
A Framework to Debug Diagnostic Matrices

Anuradha Kodali1, Peter Robinson2, and Ann Patterson-Hine2

1SGT Inc., NASA Ames Research Center, Moffett Field, CA, 94035, USA

anuradha.kodali@nasa.gov

2NASA Ames Research Center, Moffett Field, CA, 94035, USA

peter.i.robinson@nasa.gov

ann.patterson-hine@nasa.gov

ABSTRACT

Diagnostics is an important concept in system health and

monitoring of space operations. Many of the existing

diagnostic algorithms utilize system knowledge in the form

of diagnostic matrix (D-matrix, also popularly known as

diagnostic dictionary, fault signature matrix or reachability

matrix). The D-matrix maps tests on observed conditions to

failures. This matrix is mostly gleaned from physical

models during system development. But, sometimes, this

may not be enough to obtain high diagnostic performance

during operation due to system modifications and lag and

noise in sensor measurements. In such a case, it is important

to modify this D-matrix based on knowledge obtained from

sources such as time-series data stream (simulated or

maintenance data) within a framework that includes the

diagnostic/inference algorithm. A systematic and sequential

update procedure, diagnostic modeling evaluator (DME) is

proposed to modify D-matrix and wrapper/test logic

considering the least expensive update first. The user sets

the diagnostic performance criteria. This iterative procedure

includes conditions ranging from modifying 0’s and 1’s in

the matrix, adding/removing the rows (failure

sources)/columns (tests), or modifying test/wrapper logic

used to determine test results. We will experiment this

framework on ADAPT datasets from DX challenge 2009.

1. INTRODUCTION

Traditionally, diagnostics is performed in the following

way: System modeling → List failure causes (faults) →

Design tests → Generate D-matrix → diagnosis via

inference algorithm (Luo & Pattipati, 2007). Here, the

process from system modeling to generate D-matrix is

independent of the diagnoser. But, when the diagnostic

algorithm based on D-matrix (Singh, Kodali, Choi, Pattipati,

Namburu, Chigusa, Prokhorov, & Qiao, 2009) is applied

during operations, and the performance is not robust, it is

important to reexamine the system model (D-matrix) in

terms of its correctness and utility towards diagnosability.

Thus, we propose a debugging architecture, termed

diagnostic modeling evaluator (DME) that includes the

diagnoser and repairs the system model (D-matrix) to suit

better diagnostic performance based on new/updated

information. This updated information is mostly available

after system development or during operation.

D-matrix can be developed from physical models, historical

field failure data, service documents, engineering

schematics, and Failure Modes, Effects and Criticality

Analysis (FMECA) data (Singh, Holland, &

Bandyopadhyay, 2011) by establishing causal relationship

between faults and tests (Luo, Tu, Pattipati, Qiao, &

Chigusa, 2006). Initially, D-matrix is generated from any of

these sources (e.g., physical model). The initial model, when

developed during system development, ignores lag and

noise in sensor measurements during operation and other

system advancements during deployment. Then other

sources (e.g., operations data (time-series)) that contain

these critical changes can be used as reference material in

DME framework to repair the initial D-matrix. This

provides a debugging environment to the initial model. This

also provides an effective platform to represent information

from different sources (model-based, data-driven, or

knowledge-based) in a unified D-matrix concept.

Diagnostic modeling evaluator (DME) is developed as an

automated debugging process to update/repair D-matrix that

best suits user-defined performance requirements. This

includes assessing the level of fault definitions (component

or failure mode level), number of tests required, test logic

by considering the thresholds for faulty behavior, and most

importantly the fault-test relationships. Conditions (repairs)

ranging from modifying 0’s and 1’s in the matrix, or

modifying the rows to accommodate lower-level fault

modeling with failure modes, or adding or removing tests,

or changing their test logic are identified to experiment for

Anuradha Kodali et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 United States

License, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

Annual Conference of the Prognostics and Health Management Society 2013

Figure 1. Framework to debug D-matrix

better performance in terms of diagnostics (detection +

isolation). This is implemented as an iterative feedback

process by tuning D-matrix at every step with repair

conditions. Sometimes, more than one repair is applicable

on a given iteration. Those repairs are accepted/declined by

the user/decision maker based upon their diagnostic

performance and also, most importantly, mission directives.

