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ABSTRACT 

This article’s model based diagnostics system has four 
modules. Diagnosis and fault location forms physics models 
of the machine, measures states off the real in-service 
machine, generates simulated machine states and simulated 
sensor outputs for the machine model with loads same as the 
real machine, and compares simulated sensor outputs to real 
sensor outputs. The parameter tuning module adjusts (tunes) 
the parameters of the model until the simulated sensor 
outputs closely mimic real sensor outputs. Tuning transfers 
information on the system’s health from the sensor data to 
the model’s parameters. Parameters changed from nominal 
values locate faults and bad parts. For the health assessment 
module to assess machine health, we view a machine as a 
“machine channel” that organizes power and information 
flow through the machine. Machines focus power via an 
organization inherent in its components and design. Broken 
or degraded components disrupt this organization and the 
power and information flows. Shannon’s information theory 
for communications channels can then be applied as a health 
metric to this “machine channel”. Ageing of components 
degrades machine functional health. To prognose future 
health, differential equations that model ageing of the 
machine’s components are formulated and solved. These 
equations predict component degradation, and update values 
of parameters in the model associated with component 
ageing. With these future parameter values, simulations of 
the machine operation model can then predict “future” 
machine behavior, and system health. This article 
demonstrates these methods on motors and a pump. 

1. INTRODUCTION 

A diagnostic system should detect, isolate, and identify the 
type and nature of a fault; determine the severity of the fault 
on system performance and the urgency of corrective action; 
analyze accommodation of the fault; and finally, forecast 
future behavior of the system, given the presence and future 
state of the fault. This article overviews a model based 
diagnostics and prognostics system, shown schematically in 
Fig. 1. The system integrates several modules developed at 
University of Texas at Austin into an overall diagnostics

system.  The modules described in the next section were all 
developed from fundamentals of physics and information 
theory. 
 
Model-based diagnostics constructs models of machines to 
interpret sensor signals in terms of faults and locate and 
track faults in machines. Figure 1 depicts the system 
consisting of real machine; inputs to the machine; a physics 
based model of the machine with many physical states and 
parameters; outputs from the machine measured by sensors, 
and corresponding outputs simulated by the model; a 
module that tunes or adjusts the numerical values of the 

 
 
Figure 1. A schematic of the model based diagnostic 
system, consisting of four modules: diagnosis and fault 
location, consisting of real machine, inputs, sensor 
outputs, and physics model of machine; parameter 
tuning module to extract health condition from 
measurements; health assessment module to assess 
machine functional capability; and prognosis module to 
forecast future machine condition. 
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model’s parameters to make the model’s simulated outputs 
mimic the real machine’s measured outputs; a health 
assessment module to evaluate the system’s health or ability 
to do a job using the measured signals; and a prognosis 
module which forecasts the changed values of parameters of 
an aged machine, via a thermodynamics based method of 
modeling effects of degradation. With these future “aged” 
parameters, the model can simulate future machine behavior 
to predict the future health condition of the machine.  In the 
following sections, the components and operation of each 
module will be described in detail.  
 
Since these modules are all based on fundamentals of 
physics and information theory, the reliability of this overall 
diagnostics system is extremely high.  

2. MODEL BASED DIAGNOSTIC SYSTEM 

Each module of Fig. 1 will be introduced and described. 

2.1. Diagnostics and Fault Location Module (DFLM) 

In Fig. 1, the Diagnostics & fault location module consists 
of a sensory system to observe the real machine and faults, 
and a detailed physics based model of the machine system 
to interpret the sensor signals. The model simulates the 
behavior of both machine and sensor system.   

2.1.1. Sensor System and Observability 

For any diagnostics system to work properly, the sensors 
must collect sufficient, correct and appropriate information 
from the system. The sensor system must be observable to 
the faults.  

Model based diagnostics do not require exotic sensors. 
Simple and common sensors found on industry machines 
can usually ensure diagnosability. Although models 
interpret the sensor signals, these signals must contain 
sufficient information to enable a correct diagnosis. For 
motors, typically measured are voltages, currents, run-outs, 
speed, vibration and temperature by sensors such as 
potential/current transformer, hall-effect sensor, capacitive 
probe, encoder, accelerometer, and thermocouple. Key to 
selecting the right combination of sensors with enough 
information to detect a fault is fault observability, which in 
this context measures how well parameters can be inferred 
from information contained in error signals of model 
outputs and measurements (Analytic Sciences Corporation, 
1974).  

