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ABSTRACT 

The need for standardized methods for comparison and 
evaluation of new models and algorithms has been known 
for nearly as long as there has been models and algorithms 
to evaluate. Conveying the results of these comparative 
algorithms to people not intimately familiar with the 
methods and systems can also present many challenges as 
nomenclature and relative representative values may vary 
from case to case. Many predictive models rely primarily on 
the minimization of simplistic error calculation techniques 
such as the Mean Squared Error (MSE) for their 
performance evaluation. This, however, may not provide the 
total necessary information when the criticality, or 
importance of a model’s predictions changes over time. 
Such is the case with prognostic models; predictions early in 
life can have relatively larger errors with lower impact on 
the operations of a system than a similar error near the end 
of life. For example, an error of 10 hours in the prediction of 
Remaining Useful Life (RUL) when the predicted value is 
1000 hours is far less significant than when the predicted 
value is 25 hours. This temporality of prognostic predictions 
in relation to the query unit’s lifetime means that any 
evaluation metrics should capture and reflect this evolution 
of importance. 
 
This work briefly explores some of the existing metrics and 
algorithms for evaluation of prognostic models, and then 
offers a series of alternative metrics that provide clear and 
intuitive measures that fully represent the quality of the 
model performance on a scale that is independent of the 
application. This provides a method for relating 
performance to users and evaluators with a wide range of 
backgrounds and expertise without the need for specific 
knowledge of the system in question, helping to aid in 
collaboration and cross-field use of prognostic 

methodologies. Four primary evaluation metrics can be used 
to capture information regarding both timely precision and 
accuracy for any series or set of prognostic predictions of 
RUL. These metrics, the Weighted Error Bias, the Weighted 
Prediction Spread, the Confidence Interval Coverage, and 
the Confidence Convergence Horizon are all detailed in this 
work and are designed such that they can easily be 
combined into a single representative “score” of the overall 
performance of a prediction set and by extension, the 
prognostic model that produced it. Designed to be separately 
informative or used as a group, this set of performance 
evaluation metrics can be used to quickly compare different 
prognostic prediction sets not only for the same 
corresponding query set, but just as simply from differing 
query data sets by scaling all predictions and metrics to 
relative values based on the individual query cases. 

1. INTRODUCTION 

The need for standardization in the area of evaluation for 
prognostics research has been well documented [Uckun et al 
2008]. Work has even been presented on the evaluation of 
individual features or parameters as to their suitability for 
use in prognostic modeling [Coble 2010]. Recent effort has 
been focused on the standardization of prognostic model 
performance evaluation based on meaningful criteria that 
can be used to compare the output of prognostic models not 
only within given application, but across the field of 
predictive engineering [Saxena 2008].  Unfortunately, 
despite this large step forward in the evaluation of 
prognostic models, the existing metrics have yet to see wide 
spread acceptance and use. This may in part be due to both 
the seemingly and occasionally complicated nature of 
evaluating and interpreting these metrics. 
 
 This work seeks to incorporate group-based comparison 
into the offline prognostic algorithm evaluation process, and 
presents variants on some well-known performance metrics 
that are built upon a multitude of known cases to which the 
prognostic model has been applied. 
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Specifically, four separate updated scalar metrics have been 
identified that sufficiently characterize and convey 
meaningful, intuitive information about the output 
predictions of a prognostic model: Weighted Error Bias 
(WEB), Weighted Prediction Spread (WPS), Confidence 
Interval Coverage (CIC), and the Confidence Convergence 
Horizon (CCH).  Each one, detailed below, captures a key 
aspect and desirable quality of prognostic predictions that 
can be quickly, easily, and intuitively compared amongst 
separately developed models to rank and rate output 
performance. These metrics are built upon the errors and 
uncertainty associated with each prediction set, rewarding 
the minimization of both.  To calculate both the errors and 
uncertainty of a prediction set, another descriptive series of 
values known as the Binned Percent Error is also defined 
and demonstrated in both use and interpretation in regards to 
the scalar metrics.  

2. BACKGROUND AND MOTIVATION 

It has been suggested that depending on the needs of the end 
user, many different types of effective comparison 
algorithms could be employed such as cost/benefit analysis 
[Banks 2007]. However, given that many models may 
provide comparable results at similar costs, what are robust 
and useable methods for effectively ranking and expressing 
their relative effectiveness? Or more generally, what is the 
best way to convey results of a comparative analysis to 
someone that is not necessarily well versed in the science of 
prognostics or to a large audience with varied backgrounds 
and expertise? A standardized set of evaluation metrics that 
is both simple to calculate and intuitive to understand is 
possibly the best answer to this question. Many metrics for 
determining model error and even prognostic error have 
been proposed in the past. Building upon these metrics to 
update the evaluation of prognostic prediction set metrics, 
the addition of standardization in the formats and values 
reported can promote the use of the more intuitively 
descriptive metrics for a more wide spread understanding 
and standardization of the field of prognostics beyond it’s 
traditional set of core users. Simply, and accurately 
conveying the capabilities of any prognostic algorithm is 
key to gaining acceptance and application in real world, and 
industry scenarios.  
 

