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ABSTRACT

Condition monitoring of wind turbines is a field of continu-
ous research and development as new turbine configurations
enter into the market and new failure modes appear. Systems
utilising well established techniques from the energy and in-
dustry sector, such as vibration analysis, are commercially
available and functioning successfully in fixed speed and vari-
able speed turbines. Power performance analysis is a method
specifically applicable to wind turbines for the detection of
power generation changes due to external factors, such as ic-
ing, internal factors, such as controller malfunction, or delib-
erate actions, such as power de-rating. In this paper, power
performance analysis is performed by sliding a time-power
window and calculating the two eigenvalues corresponding
to the two dimensional wind speed - power generation dis-
tribution. The power is classified into five bins in order to
achieve better resolution and thus identify the most proba-
ble root cause of the power deviation. An important aspect
of the proposed technique is its independence of the power
curve provided by the turbine manufacturer. It is shown that
by detecting any changes of the two eigenvalues trends in the
five power bins, power generation anomalies are consistently
identified.

Georgios Alexandros Skrimpas et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution 3.0 United
States License, which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.

1. INTRODUCTION

Nowadays, condition monitoring of wind turbines is directly
connected to the predictive maintenance strategy employed
by numerous operators in order to increase the availability,
minimize the maintenance expenses, reduce the downtime
and therefore the cost of energy (CoE) (Butler, Ringwood, &
O’Connor, 2013). As many countries in Europe and world-
wide have set high goals for the renewable energy penetration
on their systems, CoE constitutes an important parameter for
the competitiveness of wind power compared to the conven-
tional energy sources (Lu, Li, Wu, & Yang, 2009).

Techniques such as vibration, temperature and oil analysis
have been extensively applied for the mitigation of the un-
expected operation and maintenance expenses over the past
years focusing mainly on the drive train components. Contin-
uous data trending is an essential part of condition monitoring
in order to identify the commence of a faulty state and its pro-
gression in time. A typical example is the trending of speed
related narrowband filtes, such as running speed harmonics
and tooth mesh frequencies, and not speed related broadband
measurements in vibration analysis (Marhadi & Hilmisson,
2013).

As the power rating of modern turbines is continuously in-
creasing reaching 8MW in prototype installations, it is a re-
quirement that their condition monitoring is performed holis-
tically combining various techniques. Power performance
analysis can be used as an assisting tool along with the es-
tablished methods, such as vibration analysis. Its utilization
as power generation abnormality detector and general indica-
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tor of the overall health of the turbine is based on analysing
standard collected supervisory control and data acquisition
(SCADA) system information and extracting useful features
(Uluyol, Parthasarathy, Foslien, & Kim, 2011).

The theoretical input power obtained from wind can be ex-
pressed by the following equation:

P = 0.5ρACp(λ, β)u
3 (1)

where P is the power captured by the wind turbine rotor, ρ
is the air density, A is the swept rotor area, Cp is the power
coefficient, β is the blade-pitch angle, λ is the tip-speed ra-
tio and u is the wind speed (Lydia, Selvakumar, Kumar, &
Kumar, 2013). Furthermore, the air density ρ is equal to:

ρ =
p

RT
(2)

where p is the absolute air pressure and R is the specific gas
constant; these two parameters are functions of altitude and
humidity (Schlechtingen, Santos, & Achiche, 2013). Finally,
the air density ρ is also influenced by the ambient temperature
T .

The above equations suggest that the input wind power de-
pends on the weather conditions (seasonality) and the site of
erection. Other factors, such as terrain, park topology, and
wake effects contribute on the unique power production pro-
file of every turbine (Mchali, Barthelmie, Frandsen, Jensen,
& Rthor, 2006). Therefore, utilization of the nominal power
curve applicable to each turbine type enhances a number of
challenges which may complicate the identification of abnor-
malities.

In addition to the above, the wind turbine power production
can be affected by external factors, such as icing and dirt on
blades; internal factors, such as pitch system defect or control
system malfunction; or by deliberate actions, such as power
de-rating or application of specific operation modes (Park,
Lee, Oh, & Lee, 2014). The aforementioned conditions yield
power generation deviations which can be observed in differ-
ent power production states.

