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ABSTRACT 

In this paper, we describe our previous studies for the 

development of an analysis algorithm and the application of 

a fault monitoring technique. Various signal processing 

methods have been implemented in the so-called monitoring 

tools to monitor and analyze abnormal conditions of 

components in nuclear power plants (NPPs). One of the 

analysis methods were devised by us for the efficient 

analysis of transient signals from NPP process components. 

This method, the adaptive cone-kernel distribution, is 

presented in this paper along with the description of the 

monitoring tool. Then, some application results using the 

monitoring tool are presented. As another application, the 

fault monitoring technique applied to the agitator driving 

system of a thermal chemical reduction reactor is also 

presented though this technique is not integrated in the 

monitoring tool yet. 

1.  INTRODUCTION 

The fault monitoring technique consists of hardware and 

software elements to investigate successfully the status of a 

target component, equipment, or system. For the hardware 

part, a sensing type and an appropriate sensor for measuring 

relevant signals are first determined. Along with the sensors 

employed, the data acquisition system should be 

established. For the software part, it is usual in our studies 

that a signal processing method is selected to analyze the 

signal that were acquired by and stored in the data 

acquisition system, then some useful feature representing 

information of the target system status is extracted from the 

result of signal processing analysis, and finally a certain 

diagnostic method such as expert system or neural network 

is applied to the features, resulting in the identification of 

current status of the system to be monitored. 

We implemented various signal analysis methods and 

improved some methods for application to the transient 

signals from a system. These various signal analysis 

methods covers from classical analysis methods such as the 

frequency or spectral analysis to the time-frequency analysis 

methods for analysis of transient signals such metal impact 

signal by a loose part in NPP. 

Figure 1 shows the main page of our monitoring tool. This 

tool has classical spectral analysis methods and also various 

time-frequency analyses such as STFT (Short-Time Fourier 

Transform), WVD (Wigner-Vill Distribution), CWD(Choi-

Williams Distribution), BJD (Born-Jordan Distribution), 

CKD (Cone-Kernel Distribution), and ACKD (Adaptive 

Cone-Kernel Distribution). The monitoring tool was 

implemented by LabVIEW program language. The analysis 

methods described above were implemented into “dll” 

libraries that were then integrated into the LabVIEW-based 

monitoring tool 

 
Figure 1. Monitoring tool - main page 
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The upper left part of Figure 1 indicates menus for reading 

input data and displaying this data and the lower left part is 

for menus for options and refining analysis results. The 

upper right screen is for displaying 2-dimensional time-

frequency results along with frequency and time data. The 

lower graph is displayed only when 3 dimensional data need 

to be displayed. The more explanation of each component 

can be seen in Figure 2. 

 
Figure 2. Menu functions of the monitoring tool 

 

Among them, the adaptive cone-kernel distribution (ACKD) 

was devised by our team and this is described in detail in 

Section 2 with brief description of applications results. 

Section 3 describes other application result of fault 

monitoring techniques that had been carried out in our 

projects but are not implemented in this monitoring tool. 

2.   DEVELOPMENT OF ADAPTIVE CONE KERNEL 

DISTRIBUTION 

In this section, an adaptive CKD, which was devised for 

improving analysis performance and also reducing 

calculation load, is described.  

The general form of a time-frequency distribution (TFD) is 

represented by (Claasen & Meckleubrauker, 1980) 
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where x is an analytic signal, x* is the complex conjugate of 

x,  represents the time lag, and  is the kernel function. The 

form of TFD by Cohen (Cohen, 1995) is slightly different 

from Eq.(1) in that the parameter  has a negative sign. If 

the kernel function is such that (,) = 1, then Eq.(1) is the 

Wigner-Vill distribution (WVD). The WVD is known to 

have very desirable properties in the time-frequency domain. 

For a signal composed of multi-component signals, however, 

it has a critical drawback in that ghost signals (i.e., called 

“cross-terms”) present among the true signal components. 

These results make the time-frequency representation very 

difficult to interpret. To overcome this, time-frequency 

representation of a signal is usually performed base on the 

general form of Eq.(1) where the kernel function  is 

designed from the previously proposed candidates 

(Hlawatsch & Boudreaux-Bartels, 1992) for a better 

representation of a case sensitive signal.  

