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ABSTRACT 

A rigorous methodology is presented for both specification 
and verification of prognostic algorithm performance.  The 
prognostic algorithm specification statement takes the 
form, “The prognostic algorithm shall provide a minimum of 
<TTM> hours time-to-maintenance such that between 
<Lower>% and <Upper>% of failures of component ABC 
will be avoided with <Confidence>% confidence.” The 
methodology is developed first for a single failure mode case 
and then extended to the multiple failure mode case.  The case 
of non-prognosable failure modes is also considered.  Finally, 
implications of this approach are presented, including pre-
tabulation of confidence bounds, estimation of the minimum 
amount of data required to reach a given verification 
confidence, and a method for using a minimum confidence 
growth curve to account for initial low confidence in a 
prognostic algorithm. 

1. INTRODUCTION 

The goal of prognostics is to predict the time to failure (or 
similar measures, such as remaining useful life or time to 
maintenance) of a component or system.  These predictions, 
when incorporated into an overall maintenance concept of 
operation, may provide several benefits, such as increased 
mission reliability and system availability, optimized spares 
positioning, and enhanced reliability centered maintenance 
(Massam & McQuillan, 2002). 

At the earliest stages of design, these goals are documented 
as requirements.  Typically, requirements statements are first 
developed at a higher (system) level, then flowed down to 
lower sub-systems and, potentially, individual components.  
As the requirements are developed at the lower tiers, they 
tend to become more specific and, thus, independently 
verifiable.  Early work in writing requirements for prognostic 
algorithms relied on basic measurements such as the 
confidence interval at standard mean time to failure 
prediction (Kacprzynski et al., 2004), average bias and 
precision (Roemer, Dzakowic, Orsagh, Byington, & 

Vachtsevanos, 2005), and minimum time to prediction and 
minimum improvement of the service interval over legacy 
methods (Line and Clements, 2006). 

More recently, several performance criteria for Prognostics 
and Health Management (PHM) have been developed, as 
documented in (Saxena et al., 2008), (Leao, Yoneyama, 
Rocha, & Fitzgibbon, 2008), and (Wheeler, Kurtoglu, & Poll, 
2010). These criteria, though, are usually used as a means of 
measuring the performance of a prognostic algorithm, often 
in relation to other algorithms (say, for example, to determine 
the ‘best-performing’ algorithm out of a set).  While these 
performance measures could, potentially, be used as the basis 
for a requirement (Tang, Orchard, Goebel, & Vachtsevanos, 
2011), there are two issues with this approach.  First, there 
are not currently accepted performance thresholds related to 
these measures (particularly for fielded systems).  Second, 
most of these measures require knowing the true state of 
health of the component being analyzed, or at least the true 
time of failure.  In many fielded systems, it is not acceptable 
to let a component run to failure, and not cost effective or 
accurate to determine the remaining life of a component 
removed before failure. 

Often, the data that will be available for verification will be 
(1) how many instances of a component (across a fleet, for 
instance) were replaced and (2) of those, how many failed 
before they were replaced (as opposed to how many were 
replaced based on a time-to-maintenance prediction).   

Due to the inherent uncertainties associated with prognostic 
algorithms, the remaining useful life prediction is typically 
given as a probability distribution around a mean predicted 
time to failure.  Instead of trying to characterize and verify 
the shape of the predicted failure pdf, this paper uses a 
threshold requirement (i.e., “capture 95% of all failures”) as 
a starting point for verification. 

This document addresses two main issues of verification of 
prognostic algorithms. First, Section 2 discusses what a 
meaningful and verifiable prognostic requirement statement 
must include.  Then, Section 3 provides a statistical approach 
to verifying such a requirement by considering the case of a 
single failure mode.  Section 4 extends the analysis presented 
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in Section 3 to the case of multiple failure modes, both 
prognosable and non-prognosable.  Finally, Section 5 
discusses some of the real-world implications of this 
verification approach. 