The user-defined performance criteria are quantified based

on the following metrics: diagnostic efficiency, false

positive/false negative rate, diagnostic time and cost. This is

again communicated to update procedure and the iterations

go on until there are no further changes (shown in Figure 1).

In this paper, section 2 focuses on explaining DME

procedure as a debugger and the conditions required to

update D-matrix. In section 3, the process of updating D

matrix is shown with examples. Two example systems,

rover and ADAPT (from DX challenge 2009) are included

in this paper.

2. DEBUGGING FRAMEWORK

Conventionally, system model doesn't consider diagnostic

utility when developing D-matrix. While developing a

robust diagnostic system, it is important for both system

modeling and diagnostic process to interact coherently

resulting in high detection and isolability performance

during operation. To make this idea possible, DME acts as a

debugger to the initial D-matrix using the available

operational or simulations data. It plays the data in batch

mode in order to determine which repairs to make. No

single time step decisions are made, though this would be

required to utilize these techniques during runtime operation

(other data sources can also be used to repair D-matrix).

These repairs to D-matrix can be translated back to the

initial system model. This is pursued as future work. Here,

we will explain the modules and process of DME

framework as shown in Figure 1:

2.1. Information Sources

The diagnostic modeling, firstly, starts with building the

model from the system information, viz., physical model,

historical field failure data, service documents, spreadsheets,

engineering schematics, FMECA, sensor/commands list,

and simulations data (Singh et al., 2011). D-matrix, in DME

context, is built from one source initially and then

updated/repaired with the other available sources. These

sources can be model-based, data-driven, or knowledge-

based informative sources. This repair process can be

performed during system development or operational phase.

The data collected during real-time operations

accommodates lags and noise ignored during system

development, thus providing operational information about

the relationship between faults and tests. But, sometimes,

the information from different sources can be counter-

explanative and this needs to be dealt carefully during

corrective actions to the D-matrix.

2.2. Generating D-matrix (preliminary)

Here, the initial D-matrix is generated from any of the

available sources listed above. For this purpose, it is

important to determine the level at which fault modeling is

performed for diagnosis. This can be done at sub-system, or

component, or failure mode level depending on the system

properties and requirements. Also, the testing criterion for

each test is formulated based on sensor measurements.

These tests can either be threshold, trending, or statistical

tests. Subsequently, D-matrix is generated either by hand or

by automated software methods like TEAMS Designer

(Qualtech Systems Inc.). The D-matrix generated in this

step is preliminary and is modified in the next step.

Annual Conference of the Prognostics and Health Management Society 2013

Figure 2. Top-level iterative loop identifying progression of repairs for DME framework

2.3. Diagnostic Modeling Evaluator (DME)

In the process of repairing D-matrix for better performance,

an iterative loop (DME) consists of a sequential procedure

with low-cost repairs considered first (as shown in Figure

2). The updates in the D-matrix are made in accordance to

the new information from another source. After each

iteration, the performance of the updated matrix is

determined and the changes are accepted/declined

accordingly based on mission directives. Here, the

performance can be defined as combination of the required

metrics, viz., false-positive, or false-negative rate, accuracy,

time to diagnose, or cost involved for test and diagnoser

implementation. Sometimes, improvement in one metric can

affect others. Thus, balance should be maintained given the

mission directives. This process is continued until there can

be no further improvement. The necessary steps involved in

the iterative updating DME procedure of the D-matrix are

listed below:

2.3.1. Repair Cases for Updating D-matrix

1. Address row/column redundancy

Faults/test corresponding to rows and columns of D-matrix

are assessed for redundancy in terms of two or more rows or

columns having exactly the same signature. Duplicate rows

or columns can result in ambiguous/masking faults and

bad/duplicate tests, respectively (Simpson & Sheppard,

1992). In such a case, to decrease computational complexity

and simplify representation, those faults/tests are grouped in

to one. It is better to keep track of this change to avoid

ignoring the subsequent repairs and also when they are

required for mission critical functions or in other system

mode.