Various kernels have been proposed for satisfying the 

desirable properties (time and frequency maginals, finite 

support in time and frequency, and so forth) of TFD and at 

the same time reducing the undesirable effect (i.e., cross-

terms). The exponential kernel, which is known as the Choi-

Williams kernel (Choi & Williams, 1989), is the one that 

satisfies almost all of the desirable TFD properties and can 

suppress well the effects of the cross-terms. It is represented 

by 

 /22

e),(     (2) 

In Eq.(2)  is a tuning parameter. Born-Jordan kernel has 

the form of 

)(csin),(     (3) 

It fulfills almost all of the TFD properties. All the kernel 

functions are summarized well in the paper of Cohen (1995) 

and Hlawatsch and Boudreaux-Bartels (1992). 

2.1. CKD and ACKD 

Up to this time, there is no kernel that satisfies all the 

desirable properties and also shows the best cross-term 

reduction capability. The cone-kernel distribution proposed 

by Y. Zhao, et al (1990) is the one with the best capability 

of suppressing the cross-term effects; instead, of sacrificing 

many of desirable properties (Loughlin et al., 1993). The 

design of CKD is originated from the idea that a kernel 

should satisfy the time support and also enhancing the 

frequency resolution by paying a penalty to the neighbors of 

signal frequencies by the use of a so-called lateral inhibition 

(Zhao, et al., 1990). A different form of the general class of 

TFD of Eq.(1) can be presented such as 
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The kernel function in Eq.(4) is the inverse Fourier 

transform of the kernel function in Eq.(1) with respect to . 

The cone kernel in the t- domain in (4) is represented as 
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In Eq.(5), the cone boundary parameter, a, adjusts the slopes 

of the cone with the constraint that 2  a <  and usually set 

to 2 according to the finite support property (Claasen & 

Meckleubrauker, 1980). The function g() is a sort of 

window in the Fourier transform for preventing a frequency 

leakage and it is usually represented by the Gaussian 

function. 

The discrete form of the above equation (Czerwinski & 

Jones, 1995) is represented by 
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In Eq.(6), the continuous variable f will be represented by 

the discrete Fourier data at the implementation phase. 

According to the cone length T in Eq.(6), the resolutions of 

time and frequency domains are traded off. 

For a signal with multi-components, it is necessary for the 

cone length to vary adaptively according to the signal type. 

The adaptive cone-kernel distribution (ACKD) was 

proposed by Czerwinski & Jones (1995) where the 

performance measure was the highest time-frequency signal 

energy normalized by the square of the cone length. This 

method usually shows a reasonably optimal value of the 

cone length according to the signal type, but it requires 

massive computations and a careful selection of the time-

axis range for the signal data.  

In this paper, a more computationally efficient adaptive 

method is proposed. In this method, at a particular time step 

n, the frequency values are calculated for each incremental 

step of a variation of the cone length. The performance 

measure is the normalized Shannon’s entropy that is applied 

to the frequency data obtained at each incremental step in 

the cone length for a particular time. The normalized 

Shannon’s entropy is expressed as 
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In Eq.(7), n is the time index and m is the discrete frequency 

index, M is the total frequency data. The fN is the 

normalized energy and represented by 
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The optimal cone length T at a particular (fixed) time index 

is determined when the entropy has a local minimum value 

over the variations of the cone length T. If it is decreasing 

smoothly then the optimal T is determined when the entropy 

value is below the threshold value such as 

Eth = Emin + (Emax-Emin)    (9) 

In Eq.(9), Eth is the threshold entropy, Emin and Emax 

represent the minimum and maximum values of the entropy, 

respectively, and  is the given threshold parameter. In 

determining the optimal cone length, the entropy trend 

shows a small fluctuating behavior, which may induce an 

inaccurate determination of the local minimum point. In 

order to remedy this problem, the entropy plot for the 

variation of T at a particular sample point is smoothed by 

the curve smoothing technique (Moon, 1998). 

2.2. Performance Evaluation for Arbitrarily Synthesized 

Signal 

Figure 3 shows an arbitrary, multi-component signal that 

contains two impulses at the data sample index i=56 and 60, 

respectively, one burst signal at i=108~148, two chirp 

signals at i=200~300, and two mixed sine waves at 

i=350~400. The sampling rate is given by 50 kHz. The 

detailed information of the multi-components (S1, S2, S3, 

S4, and S5) is presented in Table 1. 