2. PROGNOSTIC REQUIREMENT STATEMENTS 

A primary issue with verifying prognostics algorithms is 
formulating a proper prognostic requirement statement.  
“Proper” in this sense means that the requirement is 
verifiable, which implies that the data needed to verify it can 
realistically be acquired.  Unfortunately, the data most likely 
to be available is rather limited.  In the normal course of 
developing a component, the design, analysis, and perhaps 
“lab data” will be useful for determining such things as 
average failure distributions, failure modes and probabilities, 
and potential precursor signals of failures.  While helpful in 
designing the prognostic algorithm itself, this type of data 
will usually not be useful in verifying the algorithm.  In 
practice, the data available for verification will be 
maintenance data, such as how long a component has been in 
service, how many times a component has been replaced, 
how many times it has failed, etc. 

Consider the example of a flight control surface actuator such 
as an electro-mechanical actuator (EMA).  Suppose a 
prognostic technique has been developed for this EMA that 
gives a time-to-maintenance (TTM) indication based on 
measured performance.  Further, assume that maintenance is 
planned based on the prognostic indication.  That is, the part 
is replaced when indicated, even if it has not failed.  In an 
ideal world, once removed, the part would be analyzed to 
determine how much useful life remained in the component.  
Although the component could conceivably be placed in a 
test bench and operated until failure, doing so would not be 
economically feasible (not to mention issues such as 
recreating realistic flight conditions and load profiles).  
Instead, the part will most likely be repaired, recertified and 
placed back in the supply chain (or discarded).  However, as 
mentioned before, there is some data available for 
verification:  the number of times that EMA has been 
removed and whether or not it had failed in place before being 
removed (i.e., when the prognostic algorithm fails to give a 
maintenance time before failure).  Note that these counts can 
be aggregated across all aircraft in a squadron (for example) 
to provide a statistically significant sample. 

In addition to having reasonable access to the requisite data, 
the prognostic requirement statement must be written in such 
a way that it has an interpretation that is not ambiguous.  To 
demonstrate some of the ambiguities that can arise with 
interpretation, an initial attempt at a prognostic requirement 
will be given and then refined as needed. 

1st attempt: The prognostic algorithm shall provide a time-to-
maintenance such that at least 95% of failures of component 
XYZ will be avoided. 

As will be shown, there are several problems with this 
statement.  First, there is no minimum bound on the time to 
failure of the prediction.  Simply declaring “Component XYZ 
will fail in five minutes” (or some other arbitrarily short time) 
technically satisfies the requirement, but is practically 
useless.  This minimum time to failure declaration 
requirement often stems from an analysis of the minimum 
useful notification, based on factors such as the lead time to 
procure a replacement component and how often the 
prognostic algorithm will be run.  So, a second attempt is 
made:  

2nd attempt: The prognostic algorithm shall provide a 
minimum of 20 hours time-to-maintenance such that at least 
95% of failures of component XYZ will be avoided. 

This attempt at a requirement statement at first glance may 
appear adequate (and, indeed, it is close), but as will be 
shown more clearly in the next section, there are still two 
problems with it – the confidence in the prediction and 
protection against ‘overly conservative’ predictions.  In the 
next section, the verification approach will be presented as 
well as further refinements on the requirement statement to 
address these issues. 

3. VERIFICATION APPROACH 

It is important to understand that this verification technique 
is not trying to determine how well the prognostic algorithm 
is determining the actual remaining useful life distribution of 
a component.  In fact, the prognostic algorithm does not even 
need to explicitly calculate the remaining life distribution.  
Rather, this approach to verification is based off the “avoid 
95% of failures” portion of the requirement statement.  
Specifically, this approach evaluates whether the time-to-
maintenance value (which the prognostic algorithm does 
provide) is adequately avoiding the specified percentage of 
failures. 

The basic idea behind this approach is the expectation that the 
prognostic algorithm is, in fact, expected to “miss” a small 
percentage of failures.  In the example requirement 
statements given in Section 2, an algorithm that satisfies the 
requirement will avoid at least 95% of failures; conversely, it 
will miss at most 5% of failures.  So out of 100 replacements, 
the component can be expected to fail about 5 times.  If the 
maintenance records indicate that there were actually 25 
failures, the algorithm is probably not meeting the 
requirement.  The rest of this section attempts to apply 
statistical theory to this approach to better quantify the 
confidence that the algorithm is meeting the stated 
requirement. 