2.1. Standard Model Evaluation Metrics 

The most basic of metrics are often overlooked in regards to 
their usefulness for evaluation prognostic predictions. It is 
true that in many ways these simple error metrics are 
inadequate to completely and appropriately characterize the 
type of information pertinent to prognostic performance. 
However, when conveying information to potential users of 
a prognostic model or scientists and engineers from other 
fields, it is often convenient to at first convey information in 
a manner both simple and familiar to them. 

Many of these type metrics exist, but the Mean 
Absolute Error (MAE) is a fairly easy metric to compute 
and in many ways, the most intuitive to understand. 
Unfortunately, this metric could also be argued to be the 
least informative about the overall performance of the 
model compared to those presented in later sections of this 
paper. Defined in Equation 1, MAE is the average absolute 
difference between the model prediction Pi and the true 
Remaining Useful Life (RULi) at all times t and for all 
historic query cases i.  

 
Equation 1 

€ 

MAE =
1
N

1
Ti

ˆ P i(t) − RULi(t)( )
t

Ti

∑
i=1

N

∑  

In other words, the MAE can be thought of as the average 
error in prediction for each unit, i, that has run to failure and 
for each time T, that a prediction is made. The primary 
attraction of this metric is that it quantifies the average 
expected value any estimate will be from the true value in 
real units directly comparable with the system lifetime.  
Similarly, one could also calculate the standard deviation of 
the prediction error for a measure of the spread of these 
errors.  
 
 These metrics are useful for comparing separate 
models built upon similar data, or data from systems with 
comparable lifetime scales, but give no clear indication of 
prediction performance without some context to the data. 
Additionally, these standard formula metrics are inflexible 
to individual requirements about the specifications of the 
predictions and can be largely susceptible to outliers.  
 
 Although MAE has existed in some implicit form 
for as long as there have been errors to calculate, the direct 
usefulness of this intuitive error metric to the evaluation of 
prognostic predictions performance is severely limited. 
Conceptually, this error metric provides clear and 
meaningful indications of the expected error of the total 
lifetime of a system. Unfortunately as far as prognostics is 
concerned predictions near the end of a unit or system’s 
lifetime are much more critical than those near the 
beginning of life. The remaining metrics introduced and 
described in this work help to overcome and fill in the gaps 
left by MAE and similar standard metrics. 

2.2. Traditional Hierarchical Based Metrics 

Saxena et al proposed a hierarchical system of prognostic 
evaluation, which includes four primary metrics that rely on 
one another to provide meaning [Saxena et al 2009]. The 
hierarchy includes in order: the Prognostic Horizon, the 
Alpha – Lambda Performance, the Relative Accuracy, and 
Convergence. Briefly, these metrics describe in order, the 
first instance a prediction becomes within acceptable 
bounds, if predictions remain in the acceptable bounds at a 

€ 
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given time, one minus the percent difference of the 
prediction to the true value, and finally how quickly the 
predictions arrive at the final answer. 
 
This system is a good step in establishing a coherent and 
consistent method for evaluating the performance of a 
prognostic model. However, these metrics rely on several 
case specific terms and concepts that do not always lend 
well to conveying performance to individuals not previously 
well versed in their application. 
  
 As presented, the hierarchy is largely self-reliant.  
The groups of metrics must be evaluated together, the 
interpretation of the results from one test have effect on 
others. For example, a model could have an early lifetime 
Prognostic Horizon, but this is only truly useful if the model 
also passes all the Alpha-Lambda tests at every subsequent 
time instance. Similarly, a rapid convergence should be 
coupled with a good Relative Accuracy. Understanding the 
passing of these tests and their significance requires an 
understanding of the relationships between the metrics that 
may not be instantly intuitive to experts of other fields. 
 
 Also, some of these metrics are not presented in a scalar 
value manner, making it difficult to assign an overall 
quantitative value of prediction quality. When presenting 
the results of a model analysis to prospective users, often a 
simple and intuitive scalar value comparison is much 
cleaner and easier to understand than a series of mixed 
visually and numerically descriptive values. In other words, 
for certain audiences the hierarchy may unintentionally 
obscure model evaluation when trying to compare separate 
models. 
 
In the papers presented by Saxena, the metrics are used to 
evaluate the prognostic estimations of a single failed unit 
query case. These metrics each take into consideration only 
a single query case and only report aspects of that case. The 
obvious extension of this is to create an average of these 
individual query based metrics over a large set of query 
cases. However, this may not always translate well, 
particularly given the interdependency of the interpretation 
of the metrics as described above. Metrics built to 
collectively analyze a group predictions across several failed 
query cases can help to avoid such skewing of the reported 
values. 
 