2. Modify Fault Modeling (Change Rows of D-matrix)

In general, faults are modeled at component level. But,

sometimes, components can be faulty with different severity

levels based on their root-cause resulting in different fault

signatures in D-matrix. In this case, new rows are added to

the D-matrix when failure modes need to be refined. We add

a row for each addition of a new component. Similarly,

when the diagnosis is required at higher level (e.g Line

Replaceable Unit (LRU) or Orbital Replaceable Unit

(ORU)) or when components are removed, we remove the

corresponding rows in D-matrix.

Table 1. List of tests
1

Tests Symbols

Voltage sensors V1, V2, V3, V4

Battery temp. sensor TB1, TB2, TB3, TB4

Battery current sensor i

Position sensors xFL, xFR, xBL, xBR

Velocity sensors wFL, wFR, wBL, wBR

Current sensors iFL, iFR, iBL, iBR

Temperature sensors TFL, TFR, TBL, TBR

1 FL, FR, BL, BR represents front left, front right, back left, back

right wheels, respectively.

Annual Conference of the Prognostics and Health Management Society 2013

Table 2. D-matrix and the corresponding delays (in seconds) of each test for the rover system

V1 TB1 V2 TB2 V3 TB3 V4 TB4 I xBL wBL iBL TBL

Motor

Friction

Fault BL

1/0.55 1/25.75 1/0.55 1/22.6 1/0.55 1/19.55 1/0.55 1/23.6 1/0.4 1/0.9 1/0.2 1/0.4 1/30.95

Parasitic

Load
1/0.2 1/28.8 1/0.2 1/26.85 1/0.2 1/26.1 1/0.2 1/31.9 1/0.15 0 0 0 0

Voltage

Sensor 1

Bias

1/0.15 0 0 0 0 0 0 0 0 0 0 0 0

3. Change Test Logic/Wrapper Code

We modify the test logic to attain better detection for each

test. The test criteria, especially when defined by thresholds,

may not hold during operation or with degradation of

component’s performance over time. This necessitates

changing the logic subsequently either to trending or

statistical tests. Additionally, refinement of abstraction of

failure modes may in turn require test logic/wrapper code to

be refined as well. Changes in test logic should be properly

monitored, sometimes, for increased false positive or false

negative detection rate with respect to the user defined

expected performance measures for the D-matrix.

4. Repair False positives/negatives (Change the Entries

of D-matrix)

The most important correction to the D-matrix is updating

its entries, i.e., changing 1 to 0 or vice-versa, thus

decreasing false positive or false negative isolation rate,

correspondingly. This can be reflected as system (physical

model) change. This means that a 1 in the D-matrix means

two conditions are true: that a path exists between the fault

and the test and that a set of signals propagate from the

failure are detected at the test. A change in fault test

relationships means that change for the paths and signals are

applied. Note that both false positives and false negative

isolation rates cannot be improved concurrently. This is

because, to improve false negative isolation rate, we need to

expand the threshold logic (red lines) which will increase

false positives. Thus, the required acceptable metric is

obtained from the mission directives.

5. Add/remove Tests (Change Columns of D-matrix)

Adding tests incurs additional cost, so we restrict this repair

strategy to be done at last. We have to design new tests if

some faults are not adequately detected or if they are not

isolatable. Tests also can be broken into finer levels, similar

to the component to failure mode representation, to be able

to detect different fault modes with different severities. On

the other hand, sometimes, low reliable and delayed tests

hinder the overall diagnostic performance efficiency. Such

tests when not detecting critical faults in any other system

mode can be removed.