3.1. Assumptions 

The following assumptions are made throughout the rest of 
this section. 
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1. The prognostic algorithm being verified provides a 
minimum time-to-maintenance that satisfies the 
minimum time constraint of the requirement statement. 

2. Maintenance actions are planned based on the time-to-
maintenance measures (that is, the part is replaced when 
indicated, even if it has not failed). 

3. The number of times the component has been replaced 
(both due to failure or prognostic indication) is available. 

4. The number of times the component failed before being 
replaced is available. 

5. If a component is removed either due to a failure or based 
on a prognostic indication of imminent failure, then it 
will be replaced or serviced to a ‘like new’ condition 
before re-entering the supply chain. 

There are several measures that may be output from a 
prognostic algorithm, including a best estimate of the 
remaining useful life, the shape of the remaining life 
distribution, and a best estimate of the time-to-maintenance 
for a given failure avoidance percentage.  The first 
assumption is simply that the TTM value is made available 
(other measures may or may not be output as well). 

The other three assumptions concern maintenance 
operations.  The second assumption is that the time-to-
maintenance measure is actually used.  As will be discussed 
in Section 5.3, this assumption can be relaxed a little to 
provide for a “confidence building” period during which the 
prognostic algorithm is verified without the risk of excessive 
failures or unnecessarily maintenance actions.  Finally, the 
last two assumptions provide the data needed for the 
verification calculations. 

3.2. Single Failure Mode Construction 

To start the derivation, assume that the prognostic algorithm 
is perfectly accurate.  That is, the algorithm provides a 
consistent time-to-maintenance measure, which divides the 
failure rate pdf (whatever its shape) as shown in Figure 1.  In 
this figure, t0 is the time at which the prediction is made, tM is 
the maintenance time, and f is the percentage of failures that 
would be avoided by performing maintenance at the indicated 
time.   

 

Figure 1. Prognostic Algorithm Time-To-Maintenance 
Prediction 

The following two definitions are now made.  Let n be the 
number of components replaced (failed and not failed) and x 
be the number of those replaced components that failed 
before being replaced. With these definitions, the probability 

of missing exactly x component failures is given by the 
standard binomial distribution: 
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This expression characterizes the distribution of x given 
values for n and f.  Figure 2 shows the probability mass 
function (pmf) of this binomial distribution for n = 50 and f = 
0.8.  As expected, the highest probability of failure occurs at 

10)8.01(50)1(  fnx .  Note that this is a 

discrete distribution – it is only defined on integer values of 
x.  However, a different distribution can be calculated for 
every possible value of f between zero and one.  For example, 
Figure 3 shows the binomial distributions for eleven different 
values of f.  The distribution corresponding to Figure 2 (f = 
0.8) is highlighted in blue.  Further, since f can take on any 
value in the range from zero to one, Figure 3 can be filled in, 
yielding Figure 4. 

 

Figure 2. Binomial Distribution for n = 50 and f = 0.80 

 

Figure 3. Binomial Distribution for n = 50 and Various 
Values of f 
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Figure 4. Binomial Distribution for n = 50 and All Values of 
f 

Up to now, the values for f and n have been considered 
known.  Now consider a slightly different problem: given 
values for n and x, what is the best guess for the value of f?  
For example, suppose that n = 50 and x = 20, as highlighted 
by the red line in Figure 4.  This red line is the marginalization 
of the joint distribution of f.  Note that this line is continuous 
in f and only defined over the range 0 ≤ f ≤ 1. Before using 
this marginalization to develop a confidence measure, it must 
first be normalized to form a proper pdf.  This results in a pdf 
for the marginalization of the joint distribution of f given by  

   xnx ff
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As an example, the graph of the pdf of f for n = 50 and x = 20 
is given in Figure 5.  This corresponds to the red line shown 
in Figure 4.   

 

Figure 5. pdf of f for n = 50 and x = 20 

Given the pdf for the distribution of f for a given set of values 
n and x, the confidence (i.e., probability) that the actual value 
of f is a given value (or, more accurately, that the actual value 
is within a range of values) can be found by calculating the 
area under the distribution for that range.  Written as a 
formula, the confidence that the actual value of f is between 
two values a and b (where bfa  ) is given as follows: 
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For example, suppose that the flight control surface EMA had 
been replaced 50 times, and 20 of those times were due to a 
failure of the EMA, the confidence that the prognostic 
algorithm was avoiding at least 95% of the failures would be 
equal to the area under the curve in Figure 5 from 0.95 to 1.00 
(or 95% to 100%).  Obviously, for this curve the confidence 
would be very close to zero, which intuitively makes sense 
given the number of failures that were incurred. 

