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ABSTRACT

We address the problem of online scheduling of the descent
aircraft trajectory. The problem is considered in a general
framework of the multiphase optimal control. First, we obtain
solution of this problem using traditional approach. Next, we
develop novel solution algorithm using two key components:
(i) inference of the dynamical and control variables of the
descending trajectory from the low dimensional flight profile
and (ii) solution of the resulting low-dimensional optimiza-
tion problem using efficient local search. We show that the
developed algorithm is much faster than the traditional one
and discuss its future application to the simultaneous opti-
mization of the runway throughput and the descent trajectory
for each aircraft in convective weather conditions.

1. INTRODUCTION

In the future air traffic management system, the trajectory
becomes the fundamental element of a new set of operating
procedures collectively referred to as trajectory-based oper-
ations (TBO) (Cate, 2013). The basis for TBO is that each
aircraft’s expected flight profile and time (or airspeed) infor-
mation will be specified by a four-dimensional (4D) trajec-
tory (K. H. Shish et al., 2015; Young et al., 2016; K. Shish et
al., 2016).

One of the challenges in development of the future TBO is
management of the airport congestion especially under con-
vective weather conditions (M. Kamgarpour, W. Zhang, &
C.J. Tomlin, 2011). One of the key ingredients to the so-
lution of this problem is fast online optimization of the air-
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craft descent trajectory. The difficulty in solving this problem
stems from the fact that there are multiple phases (configura-
tions) that have to be flown during descent while respecting
the system dynamics and satisfying a large number of linear
and nonlinear constraints.

The standard approach procedure involves a continuous
steady descent starting from 6,000 ft, or higher, which is fol-
lowed by a steep descent to a set of cleared altitudes and a
capture of the 3◦ glide-slope from below. The speed during
final approach is based on the reference speed, Vref , which is
calculated on the basis of reference speed for Flaps 30 (for a
specific type of the aircraft) and depends on the mass of the
aircraft.

In addition, the trajectory planning operation specifies a set of
transitions to given flaps and landing gear configurations with
corresponding reference speed. The various phases flown by
the aircraft during descent are controlled by the pilots and
involve a set of nominal actions that are required to enable
the designed vertical flight profile including e.g. capturing
the localizer and the gliding slope.

Overall, it can be seen that the flight planning problem
render itself as a complex multiphase trajectory optimiza-
tion problem subject to dynamical, path, and control con-
straints (Betts & Cramer, 1995; C. Tomlin, Lygeros, & Sastry,
2000; C. J. Tomlin, Mitchell, Bayen, & Oishi, 2003; de Jong,
2014; de Jong et al., 2015; Park & Clarke, 2016; de Jong et
al., 2017).

There are several numerical methods that can be used to ad-
dress this probl em, see e.g. surveys on trajectory optimiza-
tion (Betts, 1998; Rao, 2014). Among these methods the most
popular ones are techniques based on so-called direct meth-
ods including direct collocation (Hargraves & Paris, 1987)
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and pseudospectral approach (Fahroo & Ross, 2000). In the
direct methods, the stat e and/or control of the system are dis-
cretized in time and the problem is reduced to a nonlinear
programming problem (NLP) (Rao, 2014).

For example, one of the best known current implementa-
tions of the optimization algorithms in an experimental Flight
Management System (FMS) developed using General Pseu-
dospectral Optimization Software (GPOPS). It requires ≥ 30
sec to solve the trajectory optimization problem from the top
of descent to the runway (de Jong, 2014; de Jong et al., 2015,
2017).

We note, that future implementations of the FMS demand
continuous online estimations of the time bounds for each
phase of the flight and fast rescheduling of the flight plan in
e.g. convective weather conditions. The constraints on the
optimization time are even more strict when optimization of
the arrival time for each aircraft has to be performed simul-
taneously with the solution of the runway scheduling prob-
lem during e.g. airport congestion. These demands call for
a development of alternative fast and robust approaches to
the online solution of the multiphase trajectory optimization
problem.

Here we present a novel algorithm of the solution of this prob-
lem and compare its performance with the performance of a
conventional technique.

