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ABSTRACT 

Diagnostics is an important concept in system health and 

monitoring of space operations. Many of the existing 

diagnostic algorithms utilize system knowledge in the form 

of diagnostic matrix (D-matrix, also popularly known as 

diagnostic dictionary, fault signature matrix or reachability 

matrix). The D-matrix maps tests on observed conditions to 

failures. This matrix is mostly gleaned from physical 

models during system development. But, sometimes, this 

may not be enough to obtain high diagnostic performance 

during operation due to system modifications and lag and 

noise in sensor measurements. In such a case, it is important 

to modify this D-matrix based on knowledge obtained from 

sources such as time-series data stream (simulated or 

maintenance data) within a framework that includes the 

diagnostic/inference algorithm. A systematic and sequential 

update procedure, diagnostic modeling evaluator (DME) is 

proposed to modify D-matrix and wrapper/test logic 

considering the least expensive update first. The user sets 

the diagnostic performance criteria. This iterative procedure 

includes conditions ranging from modifying 0’s and 1’s in 

the matrix, adding/removing the rows (failure 

sources)/columns (tests), or modifying test/wrapper logic 

used to determine test results. We will experiment this 

framework on ADAPT datasets from DX challenge 2009. 

1. INTRODUCTION 

Traditionally, diagnostics is performed in the following 

way: System modeling → List failure causes (faults) → 

Design tests → Generate D-matrix → diagnosis via 

inference algorithm (Luo & Pattipati, 2007). Here, the 

process from system modeling to generate D-matrix is 

independent of the diagnoser. But, when the diagnostic 

algorithm based on D-matrix (Singh, Kodali, Choi, Pattipati, 

Namburu, Chigusa, Prokhorov, & Qiao, 2009) is applied 

during operations, and the performance is not robust, it is 

important to reexamine the system model (D-matrix) in 

terms of its correctness and utility towards diagnosability. 

Thus, we propose a debugging architecture, termed 

diagnostic modeling evaluator (DME) that includes the 

diagnoser and repairs the system model (D-matrix) to suit 

better diagnostic performance based on new/updated 

information. This updated information is mostly available 

after system development or during operation.  

D-matrix can be developed from physical models, historical 

field failure data, service documents, engineering 

schematics, and Failure Modes, Effects and Criticality 

Analysis (FMECA) data (Singh, Holland, & 

Bandyopadhyay, 2011) by establishing causal relationship 

between faults and tests (Luo, Tu, Pattipati, Qiao, & 

Chigusa, 2006). Initially, D-matrix is generated from any of 

these sources (e.g., physical model). The initial model, when 

developed during system development, ignores lag and 

noise in sensor measurements during operation and other 

system advancements during deployment. Then other 

sources (e.g., operations data (time-series)) that contain 

these critical changes can be used as reference material in 

DME framework to repair the initial D-matrix. This 

provides a debugging environment to the initial model. This 

also provides an effective platform to represent information 

from different sources (model-based, data-driven, or 

knowledge-based) in a unified D-matrix concept. 

Diagnostic modeling evaluator (DME) is developed as an 

automated debugging process to update/repair D-matrix that 

best suits user-defined performance requirements. This 

includes assessing the level of fault definitions (component 

or failure mode level), number of tests required, test logic 

by considering the thresholds for faulty behavior, and most 

importantly the fault-test relationships. Conditions (repairs) 

ranging from modifying 0’s and 1’s in the matrix, or 

modifying the rows to accommodate lower-level fault 

modeling with failure modes, or adding or removing tests, 

or changing their test logic are identified to experiment for  
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Figure 1. Framework to debug D-matrix

better performance in terms of diagnostics (detection + 

isolation). This is implemented as an iterative feedback 

process by tuning D-matrix at every step with repair 

conditions. Sometimes, more than one repair is applicable 

on a given iteration. Those repairs are accepted/declined by 

the user/decision maker based upon their diagnostic 

performance and also, most importantly, mission directives. 

The user-defined performance criteria are quantified based 

on the following metrics: diagnostic efficiency, false 

positive/false negative rate, diagnostic time and cost. This is 

again communicated to update procedure and the iterations 

go on until there are no further changes (shown in Figure 1). 

In this paper, section 2 focuses on explaining DME 

procedure as a debugger and the conditions required to 

update D-matrix. In section 3, the process of updating D 

matrix is shown with examples. Two example systems, 

rover and ADAPT (from DX challenge 2009) are included 

in this paper. 

2. DEBUGGING FRAMEWORK 

Conventionally, system model doesn't consider diagnostic 

utility when developing D-matrix. While developing a 

robust diagnostic system, it is important for both system 

modeling and diagnostic process to interact coherently 

resulting in high detection and isolability performance 

during operation. To make this idea possible, DME acts as a 

debugger to the initial D-matrix using the available 

operational or simulations data. It plays the data in batch 

mode in order to determine which repairs to make. No 

single time step decisions are made, though this would be 

required to utilize these techniques during runtime operation 

(other data sources can also be used to repair D-matrix). 