However, suppose there had only been one failure out of 50 
replacements.  The distribution for f in that scenario is shown 
in Figure 6.  In this case the confidence that the failure 
avoidance is at least 95% is much higher (73.56%): 
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Figure 6. pdf of f for n = 50 and x = 1 
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In Section 2, the requirement statement was left with two 
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conservative’ predictions.  For example, a prognostic 
algorithm that claims 20 hours time-to-maintenance every 
time it is run (even if there were actually hundreds or more 
hours of remaining useful life), would meet the requirement, 
as it would definitely catch 95% of all failures of that 
component.  Realistically (for components that are not so 
critical that they should never be allowed to fail in place), 
there is an expectation that an accurately tuned prognostic 
algorithm would ‘miss’ some (small) percentage of failures.  
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(which implies between 95% and 100%), the upper bound is 
slightly reduced. 

4th attempt: The prognostic algorithm shall provide a 
minimum of 20 hours time-to-maintenance such that between 
95% and 99% of failures of component XYZ will be avoided 
with 90% confidence. 

Figure 7 shows a grid plot of the confidence calculation for 
various values of x and n.  Grid coordinates (i.e., 
combinations of x and n) that meet or exceed 90% confidence 
(per the example requirement statement above) are colored 
green.  Similarly (for illustrative purposes), yellow indicates 
a confidence between 70% and 90%, and blue indicates less 
than 70% confidence.  As can be seen, for some values of x, 
there is no value of n that will satisfy the requirement.  
Moreover, consider the case where x = 4.  The requirement is 
satisfied only if n is between 168 and 237.  Thus, if the 
prognostic algorithm is too conservative (and there have been 
more than 237 replacements for 4 failures), the confidence 
will drop below the threshold.  Thus, a prognostic 
requirement written as shown above is not only verifiable 
from maintenance record data, but it also provides a means of 
identifying algorithms that are potentially too conservative in 
their time-to-maintenance predictions. 

 

Figure 7. Prediction Confidence Regions 

4. EXTENSION TO MULTIPLE FAILURE MODES 

The verification approach developed in Section 3 assumed 
that the component under analysis had a single failure mode.  
In reality, that is rarely the case, as components often have 
many failure modes and prognostic algorithms to cover only 
a few of them (typically, the most severe or frequent one(s)).  
This section extends the previous approach to verification of 
multiple failure modes. 

As a start, it should be pointed out that the previous (single 
failure mode) approach still has applicability when 
considering the total prognostic requirement for a 
component.  That is, if the goal is to determine how well a 

given component is meeting a goal of, say, between 90% and 
99% coverage of all failure modes given whatever prognostic 
algorithm(s) are implemented, the single failure mode 
verification approach can be used.  If, however, the desire is 
to see how well the individual algorithms (for a single 
component) are meeting individual goals, a new approach is 
warranted. 

This extension to multiple failure modes is presented in three 
steps.  First, Section 4.1 extends the previous approach to the 
case of two failure modes for a single component, each of 
which has its own prognostic algorithm.  An overall 
confidence algorithm is then constructed from probabilistic 
principles for this two failure mode case.  Section 4.2 then 
further extends this construction to the case of an arbitrary 
number of failure modes (again, where each has its own 
prognostic algorithm).  Finally, Section 4.3 addresses the 
situation where one or more failure modes do not have 
associated prognostic algorithms. 

4.1. Two Failure Mode Construction 

To describe the approach taken in this extension, consider the 
case of a component with two failure modes.  Further, assume 
that the component has been replaced four times (n = 4) of 
which two were due to component failure (x = 2).  There are 
several scenarios that could lead to this result, as shown in 
Table 1.  The first column of the table (n1) is the number of 
times the component was replaced due to failure mode m1.  
This includes both preemptive replacements based on 
prognostic indications and replacements required due to a 
failure of the component due to failure mode m1.  The second 
column (x1) is the number of times the component failed due 
to failure mode m1 before being replaced (that is, it was not 
replaced preemptively based on a prognostic indication).  The 
next two columns (n2 and x2) represent the corresponding 
values for failure mode m2. 