The proposed technique is based on the observation that
during several minutes of the flight along the final ap-
proach trajectory the aircraft has to attain several flight
phases/configurations each of which has strict bounds on the
distance, altitude, and speed of the aircraft. This allows one
to reduce the complexity of the problem by parameterizing
the aircraft altitude and velocity profiles with minimum num-
ber of parameters. These parameters – locations of the phase
transition points – are the key decision variables of the re-
duced NLP.

Figure 1. The aircraft forces and angles during vertical flight
with nonzero climb rate.

The resulting algorithm is robust and allows fast online mul-
tiphase optimization of the vertical landing trajectory. It also
paves the way to the simultaneous optimization of the landing
trajectory for each aircraft and the runway throughput.

The paper is organized as follows. In the next section we pro-
vide the formulation of the multiphase vertical trajectory op-
timization problem. In Sec. 3 we analyze the solution of this
problem using General Pseudospectral Optimization method.
In Sec. 4 we describe novel algorithm and its application to
the optimization of the final approach to a runway in San
Francisco airport. Finally, in Conclusions we summarize the
obtained results and discuss future applications of the algo-
rithm.

2. OPTIMIZATION OF THE VERTICAL TRAJECTORY

The goal of the landing trajectory optimization is to design
a trajectory that minimizes (or maximizes) some measure of
the aircraft performance while satisfying a set of constraints.
This problem can be conveniently formulated as an optimal
control problem (Betts, 1998).

In the latter case (Betts, 1998; Zhao, 2012) we are given the
initial and final states x0, xf of the system and initial time
t0 and the problem is to determine the final time tf , the con-
trol input u(t) and the corresponding state history x(t), which
minimize the cost functional J [x(t), u(t)] and satisfy a set of
dynamical equations set of equality and inequality constraints
and set of bounds on control and dynamical variables. In
the case of multiphase optimal control problem the dynami-
cal equations, constraints, and bounds are introduced for each
phase of the flight.

2.1. Model Equations

The state of the aircraft during descent in the vertical plane
(see (Miquel & Suboptimal, 2015) and Figure 1) is defined
in our model as

x = {V, γ, x, h}, (1)

where V is the speed, γ is the flight path angle, h is the alti-
tude, and x is the distance to the runway.

The aircraft control is represented by two virtual control in-
puts: thrust T and the angle of attack α.

u = {α, T}. (2)

The set of model parameters p describes the deflection of the
flaps δfl and spoilers δsp and the gear settings δlg .

To simplify analysis without loss of generality we neglect the
wind and the mass change due to the fuel burned. The result-
ing model takes the form

mV̇ = T cosα −D −mg sin γ,
mV γ̇ = (T sinα + L) −mg cos γ,

(3)
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ẋe = V cos γ,

ḣe = V sin γ ,
(4)

We note that the actual control variable is the pitch rate.
However, due to time separation between slow and fast air-
craft dynamics, the angle of attack α is considered to be vir-
tual control input (Lombaerts, Schuet, Wheeler, Acosta, &
Kaneshige, 2013; Schuet, Lombaerts, Acosta, Wheeler, &
Kaneshige, 2014).

The lift L and drag D coefficients in the model are

D =
1

2
ρV 2S

(
CD0 + CDαα+ CDα2α

2+

CDδsp
δe + CDfl

δfl + CDlg
δlg

)
,

L =
1

2
ρV 2S

(
CL0

+ CLα
α+ CLδsp

δsp+

CLfl
δfl + CLlg

δlg
)
.

(5)

where ρ is the air density, S is the net wing surface area, and
Ci are the non-dimensional aerodynamic aerodynamic force
coefficients.

2.2. Problem formulation

Formally, the descent trajectory optimization requires the fol-
lowing problem to be solved (Betts & Cramer, 1995; C. Tom-
lin et al., 2000; C. J. Tomlin et al., 2003; Becerra, 2010; de
Jong, 2014; Patterson & Rao, 2015; de Jong et al., 2015,
2017). Find the control trajectories, u(i)(t), t ∈ [t

(i)
0 , t

(i)
f ],

state trajectories x(i)(t), t ∈ [t
(i)
0 , t

(i)
f ], static parameters p(i),

and time t
(i)
f that minimize the following performance in-

dex (Becerra, 2010):

J =

Np∑
i=1

(
φ(i)

