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ABSTRACT 

Within the field of power generation, aging assets and a 

desire for improved maintenance decision-making tools 

have led to growing interest in asset prognostics. Valve 

failures can account for 7% or more of mechanical failures, 

and since a conventional power station will contain many 

hundreds of valves, this represents a significant asset base. 

This paper presents a prognostic approach for estimating the 

remaining useful life (RUL) of valves experiencing 

degradation, utilizing a similarity-based method. Case study 

data is generated through simulation of valves within a 

400MW Combined Cycle Gas Turbine power station. High 

fidelity industrial simulators are often produced for operator 

training, to allow personnel to experience fault procedures 

and take corrective action in a safe, simulation environment, 

without endangering staff or equipment. This work 

repurposes such a high fidelity simulator to generate the 

type of condition monitoring data which would be produced 

in the presence of a fault. A first principles model of valve 

degradation was used to generate multiple run-to-failure 

events, at different degradation rates. The associated 

parameter data was collected to generate a library of failure 

cases. This set of cases was partitioned into training and test 

sets for prognostic modeling and the similarity based 

prognostic technique applied to calculate RUL. Results are 

presented of the technique’s accuracy, and conclusions are 

drawn about the applicability of the technique to this 

domain. 

1. INTRODUCTION 

Within electrical power utilities there is an increasing 

demand for condition monitoring methods capable of 

reliably predicting the RUL of assets (Sheppard & Kaufman 

2009). This requirement is driven by the need to improve 

maintenance costs and scheduling, as well as safety 

considerations (Chen, Yang & Zheng 2012). The field of 

prognostics has made great advances in areas with high 

requirements on safety and dependability, such as aerospace 

and the nuclear industry. However within the power 

generation field, prognostic applications have not been 

implemented to the same degree. This is mainly due to the 

challenges of gathering sufficient data to enable robust 

testing and validation, as such systems are rarely allowed to 

run to failure (Heng, Tan, Mathew, Montgomery, Banjevic, 

& Jardine, 2009).  

Within power generation, implementation of prognostic 

methods would enable operators to reduce maintenance and 

unplanned downtime by utilizing predictive maintenance 

policies in place of a time based maintenance approach 

(Vachtsevanos, Lewis, Roemer, Hess & Wu, 2006) (Sun, 

Zeng, Kang & Pecht 2012). However, there is a high cost 

associated with creating physical test systems from which to 

gather run-to-failure data. Additionally, gathering, 

understanding, and transforming data provided by on-site 

industrial facilities into a comprehensive and reliable model 

is a costly and difficult undertaking (Wenbin & Carr 2010), 

with operators often reluctant to provide commercially 

sensitive data. 

 

One way to overcome this lack of failure data is to utilize 

simulation of assets to generate the data required. Following 
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this route, this paper proposes the simulation of degradation 

of valves within a power plant environment to create a 

similarity-based prognostic model. Within a plant 

environment, valves have been highlighted as a common 

source of faults, accounting for at least 7% of mechanical 

failures (Radu, Mladin & Prisecaru, 2013) (Latcovich, 

Åstrom, Frankhuizen, Fukushima, Hamberg & Keller, 

2005), and with many hundreds of valves present in a 

typical generation plant (Westinghouse Nuclear, 2013), 

valves are a critical asset which could benefit from a 

prognostic system. 

Within power generation, simulators have been widely 

deployed, particularly within the nuclear sector, for training 

purposes focused on improving operational safety (Harrison, 

2013). Such simulators are used primarily for training and 

are certified as high fidelity tools and thereby the model and 

sensor data are within industrially accepted tolerances of 

actual plant values. Utilizing such high fidelity simulators 

negates the need for the creation of physical test beds, as 

well as providing an industrial acceptance and robustness to 

the simulated data generated (McGhee, Catterson, McArthur 

and Harrison, 2013). 

The similarity-based prognostic method used here is based 

on an approach by Wang, Yu Siegel and Lee (2008).  This 

similarity method has particular application benefits to the 

simulation approach proposed here.  With simulation, the 

large number of run-to-failure cases needed for a similarity 

based approach can be generated easily. The use of 

simulation can also satisfy the requirements stated by Wang 

et al. (2008) for a successful implementation:    

1)  Multiple recordings of run-to-failure data are available, 

2) The data recorded ends when the point of failure is 

reached, and 

3)  The data covers a representative set of components.  