Group based metrics can also help to better estimate a level 
of uncertainty associated with each predictive model under 
evaluation. Saxena et al suggest methods for incorporating 
singular case uncertainties into their metric evaluations, but 
do not suggest a simple, effective way to propagate these 
uncertainties [Saxena 2010]. Other recent works have also 
focused on the evaluation of uncertainty in regards to 
prognostics. Many interesting ideas concerning both the 
quantification and evaluation of uncertainty and uncertainty-

based metrics have been presented [Orchard et al. 2008], 
[Leao et al. 2010]. Metrics presented in later sections seek 
to provide intuitive estimations on model uncertainty based 
on the set of estimations themselves. 
 
Additional considerations about the interpretation and 
presentation of some of the metrics should also be 
mentioned. Prognostic Horizon was originally designed to 
report the first instance in life where predictions fall within 
a certain bound, regardless of if the predictions later leave 
that bound. In later work, Saxena suggests corrections to 
this by allowing the user to instead quantify the last time it 
falls in bound without going back out [Saxena 2009]. This 
practice makes much more sense and should become 
standard, but again because Prognostic Horizon is calculated 
over a series of individual cases, there is no standard way to 
define the value for a set of prediction cases. Should the 
average value be reported, or would a minimum or 
maximum be more representative? 
 
Similarly, the convergence metric has the potential to give 
the same quantification of convergence for vastly different 
evolutions in the predictions, potentially misleading any 
blind interpretation of the metric. For example, a prediction 
set that contains a large outlier early in life (which may be 
considered trivial) followed quickly by consistent near 
correct values can show the exact same convergence as one 
without an early outlier the never quite settles on a 
consistent prediction value, depending on the application 
these could be effectively very different results. This work 
seeks to build upon the initial successes of these metrics, by 
creating and presenting metrics and methods that are more 
easily interpreted on a common scale without need for 
intense understanding of the methods behind them. 

2.3. Additional Quantitative Evaluations 

Other works have also tried to build upon or propose other 
standardized metrics. Some of these works, taking a cue 
from the fields of meteorology and climatology have 
adapted the concepts of “value” and “skill into the 
prognostic predictions evaluation vernacular [Tang et al 
2011]. Skill, simply put, is the percent improvement of any 
singular evaluation metric of one prediction set versus some 
reference prediction set. This can be convenient as a concept 
for comparing two different models, but provides no 
additional information not obtained for the original metric 
itself.  

Conversely the concept of “value” is a quantitative metric 
that can directly be used to evaluate a prediction set. Value 
is the total set of some user-defined error versus 
consequence values for a particular application. This allows 
a user to capture important aspects of low probability but 
high cost errors that may be of particular interest, such as 
extreme early life failures. This is very useful for high level 
decision making and internal review processes; however it 
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lacks the intuitive ability to be conveyed without some form 
of reference context for the associated costs, whether they 
be in safety related hours, repair/downtime costs, or some 
other arbitrary unit. The value of a system is a wonderful 
internally created metric and can be used to great effect 
when properly applied and calculated in the industrial 
setting. Unfortunately, “value” does not translate well across 
different systems and industries. A standardized prognostic 
evaluation system should be expected to be instantly 
interpretable by people of many different backgrounds. The 
work presented below proposes solutions to this and other 
problems inherent in the standard set of prognostic 
evaluation metrics. 

3. PROPOSED UPDATED PROGNOSTIC PREDICTION 
METRICS 

To promote the wide spread usage of a set of standardized 
evaluation metrics for prognostic predictions, this work 
presents set of prognostic prediction evaluation metrics that 
are designed to be both intuitive and informative to users 
and reviewers with various backgrounds and levels of 
expertise. These metrics are also designed to be evaluated 
on and capture pertinent aspects of entire sets of prognostic 
predictions over many query cases. Each metric captures 
key aspects of accuracy, precision, and timeliness. For any 
prediction, there is both an expected error and an associated 
uncertainty, these metrics help to report the evolution of 
these values with special regards to the importance of the 
relative lifetime of the failed system or equipment, also 
referred to as query units. 

3.1. Weighted Error Bias 

The Weighted Error Bias (WEB) is the first of the lifetime 
percentage based metrics. WEB, as defined in Equation 2, is 
a measure indicating the effective bias in all predictions as a 
percentage of total unit lifetime.  
Equation 2 

€ 

WEB =
100
N

wi(t)
t =1

T

∑ *
ˆ P i(t) − RULi(t)( )

TotalUnitLifeTimeii=1

N

∑  

where wi(t) is the importance weighting for unit i at time t. 
In this equation, negative values indicate that the prognostic 
predictions tend to be lower than the true RUL where 
positive means the opposite. Additional metrics, such as the 
Weighted Prediction Spread (WPS) presented below, can be 
combined with the WEB help to capture the average 
absolute deviation or uncertainty of a prediction set. 
 