A dynamic system model is required to assess observability 
of a sensor system to any state or signal in a machine, such 
as a fault-induced signal. Nakhaeinejad & Bryant (2011) 
assessed observability to faults for an AC motor. 
Alternatively, sensitivity of sensor signals to changes in a 
fault can be studied, as Bryant, Nakhaeinejad & Choi (2011) 
did for the motor pump system presented in this article. 

2.1.2. System Model 

The model interprets the complex sensor signals. The model 
consists of differential equations that govern the physics of 
the machine. The model based diagnostic system of this 
article employs extremely detailed physics based models 
with direct physical correspondence between elements in the 
model and components and faults in the real machine. All 
relevant physics and effects are embedded in the model. 
Although this imbues the model with many degrees of 
freedom, many states, a high dynamic order, very many 
system parameters, and extreme nonlinearities, this 
complexity is required in the model to interpret the equally 
complex sensor data, which contains multiple competing 
signals from the many components and physical effects in a 
real machine. For example, in a motor, the bearing vibration 
signals measured by accelerometers are contaminated with 
vibrations from the motor’s rotor reacting to harmonics of 
the magnetic field. These vibrations have harmonic 
components similar to the bearing, which confounds signal 
based bearing diagnostics. 
 
During a simulation of the machine model, the model is 
given the same inputs as the real machine, see Fig. 1. 
Simulations attempt to emulate the real machine’s dynamic 
states, up to and including the sensor measurements. Note 
the model contains a model of the sensor behavior. Signals 
measured off the real machine by sensors are then compared 
to corresponding signals derived from simulations of the 
model. For simulations to emulate real machine behavior, 
i.e., for the model’s outputs to match the real machine’s 
outputs, the model’s parameters are tuned––adjusted until 
simulated outputs overlay measured outputs. This is the 
function of the parameter tuning module. 

2.2. Parameter Tuning Module (PTM) 

The parameter-tuning module accepts sensor signals from 
the real machine, and commands a simulation of the model. 
Initially, the model’s parameter values are those of a healthy 
machine1. The simulation, given the same inputs as the real 
machine, computes system states up to and including the 
(simulated) sensor measurements. The parameter-tuning 
module subtracts the simulated sensor outputs from the 
corresponding measured sensor outputs, Fig. 1, and 
constructs an error function as the sum of the differences 
squared. Minimization of this error function drives an 
iterative process that corrects those parameters of the model 
associated with the known faults that compromise operation. 
Industry usually knows where and how faults occur in their 
machines, unknown is when the fault will occur. Parameter 
tuning performs simulations with updated parameters until 
the error function is within an acceptable tolerance. To 

                                                             
1 These healthy machine parameters can be estimated via a combination of 
the machine’s design specs and/or tuning of parameters using a baseline 
signal that exemplifies health. 
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reduce computational load, only tuned are those parameters 
associated with the machine’s faults and ageing, which 
cause the measured signals to change. 

If the model’s parameters have a direct physical 
correspondence to components and faults in the real 
machine, tuning of parameters until simulations emulate real 
machine behavior extracts and puts the health condition 
information from the sensor signals into the parameter 
values of the model. Since the model’s parameters have a 
direct physical correspondence to components and faults in 
the real machine, the tuned parameter values locate the fault 
and inform on its severity, via how much the parameter(s) 
have changed from nominal healthy values. If the model is 
physics based, the updated parameter values are easily 
interpreted in terms of physical effects of faults. This 
removes the pattern classification and training problem 
usually associated with heuristic and signal based diagnostic 
systems.  