[
x(i)(t

(i)
f ), p(i), t

(i)
f

]
+

∫ t
(i)
f

t
(i)
0

L(i)
[
x(i)(t), u(i)(t), p(i), t

]
dt

) (6)

subject to the dynamical constraints:

ẋ(i)(t) = f (i)
[
x(i)(t), u(i)(t), p(i), t

]
, t ∈ [t

(i)
0 , t

(i)
f ], (7)

the path constraints

h
(i)
L ≤ h(i)

[
x(i)(t), u(i)(t), p(i), t

]
≤ h

(i)
U , (8)

for t ∈ [t
(i)
0 , t

(i)
f ], the event constraints:

e
(i)
L ≤ e(i)

[
x
(i)
0 , u

(i)
0 , x

(i)
f , u

(i)
f , p(i), t

(i)
0 , t

(i)
f

]
≤ e

(i)
U , (9)

the phase linkage constraints:

Ψl ≤ Ψ[x
(1)
0 , u

(1)
0 , x

(1)
f , u

(1)
f , p(1), t

(1)
0 , t

(1)
f

...

x
(Np)
0 , u

Np)
0 , x

Np)
f , u

(Np)
f , p(Np), t

(Np)
0 , t

(Np)
f ] ≤ Ψu

(10)

where x
(i)
0,fx

(i)(t
(i)
0,f ) and u

(i)
0,fu

(i)(t
(i)
0,f )

the bound constraints:

u
(i)
L ≤ u(i)(t) ≤ u

(i)
U , t ∈ [t

(i)
0 , t

(i)
f ]

x
(i)
L ≤ x(i)(t) ≤ x

(i)
U , t ∈ [t

(i)
0 , t

(i)
f ]

p
(i)
L ≤ p(i) ≤ p

(i)
U ,

t(i)0 ≤ t
(i)
0 ≤ t̄

(i)
0 ,

t(i)f ≤ t
(i)
f ≤ t̄

(i)
f ,

(11)

and the time constraints:

t
(i)
f − t

(i)
0 ≥ 0. (12)

In each phase functions and variables in (6)-(11) have appro-
priate dimensions that may change from phase to phase.

The corresponding dynamical and control variables and the
dynamical constraints (dynamical equations) are defined for
our model in the previous subsection. Index i = 1, ..., Np

runs through the number of phases, which are defined to-
gether with the corresponding bounds on the dynamical and
control variables in the following subsections.

2.3. Flight phases

The following problem will be considered. Optimize the final
approach trajectory using objective function (6) for the de-
scending flight between CEPIN and the stabilized approach
fix (500 ft) of the runway (RWY) 28R in San Francisco air-
port (SFO). The phases included into the analysis are shown
in the Table 1.

This simplified schedule (in a sense that it does not involve
pilot - air traffic control interaction) was developed by taking
into account standard requirements for the aircraft descent to
the given runway, see e.g. (Prats et al., 2014). In development
of this schedule it was assumed that the localizer (LOC) sig-
nal extends 18 nm away from and 4500 ft above the antenna
site (see e.g. FAA-S-8081-9B, June 2001). It was also as-
sumed that the glide slope capture is initiated 2 ÷ 0.75 nm
away from DUMBA in a level flight. In addition, only con-
tinuous descent operations were considered, increase of the
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acceleration and altitude during descent were excluded from
this optimization test.

A number of optimization problems can be formulated within
this framework. The critical parameters of interest during air-
port congestions are earliest and latest time of arrival. A pa-
rameter of common interest is fuel consumption. In this work
we were primarily interested in scheduling transitions times
between various descent phases and estimation of the earliest
and latest transition time for each phase.

Table 1. Phases included into the first test. Here ARCHI, AX-
MUL, CEPIN, DUMBA, GIRRR, and ZILED are the names
of the waypoints near San Francisco airport (SFO).