From this equation, it becomes evident that WEB is very 
similar to MAE except in two important respects. First, it is 
tallied and reported as a percentage of the total lifetime of 
the individual failed query unit, i. This allows for the 
intuitive inspection of the performance of a series of 
predictions without the need for some contextual setting. A 

model whose predictions yield a 10%WEB would be 
expected to be better than one with a 25%WEB regardless 
of the systems, equipment, or time scales involved. This 
also has the added benefit of implicitly scaling the errors 
such that similar deviations from the true Remaining Useful 
Life (RUL) values for short-lived components would be 
weighed heavier than those in longer-lived units, even 
within the same historic data set. This is intuitively 
important, as an error of 20 time cycles is less important if 
the unit in question survives 300 cycles as opposed to if it 
only survives 100 cycles.  
 
The second difference is in the explicit importance 
weighting, wi, of the different errors based on their time in 
the lifecycle of the historic unit. This importance weighting 
can easily be tailored to the specific needs or desires of the 
end user, but in most cases an emphasis on the end of 
lifetime is the most meaningful towards prognostic 
predictions. A 10% error near the beginning of unit life 
when there is 85% of life remaining gives plenty of time to 
act an take corrective actions, where a 10% error with only 
5% of life remaining could result in an unexpected failure if 
the unit were expected to life through those remaining 
cycles. A weighting function that accurately reflects this end 
of life importance is the Gaussian Kernel Function with a 
mean value set to the lifetime of the unit and a standard 
deviation, or bandwidth, set to 50% of that lifetime. 
Although this metric is built with weightings in mind, a 
weighting function equal to 1/T for all t can easily turn this 
metric into a simple average of percent difference between 
the true and estimated values. For this and all weighted 
metric, comparisons between algorithms using these metrics 
would only be meaningful if standard weighting functions 
are used. Additional work and investigation into what the 
most appropriate standardized weighting function could 
prove beneficial. However, regardless of the weighting 
function, the standardized scaling of the metrics can help it 
be more relatable to generic audiences. 
 
The optimal value for the WEB is zero, indicating that the 
average prediction value is centered on the true RUL. 
Positive and negative values simply express the direction of 
the bias, otherwise this metric can be presented as a 
representation of averaged percent error, a concept that is 
widely utilized and accessible to many academic and 
industry backgrounds. The weighting function can be 
tailored to any specific need or application, but the 
fundamental metric remains an easily interpreted percentage 
of system lifetime. 

3.2. Percent Error Value Binning 

 The final three prognostic prediction performance 
metrics rely on estimating or inferring the uncertainty of 
prognostic predictions throughout the total lifetime of a 
query unit. In order to do this effectively, the 95% 
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confidence interval (or some similar level of confidence 
interval) needs to be calculated at various points throughout 
the unit lifetime. One of the more straight forward methods 
for doing this is to create a set of bins evenly divided 
between 0 and 100% of system lifetime, and placing each 
calculated percent error in the bin corresponding to the true 
percent of unit life corresponding to that error. In other 
words, first calculate the percent error for a given historic 
prediction, Pi(t), such that the percent error is the difference 
between the predicted RUL and the actual RUL divided by 
the query unit ,i’s, total lifetime. 
Equation 3 

 
 
 

Next note the corresponding percentage of actual lifetime 
(POL), defined by the current time, t, divided by the current 
unit’s total lifetime. Finally place the calculated percent 
error into the POL bin whose edges, B, are defined as:  
BLOWER < POLi(t) < BUPPER 
Repeat for all historic predictions over all query cases, 
placing them in to the same series of corresponding bins. 
Converting the numbers into percentages allows for the 
direct comparison and inclusion of these similarly located 
values with proper importance weightings applied as based 
on their lifetime. 
 
Once this series of regular serial bins is populated, a 95% 
confidence interval around the mean value can be calculated 
from the 2.5% and 97.5% percentiles of the error set for 
each bin. Much like the weightings presented with the 
metrics presented in this paper, these percentages can be 
altered to suit the specific application requirements. 
Additionally, the expected value for each individual bin can 
be calculated, creating an expected error bias that maps 
throughout the lifetime of a unit as a more detailed 
representation of the WEB if such is required. This binning 
is primarily an intermediary form for the metrics presented 
in this paper, but as will be shown later, it can also be used 
to create clear visualizations of the evolution of predictions 
and how they relate to the true values of RUL. 
Visualizations such as these can be a great aid in 
communicating a prediction algorithm’s performance to an 
audience not intimately familiar with the algorithm or 
system in question. 

3.3. Weighted Prediction Spread 

 Uncertainty estimations, though not always 
straightforward, are a crucial part of evaluating any 
prediction value. Thus it follows that the quality of any 
prediction model should also be defined by its’ associated 
uncertainty. Additionally, much like the model prediction 
error and bias, not all points during the lifetime of the query 
system should necessarily be treated with equal importance. 
The predictions of Remaining Useful Life (RUL) made by a 

model are typically more important near the end of the 
system’s life than they are at the beginning of life, as near 
the beginning of life there is comparatively much more time 
to react and compensate, or mitigate any impending faults or 
failure inferred from the prognostic model.  
 