2. METHODOLOGY 

This section discusses the creation of the valve failure 

model and the prognostic RUL model. A diagram of the 

process is shown in Figure 1. 

2.1. Valve model simulation 

The valve model was created from first principles, 

simulating fluid flow within a cylindrical pipe:   

 

(1) 

 

 (2) 

Where P1, V1 and A1 correspond to the pressure, fluid flow 

and area of the pipe entering the valve, P2, V2 and A2 

correspond to the pressure, fluid flow and area of the pipe at 

the point of degradation and   describes the density of the 

fluid. Parameter values for the model are taken from an 

industrial Combined Cycle Gas Turbine (CCGT) plant 

simulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The degradation is represented by a decreasing area A2 

where the initial area of the pipe A1 is constricted over time. 

This is represented by a degradation coefficient, δ, which is 

a numerical constant between 0 and 0.0001, drawn from a 

standard uniform distribution, describing the rate of 

decrease in the flow area.  

 

 (3) 

 

This degradation can represent debris build up along the 

area of flow, or “sticky valve failure” where the valve no 

longer fully closes or opens. A single run-to-failure event 

from initial healthy operating conditions to end of life can 

be seen in Figure 2, and a batch of 50 run-to-failure events 

can be seen in Figure 3. For this study, the end of life is 

considered to be P2 = 0, i.e. completely blocked flow. 

However, in a power station deployment, maintenance 

intervention would be triggered significantly before this 

threshold is reached. 

This modeling approach corresponds to the way components 

and faults are modeled in the industrial plant simulator used 

in the research. The plant simulator uses first principles 

equations based on pressure, fluid flow and flow area to 

model pipes and valves.  

The modeling choices also need to be made with respect to 

the sensors and data readily available to station operators. 

Theoretically, measurement points could be placed at any 

point in the plant model, and the parameter value recorded 

Valve Degradation Data Generated 

Rearrange Generated Data by Health Index 

Evaluate RUL 

Distance Evaluation – Compare Test Data 

With Training Data 

Use Fitting function on Rearranged Data 

Figure 1. Procedure of RUL estimation 
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as if from instrumentation. However, for the prognostic 

model to translate directly from the plant simulator to the 

real plant environment, any measurements utilized by the 

prognostic model must be realistic points for 

instrumentation to be located. Therefore, only those 

parameters which would normally be recorded around a 

valve are considered.  

 

Figure 2. A single run-to-failure event 

 

Figure 3. 50 run-to-failure events 

 

For this study, the training data comprised 50 sets of time 

stamped pressure values, corresponding to P2 in Eq. (1), 

from an initial value equal to P1 down to 0. The simulated 

frequency of data capture is set at once per hour. For this 

case, the parameters taken from the CCGT were an initial 

pressure P1=18 Pa, area A1=10 cm
2
 and flow V1=185kg/s. 

To represent measurement noise, each data point had a noise 

term added, drawn from a Gaussian distribution with mean 

0 and standard deviation 0.0005.  

2.2. Prognostic model 

The procedure for creating the similarity-based prognostic 

model is split into three steps (Wang et al., 2008). The first 

two, described in sections 2.2.1 and 2.2.2, are data 

preparation steps applied to both training and test data. The 

third step compares the test data set against the training data. 

Of 55 run-to-failure events simulated, 50 were used as 

training data, with five for testing. 

2.2.1. Arrangement by health index 

The initial stage is to rearrange the data to create a Health 

Index (HI). The HI is used to describe the condition of the 

asset. Near the start of life the asset is assumed to be in a 

healthy condition and assigned the value 1, whilst the 

unhealthy or near end-of-life condition is assigned the value 

0. This HI is then applied to every data run and the data 

rearranged according to the asset’s time-to-failure (Figure 

4). As shown in Figure 4, the start of life (healthy) and end 

of life (unhealthy) values correspond to P=18 and P=0 

respectively. 

