase the sensitiv-
ity of the the features regarding the fault evolution;

e Assessing the impact of the operational conditions into
the measures and identifying the optimal measurement
condition in order to avoid misdetections;

e Studying the signals under distributed bearing defects;

e Developing a monotonous increasing or decreasing
health feature to enable the use of bearing prognostics
methods.

5. CONCLUSION

Maintaining railway systems in operating conditions is a ma-
jor societal and an operator requirement. For this, Condition
Based Maintenance provides useful tools, enabling the neces-
sary maintenance activity optimization in order to meet mar-
ket demand. Electrical rotating machines are key elements
in railway’s systems and bearings are their Achilles’ heel. In
this paper, two of the most popular bearing’s signal process-
ing approaches have been successfully applied. The results
obtained using different data sets brought out the strengths
and the weaknesses of the approaches. Thus, in order to pro-
vide an adapted algorithm for bearing’s health assessment in
railway systems the authors recommend to focus the efforts in
enhancing the acceleration signal and fusioning the features.
In the forthcoming works high-frequencies resonance tech-
niques will be used to prepare the signals, then state of the
art features will be computed and fused in order to compute a
monotonous increasing or decreasing health index.
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