The parameter tuning module is challenged by the quality of 
the sensor data, which is compromised by noise and 
inadequate observability. Measurements inherently include 
sensor and physical process noise, and observability of a 
measurement can vary markedly if the system is nonlinear. 
To address these challenges, we tried online tuning with 
Kalman and Extended Kalman filters, and offline tuning 
with an algorithm that minimizes global errors A Kalman 
filter augments a physics model with a statistical model of 
the noise, for more accurate estimates of states (Haykin, 
2001). Kalman filters first predict future states, and then 
correct these states recursively, using the error between 
simulation and measurement, and a Kalman gain, which 
arises from the analytical solution to the error minimization 
problem. For nonlinear systems, the extended Kalman filter 
includes the parameters to be tuned as extra components in 
the state vector. This usually results in a more nonlinear 
system, because the governing differential equations––the 
system differential equations augmented with equations that 
describe parameter degradation––usually involve products 
of parameters and states. 

The Kalman filters operating with the detailed physics 
models  described earlier operated satisfactorily in the 
presence of noise, but often failed due to observability 
issues associated with the nonlinear nature of the models. 
Sensors observability of faults can reduce and even vanish 
due to the nonlinearities of machine models (Nakhaeinejad 
& Bryant, 2011). A Kalman filter sequentially processes a 
signal point by point and must “latch on” to the signal. 
When extreme nonlinearities reduced sensor observability, 
the Kalman filter would detach from the signal, and become 
unstable. An offline tuning method was must less affected 
by this waning observability issue. 

The offline tuning method (Rengarajan, 2010) constructs a 
multi-dimensional parameter space, with each parameter to 

be tuned assigned a coordinate axis. Thus N parameters 
require an N dimensional space, and tuning the set of 
parameters is tantamount to searching for the correct point 
in the space. The search is limited to those regions of the 
space where parameter values are physically possible or 
reasonable. First, a deterministic sampler scans the entire 
admissible region, without bias to any particular sub-region, 
using a grid. At each sampling point, error residuals 
between measured sensor signals and model simulated 
sensor signals are calculated to identify five regions where 
residuals are smallest. Then a “Non-Dominating Sorting 
Genetic Algorithm” is run in small regions about the five 
zones to pinpoint the global minimum. This algorithm 
involves randomness, to maximize the likelihood of 
attaining a global minimum in case the deterministic 
sampler gets stuck in local minima. The resulting global 
minimum values are ranked, and the top candidate is used as 
the system parameter values. Tuning is iterative and ends 
once error tolerances are met. 

The offline tuner was tested on a DC motor where the 
created rotor bar resistance faults were known (Rengarajan, 
2010). Tuned parameters included rotor inertia, motor 
constant, rotor bar resistance, and damping coefficient. 
Motor speed was varied by suitably adjusting the input 
voltage. The tuning algorithm estimated the rotor bar 
resistance values using motor speed measurements to within 
a few percent. 

2.3. Health Assessment Module (HAM) 

The health assessment module determines the functional 
health capability of the machine, based on the channel 
capacity C from Shannon’s information theory. Shannon’s 
C is the maximum amount of information xo in bits per 
second that can be transmitted through a channel 
contaminated with noise, but yet received without error. 
Shannon’s theory, which specifies signal to noise power 
ratios Y/N and channel bandwidth ω, has underpinned all 
communication systems design since 1948. Obey Shannon’s 
theorems and a system works, otherwise not.  

The Shannon & Weaver (1948) channel capacity for a time 
continuous channel with white Gaussian noise in Fig. 2 is 

 

Figure 2.  Shannon & Weaver (1948) 
communications channel. 
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which involves average power  

 Y = P{y(t)} = 1
T

y(t)[ ]2 dt
0

T

∫   (2a)  

of signal y(t) = x(t) + n(t), and power of noise n(t), 
 

€ 

N = P{n(t)} =
1
T

n(t)[ ]2dt
0

T

∫ .  (2b) 

In Fig. 2, the received signal y(t) is the transmitted signal 
x(t) corrupted with noise n(t) from the channel. Here  
bandwidth ω (Hz) of the channel is usually determined via 
Nyquist’s rules.  
 
A machine will be viewed as a “machine communications 
channel” with input signals transmitted over a “machine 
channel” and received as the machine’s output signals. Here 
faults create and add “fault noise” to output signals. To 
apply Shannon’s fundamental theorems to assess machine 
health, noise will be defined as  
 
 ni(t) = y(t) – yi(t),     (3)  
 
the difference between output y(t) of the degraded machine, 
and a baseline signal yi(t) that exemplifies health, as 
discussed in Costuros & Bryant (2014). The noise signal of 
Eq. (3), a residual between degraded y(t) and baseline yi(t), 
contains the “fault noise” signals generated by faults, and 
random sensor and system noise present in both y(t) and 
yi(t). Of course, to use Eq. (3) in an industry setting, signals 
y(t) and yi(t) must first be correlated in time to have the 
same starting point and be synchronized. 
 