Table 1. Possible Scenarios for Two Failure Mode Example 

n1 x1 n2 x2 n = n1 + n2 x = x1 + x2 
0 0 4 2 4 2 
1 0 3 2 4 2 
2 0 2 2 4 2 
1 1 3 1 4 2 
2 1 2 1 4 2 
3 1 1 1 4 2 
2 2 2 0 4 2 
3 2 1 0 4 2 
4 2 0 0 4 2 

 

There are several things to note in this table.  First, the total 
number of replacements (n) for each scenario must equal the 
(known) total number of replacements for the component (n1 
+ n2).  Similarly, the total number of failures (x) for each 
scenario must equal the (known) total number of failures for 
the component (x1 + x2).  Also, for each failure mode, the 
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number of replacements due to that failure mode cannot be 
less than the number of actual failures due to that failure 
mode (or, algebraically, ni ≥ xi).  Finally, the individual values 
of n1, x1, n2, and x2 may not be known. 

As shown in the derivation for a single failure mode, the 
probability of missing xi out of ni failures given that the 
failure mode is mi (with corresponding value fi) is given by: 

   iii xn
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i
iii ff
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The total probability, P(x,n), can then be found as 
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where the summation is taken over all possible scenarios (as 
given in Table 1).  The last term in the above summation, 
P((m1,n1),(m2,n2)), is the probability that m1 occurred n1 times 
and m2 occurred n2 times and is given by 

 21 )()(
,

)),(),,(( 21
21

2211
nn mPmP

nn

n
nmnmP 








 . (8) 

The term 






21, nn
n  is the multinomial coefficient (a 

generalization of the binomial coefficient).  In general, the 
multinomial coefficient is given by 
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This coefficient can be thought of as the number of ways that 
n objects can be placed in k bins with n1 objects in the first 
bin, n2 objects in the second bin, etc.   

The term P(mi) is the a priori known relative probability that 
a failure is due to failure mode mi.  This term can be 
determined from standard reliability data, such as Mean Time 
Between Failure (MTBF).  If the MTBF for failure mode mi 
is given by MTBFi, the relative probability for failure mode 
mi is given by 
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Returning to the example of two failure modes (Table 1) with 
n = 4, x = 2, f1 = 0.8, f2 = 0.9, MTBF1 = 5000 hours, and 
MTBF2 = 2000 hours, evaluating Equation 7 yields 
P(2,4) = 0.07532.  This value is interpreted to mean that there 
is a 7.53% probability that there will be 2 missed failures out 
of 4 total replacements, given two failure modes with the 
given MTBF values and prognostic algorithms with the given 
fi values.  Figure 8 is a 3-D stem plot of this total probability 
calculated for values of x between 0 and 10 and values of n 

between 0 and 50.  The example calculated previously is 
highlighted on this plot.   

In Figure 8 the values of f1 and f2 are held constant while x 
and n are varied.  In application, the values of x and n will be 
known and the issue will be to determine the most probable 
ranges of f1 and f2.  To address this question, we can plot the 
probability P(x,n) for various values of f1 and f2 for given 
values of x and n.  Figure 9 shows such a plot for the previous 
example (x = 2 and n = 4).  The point highlighted on the plot 
(with f1 = 0.9 and f2 = 0.8) corresponds to the same point 
highlighted in Figure 8. 

 

Figure 8. Plot of Total Probabilities for Various Values of x 
and n with Fixed f1 and f2 

 

Figure 9. Plot of Total Probabilities for All Values of f1 and 
f2 with x = 2 and n = 4 