 

Figure 4. Training set comprising 50 run-to-failure events 

rearranged according to HI 

Polynomial fitting 

Having rearranged the data according to the HI, each run-to-

failure event is then fitted using a polynomial function 

which best describes the event progress. In the specific case 

of this valve degradation example, the fault progression 

looks to approximate a linear fit. However, in other cases 

the best fit may be a higher order polynomial or other 

function. In this case the polynomial fit is:  

  

(4) 
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where a and b are the model parameters. This polynomial 

curve is fitted to the HI for every run-to-failure event with 

the least squares fitting approach. 

2.2.2. Distance Evaluation 

To determine the RUL of the test runs, a sample of data 

from near the start of each test is selected. In the examples 

below, time steps 50–100 are chosen to represent the current 

and recent historic condition of the valve. This data is then 

compared against every 50 time step segment of each 

training data polynomial fit until the closest match to the 

test is found. The distance evaluation is determined by: 

 

 (5) 

 

where   is the distance of the test data from the training data 

sample, y is the position of the test data (time step number), 

   is the polynomial curve fitted to the ith training data 

sample, r is the length of the test data  ,   is the number of 

time steps   is shifted from 0 and σ is the RMS error from 

the polynomial fit. 

Once the distance between the test run and all windows of 

all training runs is established, the estimated RUL is chosen 

by selecting the training run sample with the smallest 

distance   (i.e. the most similar run-to-failure event). The 

RUL from that point of the training run is the estimated 

RUL for the test run. 

3. EXPERIMENTAL RESULTS 

The five test runs are summarized in Table 1 and shown in 

Figures 5 – 9. As can be seen, the true RUL of each test run 

compares well with the predicted RUL value.  

Table 1. Summary of Test run results with associated 

Estimated RUL and True RUL 

 

Test Run Est RUL True RUL 

1 230 239 

2 898 889 

3 631 624 

4 673 638 

5 1204 1195 

 

 

 

Figure 5. Test run 1: Estimated RUL = 230, True RUL = 

239 

 

Figure 6. Test run 2: Estimated RUL = 898, True RUL = 

889 

 
Figure 7. Test run 3: Estimated RUL = 631, True RUL = 

624 
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Figure 8. Test run 4: Estimated RUL = 673, True RUL = 

638 

 
 

Figure 9. Test run 5: Estimated RUL = 1204, True RUL = 

1195 

 

These results are considered accurate enough for the 

application domain, being within 10 hours of the actual 

RUL in most cases, and 35 hours in the worst case. While 

this technique estimates the time to complete failure (zero 

flow), in a power station maintenance would be triggered by 

a reduction in flow, significantly before failure. The 

estimation of RUL gives an indicative window of time in 

which maintenance could or should be performed, thus 

providing support to maintenance planning. Future work 

will consider how far in advance of estimated failure a 

maintenance trigger should be set, bearing in mind 

uncertainties in the RUL prediction. 

The high accuracy of the case study RUL predictions is due 

to the range of failures included in the training data set, 

which is due in turn to the use of simulation. With the high 

fidelity plant simulator, plant conditions can be varied and 

reset for multiple fault runs, generating as many failure 

examples as desired.  

There is potential for this similarity based prognostic 

method to be improved further, with a larger training data 

set containing a greater breadth of degradation and failure 

cases. Future work will consider how large the training set 

needs to be, and how to integrate actual valve failure data as 

it becomes available. 

However, as more training data is added, RUL selection 

becomes more complex. Future extensions of this technique 

may need to consider implementing different methods of 

distance evaluation, to retain prediction accuracy. Also, as 

this method relies on training using run-to-failure data, it is 

limited to accurate prediction of previously seen fault types.  

4. CONCLUSIONS 

The similarity-based prognostic approach described in this 

paper provided accurate results when estimating RUL of 

valves within a power station. This research utilizes a high 

fidelity CCGT plant simulator to allow the creation of a 

large suite of failure cases, simulating a relatively low risk 

but high consequence failure mode for which there is 

limited in-service data. This paper demonstrates a method of 

first principles modeling of failure, in order to generate the 

data required for data-driven prognostic modeling. This is 

shown to accurately predict the remaining life of five test 

cases. 

Having tested the method there are a number of possible 

routes now available for further research using this 

approach: testing the approach with real plant data, applying 

the prognostic method to different types of faults, and 

comparing this technique to other prognostic techniques for 

similar applications. 
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