Applying Eqs. (2) to baseline signal yi(t) and noise ni(t) of 
Eq. (3) produces a channel capacity for the baseline signal 
 

R =ω i log2
Yi
Ni

!

"
#

$

%
&
.
   (4)  

 
Here bandwidth ωi of baseline signal yi(t) is usually equal to 
ω. Equation (4) will be used in place of Shannon’s rate of 
information in Shannon’s test channel health, wherein if  
 
   R ≤ C,    (5) 
 
the system will satisfactorily perform its function, otherwise 
not. Costuros (2013) showed that unless the power of sensor 
and system noise overwhelms (> 20%) the fault noise, the 
test of Eqs. (1)–(5) will work in an industry setting.  
 
Costuros & Bryant (2014) demonstrated the efficacy of 
channel capacity as a health metric via tests on ageing 
industry robots, which will be reviewed here. The channel 
capacity technique was tested on eight DC motors in four 
industry robots, each initially in good operating condition. 
An identical sequence of voltage steps (transmitted channel 
inputs) were repetitively applied to all motors, and torque 
signals y(t) (received channel outputs) were then collected 
from all motors. Motors ran continuously from 12/9/09 to 
2/5/10.  Motor output torques were measured on 12/9, 
12/18, 1/15, 1/21 and 2/5. The 12/9 measurements were 
designated as baseline signals yi(t) exemplary of good 
health, to which all subsequent measurements y(t) on the 
same motor were compared. Before any calculations, a 
signal y(t) was first correlated to its yi(t) to synchronize 
signal alignments in time.  Figure 3a shows robot 1 motor 
torque y(t) on 1/15 (blue curve), and its baseline yi(t) (black 
curve).  Fault noise in Fig. 3b obtained via Eq. (3) distills 
the fault induced signal from y(t). Power spectra of signal 
y(t) and noise ni(t) computed via Eq. (3) are in Fig. 3c.  
Channel capacity C was estimated via Eq. (1) and tabulated 
in Table 1. 
 

For measurements after 12/18, fractional changes in channel 
capacity %C =1 - C/C12/18  relative to values for 12/18 
measurements were tabulated in Table 1 for all motors.  
Inspection of the upper rows reveals a trend of diminishing 
channel capacity over time.  For example, for motor B of 
robot 2, C diminishes from 2,326 to 1,340 from 12/18/09 to 

Table 1: Channel capacity for motors of robots vs. time. 

 

 
Figure 3. Motor torque response from robot 1 on 1/15/10. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

5 

2/5/10.  In subsequent rows, the percent change of channel 
capacity from 12/18 to 1/21 is displayed, along with a 
composite of human produced evaluations of motion 
performance by a team of industry engineers and 
technicians.  The human evaluations rank-ordered the 
motors and identified the best and worst performing motors.  
In general, the channel capacity estimates agreed well with 
human (team) assessments.  Motor ‘A’ in robot 1, deemed 
BEST by the team, had the smallest channel capacity 
reductions. Motor ‘B’ in robot 2, rated WORST by the 
team, consistently showed the largest reduction of channel 
capacity and was prematurely removed from service due to 
development of a grinding noise.  In general, the drop in the 
channel capacity values correlated very well with the human 
perceived amount of motor degradation. An overall decline 
in channel capacity indicates degradation. This application 
suggests that the channel capacity metric can quantify 
system degradation in industry settings. The channel 
capacity decreases in Table 1 are not strictly monotonic. 
Fluctuations in the C values in Table 1 for most motors at 
the beginning of tests are consistent with a break-in process, 
wherein performance does vary. For these motors, the 
majority of faults occurred on the motor bearings due to 
lubrication breakdown. 