These repairs to D-matrix can be translated back to the 

initial system model. This is pursued as future work. Here, 

we will explain the modules and process of DME 

framework as shown in Figure 1: 

2.1. Information Sources 

The diagnostic modeling, firstly, starts with building the 

model from the system information, viz., physical model, 

historical field failure data, service documents, spreadsheets, 

engineering schematics, FMECA, sensor/commands list, 

and simulations data (Singh et al., 2011). D-matrix, in DME 

context, is built from one source initially and then 

updated/repaired with the other available sources. These 

sources can be model-based, data-driven, or knowledge-

based informative sources. This repair process can be 

performed during system development or operational phase. 

The data collected during real-time operations 

accommodates lags and noise ignored during system 

development, thus providing operational information about 

the relationship between faults and tests. But, sometimes, 

the information from different sources can be counter-

explanative and this needs to be dealt carefully during 

corrective actions to the D-matrix. 

2.2. Generating D-matrix (preliminary) 

Here, the initial D-matrix is generated from any of the 

available sources listed above. For this purpose, it is 

important to determine the level at which fault modeling is 

performed for diagnosis. This can be done at sub-system, or 

component, or failure mode level depending on the system 

properties and requirements. Also, the testing criterion for 

each test is formulated based on sensor measurements. 

These tests can either be threshold, trending, or statistical 

tests. Subsequently, D-matrix is generated either by hand or 

by automated software methods like TEAMS Designer 

(Qualtech Systems Inc.). The D-matrix generated in this 

step is preliminary and is modified in the next step. 
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Figure 2. Top-level iterative loop identifying progression of repairs for DME framework  

2.3. Diagnostic Modeling Evaluator (DME) 

In the process of repairing D-matrix for better performance, 

an iterative loop (DME) consists of a sequential procedure 

with low-cost repairs considered first (as shown in Figure 

2). The updates in the D-matrix are made in accordance to 

the new information from another source. After each 

iteration, the performance of the updated matrix is 

determined and the changes are accepted/declined 

accordingly based on mission directives. Here, the 

performance can be defined as combination of the required 

metrics, viz., false-positive, or false-negative rate, accuracy, 

time to diagnose, or cost involved for test and diagnoser 

implementation. Sometimes, improvement in one metric can 

affect others. Thus, balance should be maintained given the 

mission directives. This process is continued until there can 

be no further improvement. The necessary steps involved in 

the iterative updating DME procedure of the D-matrix are 

listed below: 

2.3.1. Repair Cases for Updating D-matrix 

1.  Address row/column redundancy  

Faults/test corresponding to rows and columns of D-matrix 

are assessed for redundancy in terms of two or more rows or 

columns having exactly the same signature. Duplicate rows 

or columns can result in ambiguous/masking faults and 

bad/duplicate tests, respectively (Simpson & Sheppard, 

1992). In such a case, to decrease computational complexity 

and simplify representation, those faults/tests are grouped in 

to one. It is better to keep track of this change to avoid 

ignoring the subsequent repairs and also when they are 

required for mission critical functions or in other system 

mode. 

2. Modify Fault Modeling (Change Rows of D-matrix)  

In general, faults are modeled at component level. But, 

sometimes, components can be faulty with different severity 

levels based on their root-cause resulting in different fault 

signatures in D-matrix. In this case, new rows are added to 

the D-matrix when failure modes need to be refined. We add 

a row for each addition of a new component. Similarly, 

when the diagnosis is required at higher level (e.g Line 

Replaceable Unit (LRU) or Orbital Replaceable Unit 

(ORU)) or when components are removed, we remove the 

corresponding rows in D-matrix. 

Table 1. List of tests
1 

Tests Symbols 

Voltage sensors V1, V2, V3, V4 

Battery temp. sensor TB1, TB2, TB3, TB4 

Battery current sensor i 

Position sensors xFL, xFR, xBL, xBR 

Velocity sensors wFL, wFR, wBL, wBR 

Current sensors iFL, iFR, iBL, iBR 

Temperature sensors TFL, TFR, TBL, TBR 

 

                                                           
1 FL, FR, BL, BR represents front left, front right, back left, back 

right wheels, respectively. 
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Table 2. D-matrix and the corresponding delays (in seconds) of each test for the rover system 

 
V1 TB1 V2 TB2 V3 TB3 V4 TB4 I xBL wBL iBL TBL 

Motor 

Friction 

Fault BL 

1/0.55 1/25.75 1/0.55 1/22.6 1/0.55 1/19.55 1/0.55 1/23.6 1/0.4 1/0.9 1/0.2 1/0.4 1/30.95 

Parasitic 

Load 
1/0.2 1/28.8 1/0.2 1/26.85 1/0.2 1/26.1 1/0.2 1/31.9 1/0.15 0 0 0 0 

Voltage 

Sensor 1 

Bias 

1/0.15 0 0 0 0 0 0 0 0 0 0 0 0 

3. Change Test Logic/Wrapper Code 

We modify the test logic to attain better detection for each 

test. The test criteria, especially when defined by thresholds, 

may not hold during operation or with degradation of 

component’s performance over time. This necessitates 

changing the logic subsequently either to trending or 

statistical tests. Additionally, refinement of abstraction of 

failure modes may in turn require test logic/wrapper code to 

be refined as well. Changes in test logic should be properly 

monitored, sometimes, for increased false positive or false 

negative detection rate with respect to the user defined 

expected performance measures for the D-matrix. 