The spread of the model predictions at various points in life 
are an important factor in the total considerations of the 
uncertainty of a series of predictions. The prediction spread 
for each binned point of system life, is calculated as the 
difference between the upper and lower bounds of the 
corresponding 95% confidence intervals from the binned 
error values discussed previously.  Using the same 
importance weighting function as the Weighted Error Bias 
(WEB), the Weighted Prediction Spread (WPS) can be 
defined as by Equation 4.  
Equation 4 

€ 

WPS =100*
Wbi *CIbi

bi=1

#Bins

∑

Wbi
bi=1

#Bins

∑
 

In this equation, the weighting function is based on the 
center value for each reference bin, such that each bin 
importance weighting, Wbi, is defined by the Gaussian 
kernel in Equation 5. 
Equation 5 

€ 

Wbi = exp − Binbi −100%
50%

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
2⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  

Notice that the typical normalization factor associated with 
Gaussian kernels is rendered unnecessary due to the 
inherent normalization factor included in the definition of 
WUS.  Although a kernel bandwidth of 50% is shown, other 
bandwidths or even a uniform weighting function can easily 
be substituted to accommodate specific needs. All the 
factors and values associated in the metrics based on the 
binned interval error values are listed and manipulated as 
percentages allowing for quick intuitive evaluation of the 
effective important uncertainty of any given prediction set.  
 
With this metric, a 0% WPS alone would seem to indicate 
absolute certainty in all predicted values, but this may be 
misleading. In fact, all this would indicate is that all 
predictions made are exactly the same based exclusively on 
the percent RUL of the system in question. This is why 
uncertainty is comprised of both a spread and a bias. The 
WPS metric can be used in conjunction with the WEB to 
infer the level of model uncertainty according to the 

equation:

€ 

Uncer ≈ WPS +WEB2 . This modification of 
the traditional equation for analytic uncertainty allows for 
more flexibility in defining what an appropriate value of the 
spread should be.  
 



Annual Conference of the Prognostics and Health Management Society 2013 
 

6 

Another useful criteria to think of is if the predictions do in 
fact have enough spread to cover the true RUL (i.e. 
WPS>=WEB). A more explicit and useful metric evaluating 
this coverage is the Confidence Interval Coverage (CIC) 
should also be calculated, and is discussed in the next 
section. 

3.4. Confidence Interval Coverage 

 Another important indication of the quality of a 
prediction set generated by any model is whether or not the 
confidence interval of the prediction spread covers the true 
Remaining Useful Life (RUL). This effectively incorporates 
information relating to both the error bias and the error 
variance at given points in life. This metric is simply 
defined by the total percentage of binned error sets whose 
95% confidence interval contains the true RUL. This is 
more rigorously defined in Equation 6. 
 
Equation 6 

 
 
 
 
 

This equation is interpreted as the sum number of true 
percent RUL values that are contained within their 
corresponding error bin set, and divided by the total number 
of bins and multiplied by 100 to convert to a percentage. 
This additional metric verifies the total accuracy of the 
prediction set. An optimal coverage of 100% shows that the 
true value of any prediction is contained within the 
prediction spread or approximate confidence interval of the 
prognostic model’s predictions. This when coupled with the 
previously detailed metrics gives a solid expectation of the 
accuracy and expected effective error over the total of 
system life predictions. The final vital element not conveyed 
by these metrics is the explicit end of life accuracy and 
precision. The Confidence Convergence Horizon fills this 
void. 

3.5. Confidence Convergence Horizon 

 This final standalone metric captures and quantifies 
the end of life quality of both the precision and accuracy of 
a prediction set. A 10% Confidence Convergence Horizon 
(CCH), or simply the Convergence Horizon (CH), identifies 
the percentage of system Remaining Useful Life (RUL) 
beyond which, all prediction confidence intervals are both 
less than 10% of the total system life and contain the true 
RUL. In other words, the CCH identifies a RUL prediction 
value that once reached, it and all remaining predictions of 
RUL can trusted to be no more than 10% from the true RUL 
95% of the time (assuming a 95% confidence interval was 
selected as described above). Obviously a CCH of 100% 
would be optimal, showing that all predictions within the 
query set are within less than 10% of the true values. Much 

like the other metrics, the percentage of this metric can be 
adjusted to suit the specific needs and requirements of any 
particular application. 
 Although this seems to be a rather stringent 
criterion to meet, it nonetheless, is very important. This 
horizon is a quick and intuitive identifier of the region of 
most confidence for a particular prediction set. 
Unfortunately, like any single descriptive metric, the CCH 
has the potential to be misleading if it is not considered 
along with the other metrics defined in this section. As an 
example, consider a model which predicts the RUL of a 
system within 10% during most of the system life, but due 
to an artifact of the data, exhibits an 11% bias at the very 
end of life. This model would produce a CCH of 0% as 
there is no point in time which you can trust all following 
predictions to be less than 10%. This does not however 
mean that the model produces unusable or even inaccurate 
results.  