2.4. Prognosis Module (PM) 

The prognosis module, schematically shown at the top of 
Fig. 1, forecasts future values of the model’s parameters via 
differential equations that govern the ageing and 
degradation of the system’s components. These equations 
and the ageing phenomena typically have time constants 
much larger than the characteristic times of the machine in 
operation. To make the Prognosis module compatible with 
the other diagnostic modules, the component degradation 
equations are posed in terms of those system parameters Pk 
that change due to component degradation. This degradation 
or ageing worsens the faults. Equations that govern 
degradation (Bryant, 2014) can be formulated via the 
Degradation Entropy Generation theorem (Bryant, Khonsari 
& Ling, 2008), which equates the rate of change of a 
variable w that measures the degradation (i.e., 
monotonically increases or decreases as the fault becomes 
more severe) to a linear combination of the irreversible 
entropies Si’ generated by the n dissipative processes 
underlying the degradation, i.e., 

dw
dt

= Bi
dS 'i
dti=1

n

∑ .   (6a) 

Equation (6a) is founded on the laws of thermodynamics. 
Although the Bi constants are usually unknown, the 
irreversible entropies Si’ on the right side of Eq. (6a) can be 
formulated in terms of the power dissipated by components, 
divided by a temperature associated with the degradation, 
using knowledge of the mechanics of dissipation losses and 
the ageing and degradation mechanisms. If degradation 

changes parameter Pk then Pk = Pk(w), and via the chain rule 
dPk/dt =  dPk/dw (dw/dt). Substitution of Eq. (6a) gives 

 dPk
dt

= Bi
dPk
dw

!

"
#

$

%
&
dS 'i
dti=1

n

∑ = Bi
* dS 'i
dti=1

n

∑   (6b) 

where dPk/dw was grouped with the constants Bi to form 
new constants Bi*. Values for these constants can be 
obtained via the tuning module, since a history of values for 
parameters Pk will be available from past tunings of the 
operational model to sensor data. 
 
Over the course of multiple tunings, a record of the 
parameter’s values Pk versus time can be constructed, as in 
the graph seen in the Prognosis section of Fig. 1. Future 
values of parameters Pk, associated with faults could be 
forecast by fitting a curve through the record of Pk data 
points, and extrapolating that curve into the future, as in 
point “X”. A more accurate forecast uses Eqs. (6b) and 
tunes the unknown constants Bi* with the record of Pk 
versus time. Then using the most recent value of Pk as an 
initial condition, the Pk can be forecast much further into the 
future. With future values for the parameters Pk, the 
machine model shown in Fig. 1, given the machine’s inputs, 
can now simulate the future degraded machine behavior and 
its output signals y(t). With these future output signals y(t) 
inserted into Eq. (3), the health assessment module can 
assess future machine performance.  

2.5. Diagnostic System Operation 

The diagnostic system operates as follows. Abbreviations 
are defined in the headings of section 2.  

1) DFLM simulates the model of Fig. 1 with inputs 
same as the service loads on the real machine, and 
outputs including the sensor states.  

2) DFLM compares simulated “sensor” signals to the 
real sensor measured signals. 

3) PTM adjusts (tunes) the model’s parameters, until 
simulated sensor readings overlay real sensor 
readings. Accuracy is a few percent. The tuned model 
now emulates machine behavior, and distilled into 
the tuned parameter values is the machine’s health 
condition. 

4) PTM detects and locates faults by tracking changes in 
the numerical values of the tuned parameters. Larger 
changes implies a more severe fault(s). 

5) HAM compares the machine’s signals y(t) to a 
baseline signal yi(t) that exemplifies machine health, 
and assesses machine condition by calculating the 
machine channel capacity C, and the percent change 
from baseline channel capacity.  

6) PM with the history of the model’s parameters from 
past tunings, solves the differential equations 
governing parameter change, and predicts future 
parameter values.  
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7)  DFLM simulates the model of the “future” machine 
with inputs same as past service loads on the real 
machine, and outputs “simulated sensor” states to 
predict future machine operation. 

8)  HAM compares the “future” machine signals y(t) to 
the baseline signal yi(t), and calculates the channel 
capacity of the future machine to assess future 
machine condition.  

3. MOTOR PUMP APPLICATION  

The techniques discussed in section 2 will be demonstrated 
on a centrifugal pump driven by an induction motor, Fig. 4. 
Faults introduced include extra resistance in the motor’s 
stator circuit and blockage in the pipe following the pump. 