 
Figure 3: An arbitrarily generated signal 

 

 

Figure 4 displays the results of the STFT, the Born-Jordan 

distribution (BJD), the Choi-Williams distribution (CWD), 

the Cone-Kernel distribution (CKD) and the adaptive CKD 

(ACKD). Figure 4(a) represents the STFT with the window 

length of 64, which shows clearly the superior depression of 

the cross-terms but very poor time and frequency 

resolutions. The BJD in Figure 4(b) is obtained from the 

parameter  = 0.005 in Eq.(3). The CWD with =150000 in 

Eq.(2) is displayed in Figure 4(c), where the cross-terms are 

still disturbing the time-frequency representation. Figure 4(d) 

displays the CKD with T=32 in Eq.(6). All the figures 

depict the real part. Though the CKD with an appropriate 

cone length (T=32) shows a better the time-frequency 

representation than the other time-frequency representations 

in Figures 4(a),(b), and (c), it is necessary the cone length be 

varied according to the signal type. 

Figure 4(e) shows the result of the ACKD proposed in this 

paper. The maximum search range of the cone length is 

given by 64 and the threshold parameter is set by  = 0.05. 

Figure 4(e) shows a good time-frequency representation and 

moreover, the two vertical strips for corresponding impulse 

signals can be discriminated. Figure 5(a) and Figure 5(b) 

magnify the results of ACKD of Figure 4(e) and CKD of 

Table1. Description of signal components 

Signals Expression & Description 

#1 (S1) S1 = 20 at i=56, and S1 = 0, otherwise 

#2 (S2) S2 = 20 at i=60, and S2 = 0, otherwise 

#3 (S3) S3 = 4M{cos(220i/256)+ 

        cos(250i/256)}, and 











Otherwise,0

148i108,)128i(
400

1
1

M
2

 

#4 (S4) S4 = 4{cos(2(i/8)(i/512))+ 

           cos(2(i/16)(i/512))},  

for 200i300, and S4=0, otherwise 

#5 (S5) S5 = 4{cos(2i/5)+cos(2i/10)},  

for 200i300, and S5 = 0, otherwise 
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Figure 4(d), respectively, for the data sample range of 

0~100. As can be seen in Figures 5, the discrimination of 

the two impulses are much clearer in ACKD. The optimal 

values of the cone length calculated in this adaptive method 

are shown in Figure 6 along the data sample index. 

 
(a) STFT (Window Length = 64)  (b) BJD ( = 0.005) 

 
(c) CWD ( = 150000)           (d) CKD (T = 32) 

 
(e) ACKD 

Figure 4: Time-Frequency representations for an arbitrarily 

generated signal 

 
(a) ACKD (0~100)                (b) CKD (0~100) 

Figure 5: Comparison of magnified ACKD and CKD 

 

 

2.3. Application of Monitoring Tool 

The monitoring tool as in Figure 1 was used for monitoring 

of the integration of a check valve and also for identifying 

the status of pipe corrosion, which had been performed by 

the joint research between the KAERI and the SNL (Sandia 

National Laboratory) as an I-NERI project. 

Some example of application of ACKD to acoustic emission 

(AE) sensor signals for the check valve monitoring is 

depicted in Figure 7. 

 
(a) Normal Close    (b) Disk wearing   (c) Foreign object 

Figure 7: Results of ACKD for AE signals from a check 

valve disk 

As can be seen in Figure 7, the AE signals from a healthy 

check valve typically have a signal component dominant at 

150 kHz and, if an abnormal situation happens, there can be 

seen that signal components dominant at other frequencies 

begin to appear. When the leak occurs due to disk wearing, 

the dominant frequencies are extensively spreading over 100 

kHz as can be seen in Figure 7(b). For the disk stuck by a 

foreign object, it can be seen that the signal components at 

higher frequencies are generated. 

For the identification of pipe corrosion, it was identified that 

the signals from accelerometers installed in the area of the 

pipe elbow did not represent distinguishable transient 

characteristics in such a passive method (in other words, in 

the case of two transmitting- and receiving- accelerometers, 

a certain discriminating feature was supposed to be 

identified.) For the experiment for the pipe corrosion, the 

STFT was applied to signals from accelerometers and the 

linear scale of the distribution of STFT was transformed 

into the log scale. The ridge pattern is extracted from this 

result. Figure 8 shows the ridge pattern for the pipe in the 

normal state. 