# Name ALT (ft) DST (nm) SPD (kn)

1 initial
state 10000 29 230

2
Descent
to
ARCHI

8000 ≤ h
≤ 10000

29 ≤ x ≤
ARCHI

175 ≤ V
≤ 230

3
Descent
to
ZILED

6000 ≤ h
≤ 10000

ARCHI
≤ x ≤
ZILED

175 ≤ V
≤ 230

4 Flaps5 5000 ≤ h
≤ 10000

ZILED
≤ x ≤
GIRRR

175 ≤ V
≤ 230

5 LOC
capture

4000 ≤ h
≤ 4500

GIRRR
≤ x ≤
DUMBA

175 ≤ V
≤ 230

6 Flaps15 1800 ≤ h
≤ 4500

DUMBA
≤ x ≤
CEPIN

165 ≤ V
≤ 215

7 Flaps20 1800 ≤ h
≤ 4500

CEPIN
≤ x ≤
AXMUL-2

165 ≤ V
≤ 195

8 Gear
down

1800 ≤ h
≤ 4500

AXMUL-3
≤ x ≤
AXMUL

165 ≤ V
≤ 195

9 GS
capture

1800 ≤ h
≤ 2000

AXMUL-2
≤ x ≤
AXMUL+1

165 ≤ V
≤ 195

10 Flaps25 DST ×
tn(γ±δγ)

AXMUL ≤
x ≤ AX-
MUL+3

155 ≤ V
≤ 185

11 Flaps30 DST ×
tn(γ±δγ)

AXMUL+2
≤ x ≤FIX

150 ≤ V
≤ 170

12 stabilized
appr fix 446 1.4 150

We will now consider solution of this problem using tradi-
tional technique and a freely available package GPOPS (Rao
et al., 2010)

3. EXAMPLE OF NUMERICAL SOLUTION USING
GPOPS

The GPOPS package is easy to install and to use. It was
shown to perform well for multiple aerospace applications in-
cluding optimization of the descent aircraft trajectory at Na-
tional Aerospace Laboratory (Netherlands). We have chosen
this package for the evaluation of the traditional technique

of the solution of the scheduling problem. We have initially
chosen a subset of phases from the Table 1 because the con-
vergence of the algorithm was slow.

Here we provide an example of optimization for descending
trajectory with the following five phases

1. flaps 15 gear up; V (1)
max = 215 kn; V (1)

min = 95.3 kn;

2. flaps 15 gear down; V (2)
max = 215 kn; V (2)

min = 95.3 kn;

3. flaps 20 gear down; V (3)
max = 195 kn; V (3)

min = 91.1 kn;

4. flaps 25 gear down; V (4)
max = 185 kn; V (4)

min = 87.5 kn;

Note, that the method allows for many different types of ob-
jective function (Rao et al., 2010). For example, the final
altitude in each phase could be minimized or maximized us-
ing functions similar to (14) and (15) and substituting time t
with altitude h.

Alternatively, to minimize the total mechanical energy to fly
along a given path the objective function can be chosen as

J =
∑
i

∫ t
(i)
f

t
(i)
0

V (t) · T (t) dt. (13)

In the present analysis the objective function of the optimiza-
tion (the performance index in Eq. (6)) was chosen to mini-
mize

J = t
(1)
f + t

(2)
f + t

(3)
f + t

(4)
f + t

(5)
f (14)

or maximize

J = −(t
(1)
f + t

(2)
f + t

(3)
f + t

(4)
f + t

(5)
f ) (15)

transition times between phases.

The dynamical constraints in each phase t ∈ [t
(i)
0 , t

(i)
f ] with

i = 1, ..., 5 (cf Eq. (7)) were given by

mV̇ = T cosα −D −mg sin γ,
mV γ̇ = (T sinα + L) −mg cos γ,
ẋe = V cos γ,

ḣe = V sin γ,

Ṫ = (Tc − T )/τT ,

(16)

Here Tc is the control value of the thrust and the τT is the
characteristic scale The bounds on the aircraft speed in each
phase were given by V

(i)
max and V

(i)
min listed above for each

flaps configuration.

The results of the minimization of transition times for four
phases are shown in Figure 2. It can be seen from the figure
that transitions to the configurations gear down, flaps 20 and
25 occur as soon as velocity of the aircraft approaches the
corresponding limiting value. The flight path angle γ stays
close to the lower bound corresponding to the fast descent.
The convergence time was found to be very sensitive to the
parameters of the problem and varies between 10 and 50 sec.
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Figure 2. Minimization of transition times for descending
trajectory with 4 phases. The figures show the dependence
of dynamical variables of the system on time: (a) Velocity;
(b) γ; (c) distance; (d) Altitude; (e) Thrust; and (f) Angle of
attack. Different colors indicate different phases of the flight
and correspond (left to right) to phases (i) to (iv).