In this paper, the application of eigenvalue analysis for mon-
itoring of power performance deviations due to external fac-
tors and deliberate actions is presented and analysed. There
are two special points on the proposed performance assess-
ment method. Firstly, the power curve is divided in discrete
power classes deviating from the conventional approach of
having wind bins (Park et al., 2014). The power classifi-
cation is followed in order to obtain finer resolution so as
to discriminate between different performance deterioration
factors. Furthermore, eigenvalue analysis is an unsupervised
method meaning that the objective is to calculate a number of
features from the distribution under consideration rather than

explicitly defining relations between sets of variables, e.g.
condition distributions in the form p(output|input). Hence,
prior knowledge of the power curve suggested by the wind
turbine manufacturer or employment of power curve learning
are not required.

The paper structure is as follows. Section 2 provides a short
description to the mathematical background of eigenvectors
and eigenvalues. In section 3, the method description is pre-
sented based on the analysis of a turbine subjected to ice
build-up. The trending behaviour of the calculated eigenval-
ues is illustrated in section 4 for the cases of icing, power
de-rating and operation under noise reduction mode. Finally,
sections 5 and 6 present the discussion and conclusions re-
spectively.

2. EIGENVECTORS AND EIGENVALUES BACKGROUND

The statistical characteristics of a given data set can be rep-
resented by the covariance matrix, its eigenvalues, and the
corresponding eigenvectors. The following analysis is classi-
fied as an unsupervised learning method which can be used
to discover correlation among patterns as well as intrinsic di-
rections where the data patterns change most (with maximum
variance).

Rxx is defined as the covariance matrix of the power curve
data set, with dimension N = 2. The two orthonormal eigen-
vectors e1 and e2, corresponding to the eigenvalues λ1 and
λ2 of the data covariance matrix Rxx are called eigenvectors.

Rxx · ei = λi · ei , i = 1, 2 (3)

These eigenvectors show orthogonal directions in the pattern
space where data change is maximum (maximum variance)
(Cios, Pedrycz, Swiniarski, & Kurgan, 2007). The latter fea-
ture is used to explore any abnormal deviations of the power
curve which could potentially correspond to power produc-
tion anomalies.

Providing a two dimensional data set (wind speed and power
production), the number of eigenvectors is two. However, if
more data related to the wind turbine operation are taken into
consideration, such as the blade pitch angle, the rotor running
speed, the ambient temperature and the nacelle direction, then
principal component analysis could be employed to extract
only the most informative factors. This reduction of dimen-
sionality is usually applied on classification problems for data
compression (Bishop, 2006).

3. WIND TURBINE POWER PERFORMANCE MONITOR-
ING VIA EIGENVALUES VARIATIONS

Figure 1 depicts the power production and wind speed s func-
tion of time for Turbine#14 for a period of approximately two
years along with the derived power curve. The power produc-
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tion - wind speed data are sampled every one hour. The neg-
ative power values correspond to periods where the turbine is
set to local mode due to performed maintenance activities or
inspection of potential faulty components.

Figure 1. Turbine#14 - Power Production, Wind Speed and
Power Curve - Case: Ice build-up on blades.

In order to detect any power performance changes, a slid-
ing time window is used. The time window length selection
is a compromise between computational cost and capability
of extracting useful information. A reasonable choice is be-
tween one to three weeks, as a too long window would re-
sult in smoothing phenomena and a too short window would
generate noisy results. The sliding time window can be over-
lapping for finer time resolution. The overlapping selection
is also a function of the computational cost and desired time
step. The analysis in the following sections is based on time
window of two weeks and time step of one hour.

In order to proceed to the recognition of any patterns effi-
ciently, the sliding time window is further divided into five
power bins (classes). The classification into five bins follows
Brüel and Kjær Vibro’s vibration based condition monitor-
ing scheme (Andersson, Gutt, & Hastings, 2007). The five
classes are evenly distributed in general terms, but they might
alter for different turbine models. The power classification
is implemented so as to distinguish between various factors
influencing the power production.