Several observations can be made of Figure 9.  First, the 
values f1 and f2 are continuous and bounded (0 ≤ fi ≤ 1).  Thus, 
the plot is a true surface and not discrete values.  Second, the 
values of f1 and f2 that have the highest total probability 
(depicted as red in Figure 9) form a skewed line.  This trend 
is more easily seen when the total probability plot is viewed 
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“straight down”, as shown in Figure 10.  Such a 2-
dimensional plot is called a “heat map”, as the 3rd dimension 
is depicted purely as a gradient color (typically from blue to 
red).  Recall that this example assumes we have “missed” 2 
out of 4 failure events (x = 2 and n = 4).  Thus the probability 
that both prognostic algorithms have fi values of 50% (f1 = 0.5 
and f2 = 0.5) should be high.  As shown most readily in the 
heat map of Figure 10, this is indeed the case.  However, since 
it is not presumed known how the values of x and n break 
down in relation to each failure mode, there are other 
scenarios that are just as probable.  For example, the 
algorithm associated with failure mode m1 may have a better 
(higher) value of f1 that is compensated by a worse (lower) 
value of f2.  This tradeoff is evidenced by the straight banding 
of colors shown in Figure 10.  If the failure rates (or MTBFs) 
of the two failure modes were equal, this line would be at a 
45° angle to the f-axes.  In this example, however, failure 
mode m2 has a higher failure rate (or, equivalently, a lower 
MTBF) than failure mode m1.  Thus, a change in the value of 
f2 will have a more pronounced effect on the total probability 
than a change in the value of f1.  This is illustrated by the 
skewing of the bands of the heat map to the f2 = 0.5 line (or 
“to the vertical”). 

 

Figure 10. Heat Map of Total Probabilities for All Values of 
f1 and f2 with x = 2 and n = 4 

Continuing with the generalization of the approach outlined 
for the single failure mode case, the total probability surface 
shown in Figure 9 is the marginalization of the joint 
distribution of the values of f1 and f2.  Thus, if the surface is 
normalized such that the total volume under the surface is 1.0, 
the resulting surface will be the joint probability distribution 
function (pdf) of the values f1 and f2.  Note that this joint pdf 
surface is the same shape as that of Figure 9 with the only 
difference being the scaling of the z-axis. 

Having calculated the joint pdf, determining the confidence 
that the fi values of the two prognostic algorithms are in given 
ranges is simply a matter of integrating the joint pdf over the 
ranges of interest.  For example, to determine the probability 

that 0.45 ≤ f1 ≤ 0.55 and 0.4 ≤ f2 ≤ 0.6, the following double 
integral would be evaluated: 

  
6.0

4.0 2

55.0

45.0 121 ),( dfdfffp ,  (11) 

where p(f1, f2) is the joint pdf.  For the case of x = 2 and n = 4, 
the integration will yield the following: 

 %87.2),(
6.0

4.0 2

55.0

45.0 121   dfdfffp . (12) 

This confidence value is rather small, but recall that the total 
number of replacements (n) in this example is just four.  If 
the number of replacements is increased to n = 100 and the 
number of missed failures kept at 50% (x = 50), the resulting 
pdf is shown in Figure 11.  Compared to Figure 9, this pdf 
has much sharper roll-offs on either side of the “high-
probability” line.  The resulting confidence is also higher: 

 %46.8),(
6.0

4.0 2

55.0

45.0 121   dfdfffp  . (13) 

 

 

Figure 11. Joint pdf of f1 and f2 with Fixed x = 50 and n = 
100 

Even with the sharper roll-off from a higher number of 
replacements (n), the confidence for this example is still only 
8.46%.  This is primarily due to the large number of 
combinations of failure modes that will yield around 50% 
prediction (i.e., f1 ≈ 0.5 and f2 ≈ 0.5).  A perhaps more realistic 
example, shown in Figure 12, represents five missed failures 
(x = 5) out of 100 replacements (n = 100).  Calculating the 
confidence that 0.8 ≤ f1 ≤ 0.99 and 0.9 ≤ f2 ≤ 0.99 yields a 
value of 64.31%: 

 %31.64),(
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Figure 12. Joint pdf of f1 and f2 with Fixed x = 5 and n = 100 

4.2. Generalization to k Failure Modes 

The generalization from two failure modes to an arbitrary 
number of failure modes is straightforward.  However, the 
process quickly turns into an exercise in proper indexing.  
The two primary points to keep in mind are the following.  
First, all combinations of P(xi, ni) must be accounted for and 
weighted based on their frequency and relative failure rate.  
Second, for each scenario (i.e., set of values {xi} and {ni}), 
the following must be true: 

 xxi
k
i  1 , (15) 

 nni
k
i  1 , and (16) 

 ii xn  . (17) 