The convergence time for maximization problem can vary be-
tween 50 and 300 sec and the convergence is not robust. We
note that the best reported performance of the optimized im-
plementation of the multiphase pseudospectral algorithm (de
Jong, 2014) in C++ using PSOPT package was 30 sec for the
whole descent and final approach trajectory.

We therefore conclude that although GPOSP package is po-
tentially very useful for trajectory optimization at present it
can only be used for off-line applications. To enable fast on-
line optimization of the multiphase descending trajectory we
propose a novel algorithm, which is considered in the next
section.

4. FAST MULTIPHASE OPTIMIZATION ALGORITHM

Before we introduce the algorithm, let us provide some es-
timations for the final ILS approach to RWY 28R at SFO.
The starting point of our analysis is the transition from fast to
slow deceleration, which may normally happen at the flight
level FL100 (10000 ft) and speed VCAS ≤ 250 kn.

According to the ”3:1 rule of descent” this transition point
is located ∼33 nm from the runway. The final state of the
aircraft in our analysis is the state of stabilized approach. At
the point of stabilized approach the aircraft speed should be
∼140 kn and the altitude is ∼500 ft. So during the descent

the altitude and speed are reduced by approximately 330 ft
and 3.3 kn per each nautical mile.

In addition, the aircraft has to capture the 3◦ gliding slope
from below at the altitude approximately 1800 ft and distance
∼5.5 m from the runway, which translates into ∼740 ftm ver-
tical speed at the ground speed 140 kn.

The flight plan normally should also accommodate a number
of actions including: (i) localizer intercept; (ii) setting a se-
quence of flaps configurations; (iii) deploying landing gear;
(iv) capturing gliding slope; (v) initiating flare; (vi) changing
to touchdown phase. All this actions set additional constraints
on the flight profile. Note that there can also be multiple air
traffic control (ATC) corrections (constraints) to the normal
approach procedure that have to be included into the flight
profile.

The large number of phases (aircraft configurations), dynami-
cal constraints, and bounds on the control and dynamical vari-
ables render trajectory optimization a complex multiphase
optimization problem, see Table I with 14 phases defined
in (de Jong, 2014; de Jong et al., 2015, 2017).

On the other hand, we see that a large number of phases
must be accommodated on relatively short distance along the
descending path. This fact can be used to substantially re-
duce the dimensionality of the problem by approximating
segments connecting neighboring transition points with low
degree polynomials (in particular, straight lines). This as-
sumption also agrees with the results of the optimization ob-
tained using GPOPS code, see Figure 2 and compare with
results of (de Jong, 2014; de Jong et al., 2015, 2017).

4.1. Brief description of the algorithm

Using this approximation we introduce the following algo-
rithm:

1. specify desired phases/configurations of the descent
flight, including initial and final stat;

2. determine bounds on the altitude (ALT), distance (DST),
and speed (SPD) in each phase;

3. if desired impose non-increasing constraints on speed
and altitude;

4. choose arbitrary location of the phase transitions in terms
of (ALT, DST, SPD) that satisfy given constraints, i.e. at
the centers of the constraint boxes, see Figure 5;

5. build an approximation to the flight path by connecting
phase transition points;

6. use obtained flight profile and the corresponding config-
urations to reconstruct full dynamical trajectory and con-
trol variables of the aircraft along the descent path;

7. calculate desired cost function (e.g. arrival time);
8. modify location of transition points according to the

search algorithm;
9. stop if converged or go back to step 5
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Once the phases of the flight and bounds on the flight profile
are defined (see Table 1) the core optimization steps of the
algorithm can be described as follows.

4.2. Approximation of the flight path

At the first optimization step an approximation to the vertical
flight profile (the altitude and speed as functions of the dis-
tance) is constructed by interpolation of the transition points.
We note that the distance between these points is only a few
miles and the piece-wise linear approximation appears to be
quite satisfactory. This approximation is also consistent with
the solution obtained by conventional technique, cf. results of
(de Jong, 2014; Adler, Bar-Gill, & Shimkin, 2012; de Jong et
al., 2015) and discussion in Sec. 3.