 
Figure 8: Ridge pattern for the pipe with normal state 

 
Figure 6: Optimal cone length along signal sequence 
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The ridge pattern in Figure 8 was abstracted by the use of 

peak number and peak energy. Figure 9 shows some 

application results from the two types of experimental pipes; 

the pipe with normal state and 2 mm mechanical thinning.  

 
(a) Normal state                     (b) 2 mm thinning 

Figure 9: Peak number vs. peak energy for pipes with 

different local width 

As can be seen in Figure 9, the abstracted ridge pattern is 

moving from the lower left portion to the upper right portion. 

This shift trend could be identified consistently for the pipe 

with 1 mm thinning, and was validated for the real data 

from the pipe corrosion. 

3. APPLICATION OF FAULT MONITORING TECHNIQUE 

This section presents additional application example from 

our previous study (Park et al., 2003) that are not integrated 

into the monitoring tool in Section 2. The target system to 

which a fault monitoring technique was applied is the 

agitator driving system. The agitator driving system 

equipped on the top of the thermal reduction reactor for a 

high-temperature chemical reaction is composed of the 

magnetic driver and the agitator whose rotating axis is 

connected to the motor installed on the side of the thermal 

reduction reactor via the flexible joint.  

Figure 10 shows the configuration of the thermal reduction 

reactor and the agitator driving system. The power 

transmission through the flexible joint produces vibrations 

and, for series of the operations, this induces the looseness 

of the surrounding bolts. In the real operations, there existed 

that the operator sometimes forgot to tighten some of bolts.  

 

Figure 10. Configuration of the full-scale thermal reduction 

reactor and the agitator driving system 

 

During the thermal reduction process, the fume is generated 

from the chemical reaction and propagates through the 

internal space of the agitator driving system. The bearings in 

the magnetic driver are affected by the fume, which results 

in the corrosion/wear of the bearings and the blocking of the 

clearance between the rotating axis and the outer ring. 

The fault in the agitator driving system increases the burden 

of regulating the agitator rotating speed to the pre-set point 

(200 rpm) for the optimal chemical reaction. In order to 

identify the fault occurrence and its cause, the fault 

monitoring technique for the agitator driving system is 

developed. This technique is implemented on the vibration 

signals measured by two accelerometers on the outer shroud 

of the magnetic drive as shown in Figure 11. 

Through the experiments, the vibration signals for a speed 

of 200 rpm with various faults were measured. The 

sampling rate was set to 25.6 kHz for all cases. The data for 

5 types of faults are analyzed. The five faults presented in 

this paper are the clearance blocking, the bearing defects, 

the lower bolts looseness, the upper bolts looseness, and the 

upper-right bolt looseness.  

 

Figure 11. Experimental facility for the agitator driving 

system 

 

The rotation speed is fluctuated with the maximum 

deviation of 20 rpm around 200 rpm. In order to classify 

the faults, the spectral analysis was first applied to the 

signals for 5 faults and the normal rotation. From the 

spectral analysis, some faults such as the clearance blocking 

and the bearing defects show slightly different trend other 

than the normal rotation but it is not easy to identify the 

distinguishing peaks for discriminating a fault. 

In order to identify accurately a fault in the agitator driving 

system, the wavelet decomposition (Burrus, et al., 1998) 

was applied to the vibration signal. Figure 12 shows the 

wavelet decomposition for a normal vibration signal that has 

65,536 data samples. As can be seen in Figure 12, the 

vibration signals are decomposed into the corresponding 

components that have the octave band frequency contents. 

The feature extraction was performed by the 2nd order 

moment calculation. The 2nd order moment calculation was 

simple and showed good distinguishable features for 

corresponding faults as can be seen in Figure 13. For 
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establishing the diagnosis process, the neural network 

classifier, which is called Fuzzy ARTMAP (Carpenter, et al., 

1992), was constructed. 

 

Figure 12. Wavelet decomposition for normal signal 
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Figure 13. Features extracted from the results of wavelet 

decomposition for 6 types of cases 

 

The fuzzy ARTMAP is a class of neural networks that 

perform incremental supervised learning of recognition 

categories and multidimensional maps in response to input 

vectors presented in arbitrary order. Figure 14 shows the 

architecture of the fuzzy ARTMAP where two fuzzy ART 

(Carpenter, et al., 1991) modules (ARTa and ARTb) and a 

map field Fab are involved. The input vectors A of 

dimension Ma and B of dimension Mb are the feature vectors 

respectively corresponding to the symptom and the cause. 