 

3.1. Motor Pump Model 

Within the DFLM module in Fig. 1, in the block labeled 
“model” is a bond graph model of the dynamics of a squirrel 
cage induction motor driving a centrifugal pump. From the 
bond graph, differential equations governing motor-pump 
operation  were extracted and presented in Bryant & Choi 
(2012). The model has parameters with nominal values 
listed in Table 2. 

In Fig. 4, a 3-phase, 2 hp, 3600 rpm squirrel cage induction 
motor (1) drives a centrifugal pump (2) (19 m max. head). 
Measured are 3 phases of input voltage (10), 3 phases of 
currents (11) via Hall effect sensors, motor rotational speed 
(3), flow rate at the outlet pipe (6), and pressures at inlet (5) 
and outlet (4) of the pump via pressure transducers.  

For the stator circuit fault, Fig. 5 shows the change of 
measured 3 phase currents (a, b, c), from healthy to 
degraded. The (b) and (c) subfigures in Fig. 5 connected 2.5 
Ω and 4.5 Ω  in series to the a phase stator coil. As the 
resistance fault increases, the time to steady state increases, 
and magnitudes of ia reduce. Higher resistance 

1. Induction motor
2. Centrifugal pump
3. Encoder
4. Pressure transducer
5. Pressure transducer
6. Flowsensor
7. Discharge valve
8. Suction valve
9. Tank (250 gallon water)

10. Voltage dividers
11. Hall effect current sensors
12. F-V converter
13. F-V converter
14. 3-phase input voltages
15. Data acquisition board
16. Inlet pipe (Length: 3m, Dia.: 2")
17. Outlet pipe (Length: 5m, Dia.: 1.5")

13

10 12

11

9
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Figure 4. Motor-pump system test setup. 
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Figure 5. Currents in (a) healthy motor, and with extra 
resistance (b) 2.5 Ω and (c) 4.5 Ω  in phase a of stator. 

Table 2 Parameters of  motor-pump, with nominal 
(healthy system) values. 

1.0281

Healthy
value

366.7
0.8663
0.1033
0.1377
0.1162
0.0034

3.6e11
7.0e9
1.6e15
2.3e11
1.0e10

Rs

Parameters

Rsm
Rr1,...,Rr34

Ls
Lr
Lm
Rbr

Rimp
Rvolute
Rleak
Rout
Rin

Stator coil resistances (Ω)

Description

Stator magnetic losses (1/Ω)
Rotor bar resistance (Ω)
Stator inductances (H)
Rotor inductances (H)
Mutual inductances (H)
Mechanical friction (N-s/m)

Loss in impeller (kg/m7)
Loss in volute (kg/m7)
Leakage loss (kg/m7)
Loss in outlet pipe (kg/m7)
Loss in inlet pipe (kg/m7)

1.1e-5Rdisk Mechanical friction (N-s/m)

0.003802
8.6e7
2.5e6
111
1

0.025
0.05

0.01
15
30

J
Iimp
Iout
ns
nr
ri1
ri2

Bi2
β1
β2

Moment of inertia (N-m2)
Liquid inertia in impeller (kg/m5)
Liquid inertia in outlet pipe (kg/m5)
Number stator coil turns
Number rotor coil turns
Impeller inner radius (m)
Impeller outer radius (m)

Axial width at impeller outlet  (m)
Blade angle at impeller inlet (°)
Blade angle at impeller outlet (°)

0.01Bi1 Axial width at impeller inlet (m)
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simultaneously affected measured current, rotational 
velocity, and pressure, Figs. 6 and 7.  
 
Table 3 assesses sensitivity of measured states to changes in 
selected parameters, as substitute for an observability 
assessment of the sensor system. After each parameter in 
table 2 was individually perturbed 1% of nominal value, a 
simulation was performed to observe changes in system 
response. The number of ‘+’ symbols in any row in table 3 
indicates the influence of each parameter’s change. 
Measured currents, rotational velocities, and pressures are 
sensitive to changes in stator coil resistances (Rsa, Rsb, Rsc) 
or motor inductances (Ls, Lr, Lm), even though the origin of 
the fault is the stator resistance Rsa. First, the motor-pump 
model was tuned by adjusting stator coil resistances only, 
and tuned a second time by adjusting motor inductances 
only. The error function for tuning was the sum of the 
square of differences between measured and simulated 

rotational velocity. Currents and pressures were not 
considered in the error function. Simulations of healthy 
(Table 2) and degraded machines (Table 4 presented in Figs. 
6, 7, and 8) nearly overlay experiments. Although Figures 7 
and 8 tuned parameters so that rotational velocity 
simulations overlaid measurements, as a by-product, current 
and pressure simulations also overlaid their respective 
measurements. 
 