Figure 2 presents the power curve points of Turbine#14 under
normal and abnormal power production for two weeks in late
September 2013 and mid January 2014, along with the nomi-
nal power curve provided by the turbine manufacturer (black
dashed line). The abnormal operation is due to ice build-up
on the turbine blades, which was verified by the park operator.
For better illustration, figure 3 presents the contour plot of the
two dimensional histogram corresponding to the data shown
in figure 2. The red lines correspond to high probability den-

sity function (pdf) values whereas the blue lines indicate low
pdf values.

The data distribution of the right subplot in low to mid power
production is significantly shifted to the right compared to
the left subplot as well as compared to the power curve pro-
vided by the manufacturer. However, it should be noted that
the ideal power curve should not be fully trusted as it is a
function of the air density and consequently of the ambient
temperature, which is not available for this turbine. Further-
more, it should be emphasized that the performance of a wind
turbine is also influenced by site related factors and thus any
discrepancies are not necessarily indicators of abnormal be-
haviour.

Figure 2. Turbine#14 - Power curve points under normal and
abnormal (icing) power production.

Figure 3. Turbine#14 - Contour plot of two dimensional his-
togram under normal and abnormal (icing) power production.

Following the power classification approach, figure 4 presents
the contour plot of the two dimensional histogram in low pro-
duction, i.e. from 0% to 30% of the nominal power output, for
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both normal and abnormal operation. It can be noticed that
two orthonormal vectors are included for the two cases under
investigation. The two vectors are further described by two
quantities, direction and magnitude. The direction is defined
by the eigenvector and the magnitude by the corresponding
eigenvalue. The eigenvalues represent the variances of the
data set in directions specified by the eigenvectors. Given that
the direction does not vary significantly, the eigenvalues pro-
vide essential information about the scatter of the distribution
and consequently the power performance of the wind turbine.
Hence, figure 4 suggests that the distribution presented in the
right subplot is drawn from a wind speed - power production
data set where the performance of the turbine is influenced
by an external factor. Bearing in mind that the right set cor-
responds to two weeks in January 2014 and that the turbine
is installed in cold climate location, it can be concluded that
icing is the most likely root cause of the detected power curve
deviation.

The naming convention wind and power variation is adopted
for the two eigenvalues. The virtual unit for wind variation is
in m/s and for power variation is in kW .

Figure 4. Turbine#14 - Zoom in low power production con-
tour plot of two dimensional histogram under normal and ab-
normal (icing) power production.

4. DETECTION OF WIND TURBINE POWER PERFOR-
MANCE ABNORMALITIES

Figures 5 and 6 show the trending behaviour of the square
root of the two eigenvalues for two power classes, 0%-30%
and 30%-50% of the rated power output. The sliding window
length is two weeks and the time step is set to one hour.

It can be observed that the wind variation shows increased
trends in both power bins in winter seasons. The increase
in the trends shows that the scatter of the two-week sets is
wider, indicating potential performance deterioration. Espe-
cially in winter 2012-2013, one can notice several hills and

Figure 5. Turbine#14 - Icing - Trending behaviour of eigen-
values in low power production.

Figure 6. Turbine#14 - Icing - Trending behaviour of eigen-
values in low to mid power production.

valleys. The cause was ice formation on the turbine blades
in December 2012, which was successfully removed by the
turbine operator. However, the turbine was subjected to icing
again a few days later resulting in emergency stop. The same
phenomenon was repeated in winter 2013-2014, where again
the wind variation behaviour presents clear increasing trends.

The above example focuses on icing detection, which can be
classified as a condition which needs to be addressed by the
turbine operator. However, many reasons, such as power de-
rating or enabling of certain operation modes, can change
power production from expected. If these actions are not
communicated properly between the involved parties (park
supervisor and technicians, performance centre, condition mon-
itoring supplier) or the information flow has a delay of several
days, unnecessary processes may initiate from either party.

Figure 7 presents the power production, wind speed time se-
ries and power curve of Turbine#09. The power output has
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been de-rated two times over the past two years due to grid is-
sues. The power curve subplot validates the above as a cluster
of points is centred at 1.5MW for wind speed above 12m/s.

Figure 7. Turbine#09 - Power Production, Wind Speed and
Power Curve - Case: Power output de-rating.