2.3.2. Diagnostic Algorithm

Here, any standard diagnostic procedure based on D-matrix

can be applied as a diagnoser. We have applied diagnostic

algorithms Dynamic Multiple Fault Diagnosis (DMFD)

algorithms based on primal-dual optimization framework

that can detect multiple, delay, and intermittent faults over

time. Our problem is to determine the time evolution of fault

states based on imperfect/perfect test outcomes observed

over time and is formulated as one of finding the maximum

a posteriori configuration to evaluate fault state evolution

over time (which is why the time series is process in batch

mode) that best explains the observed test outcome

sequence. More details of these algorithms can be found in

(Singh et al., 2009), (Kodali, Singh, & Pattipati, 2013),

(Kodali, Pattipati, & Singh, 2013).

2.3.3. Performance Evaluation

Performance metrics can be overall diagnostic efficiency,

false-positive rate, false-negative rate, diagnostic time and

cost. The choice of metrics is dependent on the user-set

criteria based on mission directives. As an example, user

can determine to have less false positives (this may increase

false negatives).

3. SIMULATIONS AND RESULTS

We demonstrate DME framework on two example systems,

viz., rover and ADAPT systems. We do not provide the

description for these systems. More details can be found in

(Narasimhan, Balaban, Daigle, Roychoudhury, Sweet,

Celaya, & Goebel, 2012) and (Poll, Patterson-Hine, Camisa,

Garcia, Hall, Lee, Mengshoel, Neukom, Nishikawa,

Ossenfort, Sweet, Yentus, Roychoudhury, Daigle, Biswas &

Koutsoukos, 2007) for rover and ADAPT systems,
respectively.

3.1. Example System 1: Rover

The initial D-matrix of the rover system is generated via

simulations with three faults and thirteen tests (see Table 1

and Table 2). Three fault scenarios viz., battery parasitic

load, motor friction fault, and voltage sensor fault are

simulated (Narasimhan et al., 2012) by injecting them in the

rover test bed and altering the corresponding measurements

Annual Conference of the Prognostics and Health Management Society 2013

Table 4. List of faults in ADAPT-Lite

No. Fault ID Fault modes Test ID Sensor description

1 ISH266 Stuck E235 DC voltage

2 TE228 Stuck, offset E240 DC voltage

3 IT267 Stuck, offset E242 DC voltage

4 E267 Stuck, offset E261 DC voltage

5 IT240 Stuck, offset E265 AC voltage

6 ESH260A Stuck E267 AC voltage

7 E242 Stuck, offset ESH244A Actuator position

8 ESH275 Stuck ESH260A Actuator position

9 IT261 Stuck, offset ESH275 Actuator position

10 E261 Stuck, offset ISH236 Actuator position

11 E240 Stuck, offset ISH262 Actuator position

12 E235 Stuck, offset ISH266 Actuator position

13 E265 Stuck, offset IT240 DC current transmitter (50A Max)

14 TE229 Stuck, offset IT261 DC current transmitter (50A Max)

15 ISH262 Stuck IT267 AC current transmitter (12A Max)

16 ST516 Stuck, Offset ST265 AC frequency transmitter

17, 18, 19 FAN416 FailedOff, under speed, over speed ST516 Speed (RPM) transmitter

20 EY275 Stuckopen, stuckclosed TE228 Temperature

21 CB266 Tripped, failedopen TE229 Temperature

22 INV2 FailedOff XT267 Phase angle transducer

23 CB262 Tripped, failedopen

24 EY260 Stuckopen, stuckclosed

25 EY244 Stuckopen, stuckclosed

26 CB236 Tripped, failedopen, stuckclosed

27 ISH236 Stuck

28 XT267 Stuck, offset

29 ST265 Stuck, offset

30 ESH244A Stuck

Table 3. Diagnosis time for each fault (fault injected at 50s)

HyDe QED

D-matrix

diagnoser

Motor Friction Fault BL 50.2s 50.25s 50.2s

Parasitic Load 50.05s 51.2s 50.05s

Voltage Sensor 1 Bias 50.1s 50.3s 50.15s

with erroneous values. All these faults are injected at 50s.

Temperature sensors have high detection delays (see Table

2), therefore, the corresponding diagnostic delays will also

be longer. The DMFD algorithm with delays (Kodali et al.,

2013) delivers intermediate diagnosis at each time-step with

partial test information and updates it as the test information

becomes available.