An important advantage of this approximation is that the re-
sulting NLP has minimum complexity. Indeed, in our ap-
proach the vector of the decision variables includes only
speed, amplitude, and distance at the phase transition points.
For comparison, in the traditional approach the vector of the
decision variables includes both dynamical and control vari-
ables at every time step. And each pair of the phase transition
points is connected by several time steps. Accordingly, the
complexity of the proposed algorithm is at least an order of
magnitude lower than in the traditional approach.

The accuracy of the approximation of the vertical flight pro-
file can be further improved by introducing e.g. cubic inter-
polation of the phase transition points as shown in the Figure
3. It can be seen from the figure that both approximations are
very close to each other and the piece-wise linear version was
adopted for further analysis.

Only continuous descent and continuous deceleration trajec-
tories are considered in this work. If speed or altitude of the

Figure 3. Vertical flight profile obtained by interpolation of
the phase transition points: linear interpolation (solid black
lines); cubic interpolation (dashed blue lines). Color shaded
boxes show bounds on the speed, altitude, and distance intro-
duced in the Table 1.

Figure 4. Aircraft dynamics reconstructed from the flight pro-
file defined as h(x) and V (x): (a) α(t) and γ(t); (b) V (t); (c)
γ̇(t) and V̇ (t) (d) T (t) - thrust, D(t) - drag, and L(t)−W -
lift minus weight; (e) flaps and landing gear configuration.

aircraft attends local maxima or minima during the descent
the algorithm will have to be modified accordingly.

Using linear approximation of the flight trajectories connect-
ing phase transition points the dimension of the optimization
problem is reduced to

(Ntr − 1)×Dtr. (17)

Here Ntr is the number of the phases transition points and
Dtr is the dimension of each transition point (e.g. distance,
altitude, speed). In this formulation the decision variables are
the locations of the phase transition points.

Furthermore, using this approximation one can avoid dynam-
ical constraints all together by reconstructing all the dynami-
cal and control variables from the piece-wise linear approxi-
mations of the flight profile.

4.3. Inferring descent trajectory from the vertical profile

To infer the model dynamics from the flight profile we notice
that eqs. (3) and (4) can be rewritten in the form

u′ = 1
m cos γ (T cos α− ρSuCD −D −W sin γ)

γ′ = 1
2mu cos γ (T sin α+ ρSuCL −W cos γ)

h′ = tan γ ,

(18)

using transformation

dx = V cos(γ)dt (19)

and introducing distance x as a new independent variable
along the flight path (Vinh, 1981). In eqs. (18) W = mg,
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u is the specific kinetic energy V 2

2 and the prime refers to
derivative with respect to x, e.g. h′ = dh/dx.

Since V and h are known along a given flight profile, thrust
T , angle of attack α, and flight path angle γ can be found as
functions of distance using eqs. (18) and then as functions of
time using Eq. (19). The results of calculations are shown
in Figure 4. In this example the flight profile corresponds to
the spline approximation of the initial guess of the trajectory
corresponding to the location of transition points shown by
the open gray circles in Figure 5.

It can be seen from the figure that all the dynamical and
control variables can be successfully inferred from the given
flight profile. The obtained results allow one to avoid colloca-
tion methods (Hargraves & Paris, 1987) of dynamical trajec-
tory optimization and obtain online solutions to the problems
of primary interest for aircraft descent operations including
minimization of additional drag and thrust during descent,
and enforcing required time of arrival.

To solve these problems we have to combine the algorithm,
outlined above, with the optimization algorithm for the loca-
tion of the transition points.

4.4. Fast optimization algorithm

Using piece-wise linear approximation to the flight profile
discussed above, we reduce the problem of multiphase op-
timization of the descent trajectory to the following standard
NLP:

Figure 5. Bounds on the location of the events obtained us-
ing Table 1 are shown by colored transparent parallelepipeds
in 3D space (V - SPD, x - DST, h - ALT). The initial loca-
tion of the events is shown by open gray green squares (con-
nected by green dashed line) located at the centers of the par-
allelepipeds. The optimal solution is shown by the open blue
circles connected by the solid blue line.

minimize
x

f(x) (20)

subject to equality and inequality constraints and bounds on
the dynamical variables in the form

gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , n,

A · x ≤ b,

Aeq(x) ≤ beq,

lb ≤ x ≤ ub.