By inspecting the power production over time, one could iden-
tify that the generated power was restricted to approximately
50% in the beginning of 2013 until middle of the year. Al-
though the wind speed could be advised to verify the above,
the procedure is time consuming as data of at least a few days
shall be available for confirmation. Figures 8 and 9 present
the variation of the two eigenvalues in low (0% to 25%) and
mid (45% to 65%) power classes. The power de-rating is
clearly present in both eigenvalues in figure 9, whereas no
change is seen for the low power class (figure 8). These ob-
servations lead to the the conclusion that the performance is
influenced only in certain power bins and thus the most prob-
able root cause is a deliberate control action by the turbine
operator. The result from a vibration-based condition moni-
toring point of view is positive step changes on the gearbox
speed related measurements during these periods. The latter
can be considered as a sign of sudden changes in the drive
train dynamics denoting a faulty operation of one or more
components. Hence the eigenvalue trending can be used to
detect any changes in the performance of the turbine which
coincide with changes in the vibration data.

Two different control actions have caused power production
variations on Turbine#07. Firstly, the power was de-rated to
1/3 of Pn for a short period of time in mid 2012. This ac-
tion yielded changes to both eigenevalues as it was seen for
Turbine#09 in figure 9. Then, a noise reduction mode was
enabled for the current wind turbine (and for the vast major-
ity of the turbines in the park) many times in 2012 and 2013.
The noise reduction mode corresponds to the mitigation of
the aerodynamic noise emitted by the blades by reducing the

Figure 8. Turbine#09 - Power de-rating - Trending behaviour
of eigenvalues in low power production.

Figure 9. Turbine#09 - Power de-rating - Trending behaviour
of eigenvalues in mid power production.

main rotor running speed. In this case, only the wind variation
subplot presents increased trends matching the periods where
this operation mode was active. It can be remarked that the
wind and power variation is not affected by the operational
changes in low power production. Thus, as for Turbine#09,
the fact that the trends of the low power bin are stables indi-
cates that the most likely origin of the increase in mid power
production is again due to an intentional control action.

At this point, it is important to emphasize that the recogni-
tion of the power generation changes is solely based on the
comparison between the normal behaviour and any decrease
or increase of either the wind or power variation trends. This
approach excludes the dependency from the power curve pro-
vided by the manufacturer. In addition, any site related fac-
tors influencing the power output profile of the turbine under
investigation are implicitly included.
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Figure 10. Turbine#07 - Power Production, Wind Speed and
Power Curve - Case: Enabling of noise reduction mode.

Figure 11. Turbine#07 - Noise reduction mode - Trending
behaviour of eigenvalues in low power production.

5. DISCUSSION

The analysis presented in the previous sections attempted to
illustrate the condition monitoring capabilities of the power
performance technique. As condition monitoring systems rely
on alarms when an alert or danger limit is violated, the same
approach can be adopted in this case as well. The authors of
the present paper are currently working on setting customized
alert limits for each turbine individually after a short learning
period (approximately one month) and global danger limits
for each turbine type.

The results of the power performance monitoring method can
be also applicable to other functions related to the operation
of the turbine. A potential application is the enabling of de-
icing systems installed in turbines erected in cold climate lo-

Figure 12. Turbine#07 - Trending behavior of eigenvalues in
mid power production.

cations. By combining indications from the power perfor-
mance analysis technique and the ambient temperature, the
de-icing systems can be triggered in order to avoid long of-
fline periods by consuming a portion of the energy production
for heating the blades and the nacelle.

6. CONCLUSIONS

In this paper, changes in eigenvalues of wind speed - power
production data sets are employed as power performance mon-
itoring tools. Three cases have been analysed and presented:
icing, power de-rating and noise reduction mode. The analy-
sis has shown that detection of power production abnormal-
ities can be achieved without necessity of the power curve
provided by the turbine manufacturer, but based solely on the
trending behaviour of the two eigenvectors. Furthermore, the
division of the power output into discrete power classes has
provided essential information regarding the identification of
the most likely root cause of the power generation change. Fi-
nally, with high time resolution of the field data, the presented
approach adds value to existing diagnostics, based on vibra-
tion, resulting in a comprehensive evaluation of the turbine
state and consistent identification of issues during operation.
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