Equation 15 through 17 are simple generalizations of the two-
failure mode construction (Section 4.1) to k failure modes.  
Although the derivation is quite involved (and omitted from 
this paper for space), one solution is presented below. 
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with: 
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The k-dimensional joint pdf is then found by normalizing the 
k-dimensional integral of P(x,n) to one: 
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Finally, the confidence that ai ≤ fi ≤ bi for i = 1,…,k is given 
by: 

   
k
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a k dfdfdffffp  2121
2

2

1

1

),,,( . (21) 

4.3. Non-Prognosable Failure Modes 

Finally, the case of non-prognosable failure modes is 
considered.  A non-prognosable failure mode is simply a 
failure mode for which there is no prognostic algorithm in 
place to predict remaining useful life.  Note that the lack of a 
prognostic algorithm need not imply that such an algorithm 
could not be developed, only that it isn’t in place for the 
component being analyzed.  Further, it is reasonable that 
many failure modes of a component will not have prognostic 
algorithms (due to the relative infrequency of occurrence of 
the failure modes or a lack of technical understanding to 
develop such algorithms).  All of these non-prognosable 
failure modes can, for the purposes of this analysis, be 
combined into a single non-prognosable failure mode with a 
composite MTBF given by: 

   11 
  MTBFMTBF eprognosablnon , (22) 

where the summation is taken over all non-prognosable 
failure modes. 

A non-prognosable failure mode can then be characterized as 
a failure mode where f = 0.  That is, there is zero probability 
that the failure mode will be predicted before that failure 
mode occurs.  Further, this value of f is not probabilistic (it is 
deterministic with value zero), so it should not be included as 
a variable in the joint pdf.  The effect of this characterization 
is to alter the calculation of the total probability function, 
P(x,n).  Without loss of generality, let the non-prognosable 
failure mode be listed as the last (or kth) failure mode.  Thus, 
fk = 0.  Now consider the term P(xk|nk,mk) that occurs in the 
calculation of P(x,n).  This term is given by: 
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From the constraints mentioned in Section 4.2, nk must be 
greater than or equal to xk, so consider the two cases nk = xk 
and nk > xk (recalling that 0! = 00 = 1): 

 .
,0

,1
),|(









kk

kk
kkk xn

xn
mnxP  (24) 

This is consistent with the earlier characterization that a non-
prognosable failure mode misses all occurrences of that 
failure mode (that is, when nk = xk the probability is one).  And 
for any case where fewer than all of the non-prognosable 
failure modes are missed (nk > xk), the probability is zero. 

5. IMPLICATIONS 

5.1. Tabulation 

As discussed in Section 4, the overall confidence equation 
(Eq. 4) can be used when considering the verification of an 
overall requirement for a given component (as opposed to the 
multiple failure mode confidence equation given as Eq. 21).  
The evaluation of the integral in the overall confidence 
equation does have a closed-form solution. This closed form 
of the solution, though unwieldy to write down, is generally 
quicker (and more accurate) to calculate than to evaluate the 
integral using numerical techniques.  Tabulations can be pre-
calculated and stored instead of performing the complex 
calculation every time a value is needed.   

5.2. Minimum Amount of Data Required for 
Verification 

It is often desirable to know how much data will be required 
to verify a requirement.  Such knowledge can be useful when 
scheduling and allocating resources to the verification task.  
To show how this information can be derived from this 
verification technique, consider an electro-mechanical 
actuator with the following prognostic requirement. 

The prognostic algorithm shall provide a minimum of 20 
hours time-to-maintenance such that between 95% and 99% 
of failures of the EMA will be avoided with 90% confidence. 

The more failures that occur, the more replacements must 
have been performed to meet the requirement.  Also, as 
mentioned in Section 3.3, for some numbers of failures, there 
is no number of replacements that will satisfy the 
requirement.  For example, the least number of replacements 
that can conceivably be used to verify the requirement is 168, 
but only if there have been four failures in those 168 
replacements.  Table 2 shows the minimum number of 
replacements required for verification for a given number of 
failure occurrences. 