The components of each input vector are analog or binary 

values within the range of [0,1]. The each component of the 

input vector represents a feature item that is grouped to 

establish the representative feature. Thus the analog value of 

each component of the input vector means the degree of 

belongingness to the corresponding feature item, and this is 

similar to the fuzzy membership value. The detailed 

description on the operational mechanisms of the fuzzy 

ARTMAP is presented in Carpenter, et al (1992). 

 

Figure 14. Configuration of fuzzy ARTMAP 

 

During training the fuzzy ARTMAP, one set for each fault 

was selected from the data set and the remainder data set 

were used to test the fuzzy ARTMAP performance. In the 

training phase, training data for each fault is presented just 

once to the fuzzy ARTMAP and single learning iteration is 

performed. The input vector A for the fuzzy ARTa is the 2nd 

momentum feature values and has a dimension of Ma = 9. 

All the inputs for the fuzzy ARTa are normalized. The input 

vector B for the fuzzy ARTb is the binary values with a 

single ‘1’ that represent a specific fault and has a dimension 

of Mb = 6. Figure 15 summarizes the test data and the 

parameters for the fuzzy ARTMAP. From tests, the fuzzy 

ARTMAP showed the perfect fault identification though 

some test data are distorted from the training data. 

 

Figure 15. Parameter settings of the fuzzy ARTMAP and 

the diagnosis results for faults 

4. CONCLUSIONS 

In this paper, the monitoring tool established at our 

department and the fault monitoring techniques using this 

tool and other means are briefly described. In the nuclear 

field, classical analysis methods such as a spectral analysis 

or an auto-regressive model are applicable to most of signals 
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• Data Set : 6 Cases ( 1:Normal, 2:Upper-Right Bolt Loose, 3: Lower Bolts Loose, 

4:Upper Bolts Loose, 5:Bearing Defect, 6:Clearance Blocking)

Test DataTest Data

• Normal Data : 7 Sets

• Upper-Right Bolt Looseness : 4 Sets

• Lower Bolts Looseness: 5 Sets

• Upper Bolts Looseness: 3 Sets

• Bearing Defects: 4 Sets

• Shaft Clearance Blocking: 4 Sets

• Normal Data : 7 Sets

• Upper-Right Bolt Looseness : 4 Sets

• Lower Bolts Looseness: 5 Sets

• Upper Bolts Looseness: 3 Sets

• Bearing Defects: 4 Sets

• Shaft Clearance Blocking: 4 Sets
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Parameters

Training Type

&

Parameters

• Off-Line Learning, Single Input Presentation, and Single Learning Iteration

• Fast Learn: =1

• Conservative Limit Value: =0.0001

• Vigilance and Matching Criterion: a = 0.8, b = 0.8, ab = 0.8

• Off-Line Learning, Single Input Presentation, and Single Learning Iteration

• Fast Learn: =1

• Conservative Limit Value: =0.0001

• Vigilance and Matching Criterion: a = 0.8, b = 0.8, ab = 0.8

Test ResultsTest Results
• For Training Data : 100 % Correct Identification

• For Test Data: 100 % Correct Identification

• For Training Data : 100 % Correct Identification

• For Test Data: 100 % Correct Identification
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stored in the data acquisition system. For a more delicate 

analysis for transient signals, an analysis method based on 

the time-frequency basis is useful. In this paper, an adaptive 

cone-kernel distribution whose window size is varied 

according to its adaptive mechanism is presented. This 

method is so efficient for computing time that it can be used 

on line. The monitoring tool described in this paper contains 

various signal-analysis methods. In our works, this tool was 

applied to the monitoring of the check valve and the 

identifying the status of pipe corrosion. By the use of the 

monitoring tool we developed, a new method or technique 

can be easily implemented and incorporated into this tool. 

As one additional application, the fault monitoring 

technique of the agitator driving system was described. In 

this monitoring technique, the wavelet decomposition is 

used as a signal processing analysis and 2
nd

 order 

momentum is used to extract the signal features from the 

decomposed signals. For investigating or diagnosing the 

fault status, the fuzzy ARTMAP is employed for 

discriminating robustly the fault patterns. These signal 

processing algorithm and fault monitoring technique are 

also going to be implemented in the monitoring tool. 
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