Information from each of the listed metrics 
contains and expresses vital information required to develop 
a full understanding of the models performance, but when 
relating to potential users of an algorithm it is often 
convenient to assign a single quantitative value of 
“goodness” to a particular model and prediction set. 
Described in the following section is a method for 
developing such a single metric. 
 

3.6. Total Score Metric 

There has been proposed a sort of hierarchical ranking of 
some of the previously developed metrics [Saxena 2009]. 
To some degree, this work is able to eliminate the explicit 
need for this hierarchical system and in its place supplies a 
single aggregate scoring metric to rank the overall 
performance of a particular prognostic model’s output 
predictions. Of the metrics detailed in this paper, four in 
particular can be merged to give a singular quantitative 
value of “goodness” for a prognostic model prediction set. 
These metrics, Weighted Error Bias (WEB), Weighted 
Prediction Spread (WPS), Confidence Interval Coverage 
(CIC), and the Confidence Convergence Horizon (CCH) 
each detail a particular yet vital aspect of the total historic 
prediction produced by a given model. With this in mind, 
and given that each of these metrics have been constructed 
to be listed in similar units of percent Remaining Useful 
Life (%RUL), a simple composite of these metrics can yield 
a meaningful, accessible, and direct measure of the quality 
of a model prediction set. Equation 7 can easily be applied 
for quick quantitative comparison of multiple models’ 
prediction sets. 
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Equation 7 

  

€ 

TotalScore =
 
N *

100 − WEB
100 −WPS
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Note that in this equation, both the absolute value of the 
WEB and the WPS are subtracted from 100 to reflect that 
the minimums of these values are the desired quantities. The 
original WEB metric can be negative to indicate direction of 
bias, but when combining into an overall score, it is the 
absolute value that is of more interest. N is any normalized 
vector weighting the importance of the four metrics. For 
both simplicity, and intuitive interpretation of the resulting 
number, a simple average of the four modified metrics can 
be taken, (mathematically this results from a vector of [.25 
.25 .25 .25]). This combined metric can easily be used to 
present the performance of any predictive model out of a 
perfect score of 100%. Much like other standardized 
academic testing, this ideal score is ranked based on ideal 
performance. For nearly all real systems, 100% accurate 
predictions 100% of the time is essentially impossible, but 
this still can help to provide an intuitive ranking system 
familiar to a wide audience. Some of the model metrics 
contain similar information, this is not useless redundancy, 
but instead reflects the increased importance of these 
aspects when the metrics are combined. For example, if a 
set of model predictions exhibit 0% CIC, that prediction set 
would also by definition exhibit a 0% CCH. Coverage of the 
correct RUL within a confidence interval is one of the most 
important criteria any prognostic model should meet, so 
with the standard weighting set, the best total score the 
model could produce would be less than 50%, reflecting that 
the model has never produced correct answer. 

4. PREDICTION METRIC EXAMPLE CASES STUDIES 

To help further clarify and explain the prediction 
metrics, consider a standard pump and motor system with a 
mean failure time of about 275 operating hours with two 
common modes of failure with different mean failure times. 
Three separate simulated models were built to predict the 
Remaining Useful Life (RUL) of these motors. The first is 
based strictly on statistical conditional time based 
probability of failure. The second two are built to simulate 
more effects based modeling types. In order to compare the 
three models, each one uses a set of 100 predictions about 
similar sets of query cases and has the metrics detailed 
above applied to those prediction sets. 

Shown in Figure 1, the Model 1 prediction set for 
all 100 cases completely overlay one another. This is 
expected and due to the fact that this model’s output is 
based exclusively on the current lifetime of the queried 
system.  
 

 
Figure 1 - Model 1 RUL Predictions 

Despite the fact that each of the predictions for each 
individual case are all exactly the same, they represent 
varying percentages based on the true queried system’s 
lifetime.  This is accounted for in the calculations of the 
performance metrics shown in Figure 2. 

 
Figure 2 - Model 1 Prediction Performance Metrics 

 The most intuitive and easily understood metric on 
this figure is the Mean Absolute Error (MAE), listed as 35.1 
hours with an associated standard deviation of 26.2 hours. 
Considering that the average lifetime is 275 hours, these 
numbers present values which would easily allow for the 
rescheduling of duty cycles to accommodate maintenance or 
similar mitigating actions before the units would be 
expected to fail. The MAE gives a good basic understanding 
of how much error to expect out of the model, and is good 
for comparing models that are run against the same data set. 
However, the three example models presented here are run 
with differing query data sets. The sets are taken from 
similar sets of pump systems, but the individual units and 
their true total lifetimes are different. Although MAE could 
be used to compare these models and prediction sets 
because time units and expected average lifetimes are the 
same, the percentage-based metrics are more appropriate 
and generally informative. 