(21)

Here vector of decision variables x has dimension Ntr ×Dtr

number of phase transition pints times dimension of each
point because we allowed for the variation of the initial state.

The performance index (cost function) f(x) can have many
different objectives. In the context of the descent trajec-
tory optimization the most common objectives are minimiza-
tion of the fuel use (∼ minimum thrust) and required time
of arrival (RTA) for maximum throughput of a given run-
way/airport.

In this work we do not consider the change of the phases or-
der. The phases order will be fixed as shown in the Table 1. To
enforce the phase order and no-climb, no-acceleration condi-
tions we use inequality constraints in the form

Aeq · x ≤ beq, (22)

where x is the vector of decision variables {x1, . . . , xtr, h1,
. . . , htr, V1, . . . , Vtr}, and the block-bidiagonal matrix Aeq is

Aeq =


−1 1 0 . . . 0
0 −1 1 . . . 0

. . .
0 . . . 0 −1 1

 .

By setting vector beq to zero we ensure that values of the dis-
tance x, altitude h, and speed V at a given step are no larger
than the corresponding values at the preceding step.

Bounds and the initial guess of the trajectory are shown in
Figure 5. It can be seen from the figure that bounds on the
speed and altitude of the phase transition points can be both
disconnected and overlapping. It can also be inferred from the
figure that the initial guess of the descending trajectory was
obtained as a set of locations at the centers of the bounding
boxes.

In the first test we choose minimization of thrust as the objec-
tive of the problem:

f(x) =

∫ xf

x0

T 2(x) dx. (23)

The solution of the NLP problem in Eqs. (21) - (23) was ob-
tained using a number of optimization solvers including lo-
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Figure 6. Aircraft dynamics obtained as the result of opti-
mization of the descending trajectory using local IPM solver:
(a) α(t) and γ(t); (b) V (t) and ḣ(t); (c) γ̇(t) and V̇ (t) (d)
T (t) - thrust, D(t) - drag, and L(t)−W - lift minus weight;
(e) flaps and landing gear configuration; (f) speed and altitude
as functions of the distance.

cal search based on the interior-point method (IPM) (Byrd,
Gilbert, & Nocedal, 2000), and global solvers such as genetic
algorithm and pattern search (MATLAB Optimization Tool-
box, 2016).

The best results were obtained using the local search based
on the IPM as shown in Figure 6. It can be seen from the fig-
ure that optimized values of the thrust are indeed very small,
cf. Figure 4. The corresponding variations of the flight path
angle are also small, see Figure 6(a). In addition, it can be no-
ticed from the figure (f) that the optimal vertical descent path
is a smooth trajectory respecting the constraints. All these
features are expected to be the main features of the descent
trajectory with minimum thrust.

We note that the vertical velocity is above 1000 ft/min for
most time during descent. This is a quite high value and ad-
ditional nonlinear constraints

| V · sin(γ) |≤ 700ft/min (24)

may have to be imposed to keep vertical speed within prede-
fined limits.

Importantly, the convergence of the local search algorithm
was consistently less than 5 sec. This result may suggest that
there exist some strong, albeit hidden, convex properties of
the objective function.

For comparison, the convergence of the global search algo-
rithms (genetic algorithm and pattern search) was slow. De-
spite long convergence time the thrust found by the global

search algorithms was much larger than the one described
above. This fact also indicates that the cost function has
strong convex property.

Some insight into the properties of the cost function can be
gained by rewriting it in the form (keeping terms ∼ α2, γ2)∫ tf

t0
T 2(t) dt =

∑Ntr−1
i=1 ∆ti

[(
mV̇ +W γ

)
−ρgS (Vi+δV )2

2 +
((

C̃L

2 − CDα

)
α

+
(

CLα

2 − CDα2

)
α2

)
− C̃D +W α

2

]2
,

(25)

where Vi are the mean value of speed in each phase, δV are
the speed variations around the mean value, C̃L = CD0

+
CDfl

δfl + CDlg
δlg , and C̃D = CL0

+ CLfl
δfl + CLlg

δlg .