Simulations with parameters tuned by stator coil resistances 
and by motor inductances gave similar rotational velocities 
(Fig. 6) and pressures (Fig. 7). However, the magnified 
details shown in the bubbles in Fig. 6 of rotational velocities 
at steady state suggests that simulations from tuning by 
stator coil resistances more closely fits measurements, than 
tuning by motor inductances, for the resistance fault. Since 
the induction motor model represents a symmetrical electric 
machine, each of Rsa, Rsb, and Rsc with the tuned values can 
in turn produce the rotational velocities in Fig. 6. The 
magnitude of currents ia in Fig. 5 reduce most as the value 
of connected resistor Rsa increases. Other currents (ib and ic 
in Fig. 5) change only little.  Thus Rsa has to be the largest 
among the tuned resistances. Fig. 8 compares simulated to 
measured current ia (Fig. 5), after assigning the largest value 

Table 3 Sensitivity of system states to 1% change in 
parameters. 
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.

 
 

Table 4 Parameter tuning data. 

Subscripts a, b, c, α , and β denote magnetic axes. 
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Figure 6 Measured (dotted lines) and tuned (solid lines) 
rotational velocity by stator coil resistances (upper) and 

by motor inductances (bottom). 
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of tuned stator coil resistance to Rsa. 

 
Fluid loss, Rout in the centrifugal pump model models pipe 
line losses such as friction loss, expansion loss, contraction 
loss, valve loss, etc. The butterfly valve (7) of Fig. 4 in the 
middle of the outlet pipe was closed in 10° increments to 
mimic increasing resistance. The valve can be adjusted from 
fully open 0° to fully closed 90°. Closing the valve from 0° 
to 40° had little effect on measured currents and rotational 
velocity, but pressure signals increased significantly. From 
Table 3, Rout was selected as the parameter for tuning, since 
it increases outlet pressure significantly, with little effect on 
currents and rotational velocity. Rimp was deselected, since 
increasing Rimp decreases outlet pressure. Figure 9 shows the 
measured pressure as valve angle changed from 0° to 40°, 
and the simulated pressure obtained by adjusting Rout from 

2.3x1011, to 2.4 x10111, 2.7 x1011, 3.1 x1011, and 3.3 x1011 
(kg/m7). Changing Rout had negligible effect on current and 
rotational velocity, as implied by Table 3. 
 
The channel capacity C for measured outputs of stator phase 
current ia and motor speed ω were calculated via Eq. (1) and 
presented versus resistance in stator phase a in Fig. 10. 
Values were normalized by maximum values, so the largest 
C value is one. As the fault worsens and system 
performance degrades as shown in Figs. 5 and 6, the 
channel capacity monotonically diminishes, similar to that 
of Table 1. 

4. CONCLUSION 

A model-based diagnostic system was presented, with 
application to a motor-pump. Physics models of high detail 
and fidelity permitted simulations to match experiments 
with marginal error. Parameter tuning selected values of 
parameters such that simulations overlaid measurements. 
Contained in the tuned values of parameters is the machine 
health condition. The channel capacity health metric 
assessed fault severity. For signals over channels through a 
machine that possess observability of the fault(s) in 
question, this article shows that models and parameter 
tuning can locate and isolate faults. For signals observable 
to a given fault, channel capacity monotonically diminished 
with severity of the fault. 

ACKNOWLEDGEMENT 

Research reported in this publication was supported in part 
by the National Science Foundation (NSF) grant IIP 
1266279. The content is solely the responsibility of the 

0 0.01 0.02
-100

-50

0

50

100

Time (s)

C
ur

re
nt

 (A
)

0.5 0.51 0.52
-20

-10

0

10

20
Experiment
Simulation

 
Figure 8. Magnified view of current (A) in Fig. 5 with 
tuned response after adjusting stator coil resistances. 