The most prominent prediction evaluation tool in 
this figure is the binned error average estimate and their 
associated 95% confidence intervals represented by the blue 
error bars. This contains the most total and useful 
information about the prediction set. These bind also are 
used to represent the other metrics as they evolve through 
time. The solid blue line is the bias at a given time; the 
error-bars represent the spread; the total number of bars 
which contain the red (true) RUL represent the confidence 
coverage. Finally, the Convergence Horizon will be 
represented as a green box in the following figures, but is 
not present in this on due to CH being equal to 0.   

From this chart it is obvious that early in life the 
model predicts the correct percentage of RUL on average, 
but also has high uncertainty, meaning it may in fact never 
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predict the exact true RUL for a particular unit. This 
inference is confirmed by examination of the end of life 
binned error as the average model prediction value departs 
from the true RUL line at around 62% of life consumed 
(38% RUL) and loses even the 95% prediction interval 
coverage at around 85% of life consumed (15% RUL). 
Because of the fact that this is a strictly time based model, 
this helps to confirm that the model is unable precisely 
predict individual systems’ RUL, instead only calculating 
the average RUL over all historic systems. Although this 
chart of binned error is useful and contains a wealth of 
information, it does require some degree of examination and 
analysis in order to compare different model sets. The other 
percentage based prediction metrics provide that analysis.  

The effective bias for this model, as calculated by 
the Weighted Error Bias (WEB) from Equation 2 is 5.86%. 
Again, this can be seen in the binned error analysis as the 
average estimation line begins to deviate from the true RUL 
line particularly near the end of life. For this system, that 
means that there is an effective average bias of about 16 
hours on average, but this does not mean that the expected 
error is 16 hours. This value, as well as the Weighted 
Prediction Spread (WPS), is considered an effective value 
because of their applied weighting function shown in the 
figure as a magenta dotted line, which allows them to be 
more effective at ranking the predictions. If for some reason, 
the more literal average values are needed, the same 
equations and metrics can be applied with a simple 
adjustment of the weighting function. This prediction set’s 
WPS is listed as 58.07% of life, reflecting the fact that there 
is a considerable amount of uncertainty associated with the 
predictions. 

The final two metrics listed are the Confidence 
Interval Coverage (CIC) and the Convergence Horizon 
(CH).  Reported at 83% and 0% respectively, these indicate 
that although the model uncertainty covers the true RUL 
83% of the time, it never continuously falls within 10 of that 
true value towards the end of the unit’s life. 

All these metrics can be combined according to 
Equation 7 in order to give this model’s prediction set a 
total ranking of 54.83% out of a possible total score of 
100%. This should not be read as an indication that the 
model’s total accuracy is around 50% or that only 50% of 
the model’s estimations are trust worthy. Instead this metric 
shows a quantitative evaluation of the model’s performance 
for this prediction set. It is a quick and relatable evaluation 
of the model’s “goodness” which can easily be used to 
compare against other models, or other prediction sets. For 
example, if Model 1 is compared to Model 2 shown in 
Figure 3, one can quickly see that Model 2 has a total 
performance score of 75.02%, much better than Model 1’s 
54.83%. 
  

 
Figure 3 - Model 2 Predictions and Metrics Evaluation 

Looking at the individual metrics, it becomes clear why this 
model is ranked better. First, it has 100% CIC with a 16.5% 
CH meaning that not only is the model more accurate 
overall, but it also shows that the accuracy improves near 
end of life. Next the effective prediction spread is 16.4% of 
life, much lower than Model 1’s WPS. Finally Model 2 has 
virtually 0% effective bias, meaning that all the predictions 
are centered on the true RUL.  
 Clearly, these metrics give a quick, effective, and 
qualitative method for comparing two different models, and 
if that were the only end goal the analysis could stop there. 
However, if there is opportunity to change and improve the 
models which created the prediction sets, then the scalar 
metrics alone may not give the complete picture. Consider 
the prediction set developed by Model 3 in Figure 4. 

 
Figure 4 - Model 3 Predictions and Metrics Evaluation 

Model 3 has a total performance score of 48.36%, indicating 
its’ performance is worse than either of the two previous 
models. In fact, the only metrics which it out performs both 
of the other models are MAE and the WPS. Unfortunately, 
these alone would not necessarily merit further 
investigations into the development of this model. However, 
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when the total binned prediction value map is investigated, 
it becomes instantly clear that by removing a small bias in 
this model, these predictions would be expected to out 
perform both of the previous models. This same conclusion 
could be inferred from the scalar metrics, but a graphical 
examination of the binned values map is both more 
expedient and informative.   

5. SUMMARY AND CONCLUSION 

The scalar metrics presented in this work help to provide 
clear and concise evaluations of the performance of 
prognostic models in a manner easily accessible and largely 
intuitive to audiences with various backgrounds and 
expertise. In order to demonstrate and visualize the 
underlying meanings of each of the metrics, three separate 
sets of predictions made from three separate simulated 
prognostic models were compared. From the results listed in 
Table 1 it is clear that Model 2 is the best performing model 
by a large margin. 
 