The inputs to DME framework are initial D-matrix and

delay metrics in Table 2. Then, at iteration 1, the time to

diagnosis is high due to detection delays of temperature

sensors. There can be 2 repair actions for this case. Either,

the test logic can be changed for the temperature sensors or

they can be removed. But, changing test logic cannot avoid

detection delays. Thus, the tests relating to temperature

sensors are removed. This improves the time to diagnosis

with out compromising the isolability for the listed fault

universe2. The results with updated D-matrix are

comparable with other diagnostic algorithms (HyDe, QED

(Narasimhan et al., 2012) in Table 3 (the faults are injected

at 50s).

0 50 100 150 200 250
24.35

24.4

24.45

24.5

V
o

lt
a

g
e

 (
V

o
lt
s
)

Time (sec)

E235

Figure 3. E235 sensor measurement when fault is injected

3.2. Example System 2: ADAPT-Lite

Here, we used the dataset generated from ADAPT-Lite

system for DX workshop tier 1 competition 2009 (Kurtoglu,

Narasimhan, Poll, Garcia, Kuhn, de Kleer, van Gemund, &

2 This strategy may not hold if we expand the fault universe. Here,

this is demonstrated as an example.

Annual Conference of the Prognostics and Health Management Society 2013

Figure 4. E235 sensor measurement: (a) nominal case (b) when fault 19 is injected (red line indicates the fault injection time)

Figure 5. DME process to generate modified D-matrix from initial D-matrix (ADAPT system)

Feldman, 2009). This dataset has 2 parts: sample and

competition data. Data (sensor measurements) is collected

for 238.5s with a sampling rate of 0.5s, thus the data

contains a total of 478 time steps for both nominal case and

when faults are injected. Each fault is injected and the

corresponding continuous sensor measurements over time

are noted (see Table 4 for list of faults and tests). Initially,

D-matrix is generated by visualizing the sensor

measurements in sample data. As seen in Figure 3, there is a

clear change in the mean value of the sensor E235 when

fault E235 is injected. Then, the corresponding row-column

entry in D-matrix is depicted as 1 in the D-matrix. The

corresponding test logic in terms of threshold logic is also

generated to suit fault detection.

In DME framework, at iteration 1 using sample data, rows

17-19 corresponding to different fault modes, viz., failed

off, under speed, and over speed for the component FAN

have similar fault signature. These are identified as

ambiguous rows. Also, when faults 18 and 19 occur, they

are misdiagnosed as fault 3 (IT 267 sensor fault). This is

identified as either incorrect test logic or D-matrix entries in

DME framework. But, most of the tests connected to faults

Annual Conference of the Prognostics and Health Management Society 2013

7

Table 5. Competition data results

(in %)
Initial D-

matrix

Modified entries of D-

matrix

False positive rate 4.85 6.94

False negative rate 2.39 2.41

Classification

accuracy
94.57 96.15

18 and 19 didn't fail. Thus, the former repair is rejected.

Therefore, the D-matrix entries are changed to generate new

fault signatures for faults 18 and 19 (shown in Figure 5).

The entries corresponding to voltage and current sensors are

changed to 0. This is because, the effect of these faults on

the corresponding sensor values is very low, i.e., the change

in the measurement values is minimal. This is evident in

Figure 4. Even though there is a clear indication of shift in

the measurement value when fault is injected in Figure 4(b),

those faulty values are overlapping with the values in the

nominal case (24.3-24.36V). The repaired D-matrix is

shown in Figure 5. These D-matrix repairs are verified on

competition data using DMFD algorithm (Singh et al.,

2009) (see Table 5). Classification accuracy is the

percentage number of events that are correctly diagnosed

(both nominal and faulty cases over 478 time-steps).

Evidently, the diagnostic performance with modified D-

matrix is better; thus, the corresponding repair strategy is

accepted. Note that, the false positive and false negative

rates are increased with modified D-matrix. But, here, the

classification accuracy is considered as the decisive

performance metric. There are no further changes in

subsequent iterations.