0 0.2 0.4 0.6 0.8 1
0

40

80

120

160

Time (s)

Pr
es

su
re

 (k
Pa

)

Experiment
Simulation

fully open
(valve angle: 0°)

10°
20°
30°
40°

Valve angle Degradation

 
Figure 9. Tuned pressures by hydraulic loss at outlet 

pipe, Rout. 
 

       
 

Figure 10. Channel capacity vs. stator a resistance. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2014 

9 

authors and does not necessarily represent the official views 
of the National Science Foundation. 
 

REFERENCES 

Analytic Sciences Corporation. Technical Staff & Gelb, A., 
(1974). Applied Optimal  Estimation. Cambridge, MA: 
M.I.T. Press. 

Bryant, M.D., (2014). Modeling Degradation Using 
Thermodynamic Entropy, submitted to PHM 2014 
Conference. 

Bryant, M.D., Khonsari, M.M. & Ling, F.F. (2008). On the 
thermodynamics of degradation, Proceedings of Royal 
Society of London Series A, vol. 464 (2096), pp. 2001-
2014, doi:10.1098/rspa.2007.0371. 

Bryant, M.D., & Choi, J.H. (2012). Model based fault 
diagnostics of induction motor and centrifugal pump, 
Proceedings of MFPT 2012 Conference. April 24- 26, 
Dayton, OH. 

Bryant M.D., Nakhaeinejad M. & Choi J., (2011). Model 
based diagnostics and fault assessment of induction 
motors with incipient faults, Proceedings of the Society 
for Experimental Mechanics Series, vol. 8, pp. 439 – 
449. 

Costuros T., (2013). Application of Communication Theory 
to Health Assessment, Degradation Quantification, and 
Robot Cause Diagnosis, Doctoral dissertation, 
University of Texas at Austin, Austin, TX, 
https://repositories.lib.utexas.edu/bitstream/handle/2152
/21566/COSTUROS-DISSERTATION-2013.pdf. 

Costuros, T. & Bryant, M.D. (2014). Application of 
information theory’s channel capacity as an industry 
machine health and diagnostic metric. Proceedings of 
MFPT 2014 Conference. May 19-22, Virginia Beach, 
VA. 

Haykin, S. S. (2001). Kalman Filtering and Neural 
Networks. New York: Wiley.  

Nakhaeinejad, M. & Bryant, M. D., (2011). Observability 

Analysis for Model-Based Fault Detection and Sensor 
Selection in Induction Motors, Journal of Measurement 
Science and Technology, vol. 22(7), pp. 075202. 

Rengarajan, S.B., (2010). A Method for Parameter 
Estimation and System Identification for Model Based 
Diagnostics Masters Thesis, University of Texas at 
Austin, Austin, TX. 

Shannon, C.E. & Weaver, W., (1948). The Mathematical 
Theory of Communication, Urbana, IL: The University 
of Illinois Press. 

Shannon C. E. (1949). Communication in the presence of 
noise, Proceedings of the IRE, vol. 37, pp. 10 – 21.  

 

BIOGRAPHY  

Michael D. Bryant, Accenture Endowed Professor of 
Mechanical Engineering at University of Texas at Austin, 
Austin TX, USA, was born in Danville IL on Feb. 8, 1951. 
His education includes B.S., Bioengineering, University of 
Illinois at Chicago, Chicago, IL, USA, 1972; graduate study 
in Information Engineering, University of Illinois at 

Chicago, 1972-1974;  M.S., 
Mechanical Engineering, 
Northwestern University, Evanston, 
IL, USA, 1980; and  Ph.D., 
Engineering Science and Applied 
Mathematics, Northwestern 
University, 1981. He has been with 
University of Texas at Austin since 
1988. From 1981-1988 he was an 
Assistant and Associate Professor at 

North Carolina State University. His interests include 
tribology, mechatronics, manufacturing, and system 
modeling. He is a fellow of American Society of 
Mechanical Engineers, was Editor in Chief of ASME 
Journal of Tribology from 2005-2012, and is a member of 
Institute of Electrical and Electronics Engineers and Sigma 
Xi. 

 

 

 