From the Eq. (25) one can conjecture that the cost function is
convex with respect to “hidden” optimization variables α and
δV during the time interval ∆ti corresponding to each phase.
In addition, it is expected that there is a smooth continuous
dependence of the thrust on the location of the boundaries of
each phase. However, the vector of decision variables has 36
components and the full analysis of the convex properties of
the cost function is beyond the scope of this work and will be
considered elsewhere.

In this work we were primarily concerned with estimation of
the earliest and latest transition times for each phase of the
flight and accordingly the earliest and latest arrival times. To
find these estimations the cost function was chosen as

Cost =

Ntr−1∑
i=1

∆ti

Figure 7. The results of the minimization (dashed lines) and
maximization (solid lines) of the required time of arrival. The
notations are the some as in Figure 6.

8



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017

to minimize arrival time and in the form

Cost = −
Ntr−1∑
i=1

∆ti

to maximize it.

The solutions of the corresponding optimization problems is
shown in Figure 7. The obtained arrival times satisfy all
the constraints and are in the interval 484 ÷ 600 sec. The
time windows for the pilot actions during the descent are
most clearly seen in the Figure 7 (e) as the time intervals be-
tween the solid and dashed lines indicating transitions to the
new flaps and landing gear configurations. The correspond-
ing changes in the flight profile can be observed in the Fig-
ure 7 (f). It can be seen from the figure that the shortest time
corresponds to a more steep descent and a larger speed along
the whole profile and quantify the intuitive idea that the air-
craft speed during the descent is the key scaling factor for the
time windows of allowed pilot actions.

We note that these results were obtained without constraints
on the vertical speed of the type (24). It is expected that con-
straints will reduce the allowed time windows for pilot actions
and for the arrival time.

5. CONCLUSIONS

We analyzed the problem of scheduling of the descent and ap-
proach of commercial aircraft. The problem was formulated
as a general multiphase optimal control problem.

To evaluate the standard approach to the solution of this prob-
lem we used Matlab package GPOPS based on the pseu-
dospectral optimization method. We considered simplified
scheduling problem with 4 phases due to different flaps and
landing gear configurations. It was shown that the pack-
age can solve complex multiphase problems in general form.
However, its online applications are at present limited by slow
convergence time.

To solve the full optimization problem online we proposed
novel fast algorithm of scheduling and optimization of the de-
scent trajectory that reduces the original multiphase optimal
control problem to the standard NLP problem of low dimen-
sion. It was shown that the dimension of the optimization
problem can be reduced by

• using algorithm of reconstruction of the full set of dy-
namical and control variables along the descent path
from a low-dimensional vertical and speed profiles;

• avoiding collocation methods of dynamical trajectory
optimization;

• choosing the location of the phase transition points as the
decision variables;

• approximating flight paths connecting transition points
by low-dimensional polynomials.

We note that similar algorithm can be applied to the optimiza-
tion of the lateral aircraft trajectory.

An additional advantage of the proposed algorithm is the abil-
ity to include pilot actions during descent (such as captur-
ing LOC and glide slop, changing flaps and gear configura-
tion, establishing stabilized approach configuration, initializ-
ing FLARE and touchdown etc.) directly into the flight plan.

Preliminary testing of the algorithm shows promising results
for the future online applications. In particular, the proposed
approach paves the way to a development of a general op-
timization algorithm that combines optimization of arrival
times of individual aircrafts with the optimization of runway
throughput under e.g. convective weather conditions.

Possible limitations of the proposed scheme are related to its
reliance on the convex property of the cost function. The lat-
ter property may break down when non-continuous descent
operations are considered, i.e. when the aircraft is expected
to accelerate or climb during the final approach. A more de-
tailed analysis of such cases is deferred to the future work.

6. NOMENCLATURE

ALT - altitude; ATC - air traffic control; CAS - calibrated
airspeed; DST - distance; FL - flight level; FMS - flight man-
agement system; GPOPS - general pseudospectral optimiza-
tion software; GS - gliding slope; LOC -localizer; NOMAD
- Nonlinear Optimization by Mesh Adaptive Direct Search
(software); OPTI - OPTimization Interface Toolbox; PSOPT
- pseudospectral optimal control software package; RTA - re-
quired time of arrival; RWY - runway; SFO - San Francisco
Airport; SPD - speed; TBO - trajectory based optimization.
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