4. SUMMARY AND FUTURE DIRECTIONS

Traditionally, diagnostics is viewed as an open-loop

cascading process with the D-matrix as the input to the

inference algorithm. In this context, DME is proposed to

allow feedback from the diagnoser to the initial model via

D-matrix repairs. Here, most importantly, the D-matrix can

be updated to account for noise, lag and other effects by

validating it through a time-series data stream or any other

information that comes along during or after system

development and operational deployment. Thus, in this

iterative process, DME updates D-matrix and the

corresponding test logic through a sequential procedure in

the order of cost-effective repairs using the time-series data

stream.

In our future research, DME framework will be updated and

implemented as an automatic process. We will also

experiment with systems that can accommodate the other

repair strategies. We will also define user's role to validate

the repair recommendation based on performance and

mission directives and experiment with different metrics as

the performance criteria. Most importantly, we will provide

user-computer interface to communicate repair actions and

provide necessary feedback. A systematic process to

transverse the repairs back to the system model will also be

investigated.

REFERENCES

Luo, J., & Pattipati, K. (2007). An integrated diagnostic

development process for automotive engine control

systems. IEEE Trans. Syst., Man, Cybern. C, vol. 37,

no. 6, pp. 1163–1173, Nov. 2007.

Singh, S., Kodali, A., Choi, K., Pattipati, K., Namburu, S.,

Chigusa, S., Prokhorov, D.V., & Qiao, L. (2009).

Dynamic multiple fault diagnosis: Mathematical

formulations and solution techniques. IEEE Trans.

Syst., Man, Cybern. A, vol. 39, no. 1, pp. 160–176.

Singh, S., Holland, S., & Bandyopadhyay, P. (2011). Trends

in the development of system-level fault dependency

matrices. IEEE Aerospace Conference, Big Sky,

Montana.

Luo, J., Tu, H., Pattipati, K., Qiao, L., & Chigusa, S. (2006).

Graphical models for diagnostic knowledge

representation and inference. IEEE Instrum. Meas.

Mag., vol. 9, no. 4, pp. 45–52.

Qualtech Systems Inc., www.teamqsi.com.

Simpson, W., & Sheppard, J. (1992). System Testability

Assessment for Integrated Diagnostics. IEEE Des. Test.

Comput., vol. 9, no. 1, pp. 40-54.

Kodali, A., Singh, S., & Pattipati, K. (2013). Dynamic set-

covering for real-time multiple fault diagnosis with

delayed test outcomes. IEEE Trans. Syst., Man, Cyben.

A, vol. 43, no. 3, pp. 547-562.

Kodali, A., Pattipati, K., & Singh, S. (2013). Coupled

factorial hidden Markov models (CFHMM) for

diagnosing multiple and coupled faults. IEEE Trans.

Syst., Man, Cyben. A, vol. 43, no. 3, pp. 522-534.

Narasimhan, S., Balaban, E., Daigle, M., Roychoudhury, I.,

Sweet, A., Celaya, J., & Goebel, K. (2012)

Autonomous decision making for planetary rovers

using diagnostic and prognostic information.

Proceedings of the 8th IFAC Symposium on Fault

Detection, Supervision and Safety of Technical

Processes (SAFEPROCESS 2012), Mexico City,

Mexico.

Poll, S., Patterson-Hine, A., Camisa, J., Garcia, D., Hall, D.,

Lee, C., Mengshoel, O., Neukom, C., Nishikawa, D.,

Ossenfort, J., Sweet, A., Yentus, S., Roychoudhury, I.,

Daigle, M., Biswas, G., & Koutsoukos, X. (2007).

Advanced diagnostics and prognostics testbed. In Proc.

DX’07, pp. 178–185.

Kurtoglu, T., Narasimhan, S., Poll, S., A., Garcia, D., Kuhn,

L., de Kleer, J., van Gemund, A., & Feldman, A.

(2009). First international diagnostics competition –

DXC’09. In Proc. DX’09.