 
 
Table 1 – Summary of Model Comparison Results 
 Total 

Score 
MAE WEB WPS CIC CCH 

M1 54.83% 35.09 
Hrs 

5.06% 57.80% 83.0% 0% 

M2 75.02% 15.39 
Hrs 

0.03% 16.40% 100% 16.5% 

M3 46.36% 10.64 
Hrs 

3.58% 9.99% 7.0% 0% 

Further, Model 3 shows great potential for improvement via 
a simple bias removal as can be inferred from the low 
Weighted Prediction Spread (WPS) coupled with the results 
of the binned prediction value map. A quick summary of 
each metric is listed below in Table 2. 
 
Table 2 - Metrics Summary 

Metric 
Name 

Quality Aspect 
Reflected 

Units 

Mean 
Absolute  

Error  
(MAE) 

Precision 
Average distance 
from true value 

Real Time Units 

Weighted  
Error 
Bias  

(WEB) 

Timely Precision 
Scaled expected 

distance from true 
value 

Percent of Unit Life 
Weighted by Lifetime 

Importance  

Weighted  
Prediction  

Spread 
(WPS) 

Timely Accuracy 
Scaled uncertainty 
estimate associated 
with each prediction 

Percent of Unit Life 
Weighted by Lifetime 

Importance 

Confidence 
Interval  

Coverage  

Accuracy 
How often the 

estimated 

Percent of Unit Life 

(CIC) uncertainty contains 
the true value 

Confidence 
Convergence 

Horizon  
(CCH) 

Timely Accuracy 
& Precision 

What part of life can 
all remaining 

estimates be trusted 
to within 10% 

Percent of Unit 
Remaining Useful Life 

Binned 
 Prediction 
 Value Map 

Timely Accuracy 
& Precision 

Detailed 
visualization of the 

evolution of the 
prognostic 

predictions. Used to 
calculate other 

metrics 

Percent of Unit Life 

 
These novel metrics build upon natural aspects of the 
prediction data itself to create meaningful and intuitive 
representations of performance. The goal of this work is to 
learn from previously introduced metrics and create a set of 
generic metrics that can be widely used and understood in 
both academic and industrial settings. All of the metrics 
detailed in this work can be easily calculated and widely 
applied and interpreted across many cases allowing for un-
obscured, evaluation of predictions from a wide variety of 
algorithms and methodologies. The balance between case 
specific adaptability and overall standardization is an area of 
continual interest and research. This work seeks to provide a 
set of metrics that provide a level of both in a manner that is 
accessible and relatable to a wide audience to help promote 
investigation and collaboration on prognostic projects across 
many fields.  

REFERENCES 

Banks, J., J.Merenich. “Cost Benefit Analysis for Asset 
Health Management Technology”. Reliability and 
Maintainablity Symposium (RAMS), Orlando, 
Florida. 2007 

Coble, Jamie, “Merging Data Sources to Predict Remaining 
Useful Life – An Automated Method to Identify 
Prognostic Parameters,” Doctorial Dissertation, 
University of Tennessee, Knoxville TN. 2010 

Leao, B.P., J.P.P.Gomes, R.K.H.Galvaro, and T.Yoneyama. 
“How to Tell the Good from The Bad in Failure 
Prognostics”. IEEE Aerospace Conference 
Proceedings. 2010  

Orchard, M., G.Kacprzynski, K.Goebel, B.Saha, and 
G.Vachtservanos. “Advances in Uncertainty 
Representation and Management for Particle 
Filtering Applied to Prognostics”. International 
Conference on Prognostics and Health 
Management, 2008. 

Saxena, Abhinav, Jose Celaya, E. Balaban, B. Saha, S. 
Saha, and K. Goebel, “Metrics for evaluating 



Annual Conference of the Prognostics and Health Management Society 2013 
 

10 

performance of prognostic techniques”. 
International Conference on Prognostics and 
Health Management (PHM08), Denver CO, pp. 1-
17, 2008 

Saxena, Abhinav, Jose Celaya, Bhaskar Saha, Sankalita 
Saha, and Kai Goebel. "On Applying the 
Prognostic Performance Metrics." Annual 
Conference of the Prognostics and Health 
Management Society (2009) 

Saxena, Abhinav, Jose Celaya, Bhaskar Saha, Sankalita 
Saha, and Kai Goebel. “Metrics for Offline 
Evaluation of Prognostic Performance”. 

International Journal of Prognostics and Health 
Management. ISSN 2153-2648, 2010 001. April 
2010. 

Tang, Liang, Marcos E.Orchard, Kai Gobel, George 
Vachtevanos, “Novel Metrics for the Verification 
and Validation of Prognostic Algorithms”. 
Aerospace Conference 2011 IEEE, Big Sky, MT. 5 
-12 March 2011. 

 Uckun,S., K.Goebel, and P.J.F.Lucus. “Standardizing 
Research Methods for Prognostics. International 
Conference on Prognostics and Health 
Management (PHM08). Denver CO. 2008

 