These numbers, combined with the predicted reliability 
failure rate, can give a minimum value for the amount of data 
required and the time required to verify a prognostic 

algorithm.  Unfortunately, these values are only minimum 
values.  A more practical approach is given next. 

Table 2. Minimum Number of Replacements Required For 
Verification 

No. of 
Failures 

Minimum No. of 
Replacements Required 

0 - 3 N/A 
4 168 
5 187 
6 210 
7 234 
8 257 
9 281 

10 > 300 

5.3. Confidence Growth Curves 

The blue line in Figure 13 shows a typical confidence growth 
curve for a prognostic algorithm.  The black asterisks indicate 
‘missed’ failures (i.e., failures that occurred before the 
indicated TTM).  All other replacements were scheduled in 
accordance with a prognostic algorithm time-to-maintenance 
prediction.  

 

Figure 13. Confidence Growth Curve 

As can be seen, the confidence starts out low and tends to 
increase as more data points are acquired.  When a failure 
event occurs (and the associated un-predicted maintenance 
replacement), the confidence drops, particularly in the 
beginning when there are few data points.  However, as the 
number of replacements increases, the effect of a failure 
event on the confidence curve is dampened. 

The confidence growth curve, along with a baseline 
confidence curve, can be used to bound the time and data 
required for verification, as well as to provide a means of 
declaring a verification as failed.  The baseline confidence 
curve is a minimum confidence threshold for the actual 
confidence curve.  The shape of the baseline curve would be 
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specified based on specific knowledge of the algorithm being 
verified.  In general, though, it would tend to be pessimistic 
initially to allow for large swings in the confidence.  An 
example of a baseline confidence curve is shown in Figure 13 
in red. 

In order for a prognostic algorithm to be verified, it would not 
only have to reach the desired confidence, but also do so 
without going below the baseline curve.  If the actual 
confidence does dip below the baseline curve, the verification 
could be considered failed.  An added benefit of the approach 
is that the baseline curve can constrain how much time is 
available for an algorithm to reach verification.  For example, 
in Figure 13, the baseline confidence requires that the 
algorithm reaches verification (90% confidence) no later than 
by the 400th replacement. 

The confidence growth curve can also be used to determine 
when to start relying on a prognostic algorithm.  Often, 
particularly for a new prognostic technique, there can be 
reluctance to schedule maintenance on a part based on the 
prognostic prediction.  In these cases, traditional maintenance 
concepts can initially be employed while a hypothetical 
confidence curve is tracked on the side.  The hypothetical 
curve would assume that the prognostic prediction was acted 
upon.  Similarly, if a failure occurred that the algorithm did 
not predict, the hypothetical confidence curve would be 
penalized accordingly.  When and if the hypothetical 
confidence reaches a pre-determined threshold of acceptance, 
maintenance can start being scheduled based on the 
prognostic prediction instead of the traditional means. 

6. CONCLUSION 

This paper has addressed two of the central issues concerning 
verification of prognostic algorithms.  First, the question of 
how to write a meaningful and verifiable prognostic 
algorithm requirement statement was considered.  Through 
the course of the paper, it was shown that the following 
requirement statement template is both statistically 
meaningful and verifiable using available field data. 

The prognostic algorithm shall provide a minimum of 
<TTM> hours time-to-maintenance such that between 
<LOWER>% and <UPPER>% of failures of component 
<COMPONENT> will be avoided with <CONFIDENCE>% 
confidence.  

Second, a statistical approach to verifying such a statement 
was presented.  The approach requires very few assumptions 
and can be easily pre-tabulated for a given requirement’s 
failure threshold.  Furthermore, implications of the approach 
can be used to bound the time and data necessary for 
verification as well as provide a means of building confidence 
in an un-tested algorithm. 

 

 

NOMENCLATURE 

k Number of failure modes 
n Total number of components replaced (failed 

and not failed) 
ni Total number of components replaced (failed 

and not failed) due to failure mode mi 
P(mi) Relative probability of failure mode mi 
P(xi,ni|mi) Probability of missing xi out of ni failures given 

the failure mode is mi 
P(x,n) Probability of missing x out of n failures of any 

combination of failure modes, 
x Total number of components that failed before 

being replaced 
xi Total number of components that failed due to 

failure mode mi before being replaced 
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