4. Repair False positives/negatives (Change the Entries 

of D-matrix) 

The most important correction to the D-matrix is updating 

its entries, i.e., changing 1 to 0 or vice-versa, thus 

decreasing false positive or false negative isolation rate, 

correspondingly. This can be reflected as system (physical 

model) change. This means that a 1 in the D-matrix means 

two conditions are true: that a path exists between the fault 

and the test and that a set of signals propagate from the 

failure are detected at the test. A change in fault test 

relationships means that change for the paths and signals are 

applied. Note that both false positives and false negative 

isolation rates cannot be improved concurrently. This is 

because, to improve false negative isolation rate, we need to 

expand the threshold logic (red lines) which will increase 

false positives. Thus, the required acceptable metric is 

obtained from the mission directives. 

5. Add/remove Tests (Change Columns of D-matrix) 

Adding tests incurs additional cost, so we restrict this repair 

strategy to be done at last. We have to design new tests if 

some faults are not adequately detected or if they are not 

isolatable. Tests also can be broken into finer levels, similar 

to the component to failure mode representation, to be able 

to detect different fault modes with different severities. On 

the other hand, sometimes, low reliable and delayed tests 

hinder the overall diagnostic performance efficiency. Such 

tests when not detecting critical faults in any other system 

mode can be removed. 

2.3.2. Diagnostic Algorithm 

Here, any standard diagnostic procedure based on D-matrix 

can be applied as a diagnoser. We have applied diagnostic 

algorithms Dynamic Multiple Fault Diagnosis (DMFD) 

algorithms based on primal-dual optimization framework 

that can detect multiple, delay, and intermittent faults over 

time. Our problem is to determine the time evolution of fault 

states based on imperfect/perfect test outcomes observed 

over time and is formulated as one of finding the maximum 

a posteriori configuration to evaluate fault state evolution 

over time (which is why the time series is process in batch 

mode) that best explains the observed test outcome 

sequence. More details of these algorithms can be found in 

(Singh et al., 2009), (Kodali, Singh, & Pattipati, 2013), 

(Kodali, Pattipati, & Singh, 2013). 

2.3.3. Performance Evaluation 

Performance metrics can be overall diagnostic efficiency, 

false-positive rate, false-negative rate, diagnostic time and 

cost. The choice of metrics is dependent on the user-set 

criteria based on mission directives. As an example, user 

can determine to have less false positives (this may increase 

false negatives). 

3. SIMULATIONS AND RESULTS 

We demonstrate DME framework on two example systems, 

viz., rover and ADAPT systems. We do not provide the 

description for these systems. More details can be found in 

(Narasimhan, Balaban, Daigle, Roychoudhury, Sweet, 

Celaya, & Goebel, 2012) and (Poll, Patterson-Hine, Camisa, 

Garcia, Hall, Lee, Mengshoel, Neukom, Nishikawa, 

Ossenfort, Sweet, Yentus, Roychoudhury, Daigle, Biswas & 

Koutsoukos, 2007) for rover and ADAPT systems, 
respectively. 

3.1. Example System 1: Rover 

The initial D-matrix of the rover system is generated via 

simulations with three faults and thirteen tests (see Table 1 

and Table 2). Three fault scenarios viz., battery parasitic 

load, motor friction fault, and voltage sensor fault are 

simulated (Narasimhan et al., 2012) by injecting them in the 

rover test bed and altering the corresponding measurements  
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Table 4. List of faults in ADAPT-Lite 

No. Fault ID Fault modes Test ID Sensor description 

1 ISH266 Stuck E235 DC voltage 

2 TE228 Stuck, offset E240 DC voltage 

3 IT267 Stuck, offset E242 DC voltage 

4 E267 Stuck, offset E261 DC voltage 

5 IT240 Stuck, offset E265 AC voltage 

6 ESH260A Stuck E267 AC voltage 

7 E242 Stuck, offset ESH244A Actuator position 

8 ESH275 Stuck ESH260A Actuator position 

9 IT261 Stuck, offset ESH275 Actuator position 

10 E261 Stuck, offset ISH236 Actuator position 

11 E240 Stuck, offset ISH262 Actuator position 

12 E235 Stuck, offset ISH266  Actuator position 

13 E265 Stuck, offset IT240 DC current transmitter (50A Max) 

14 TE229 Stuck, offset IT261 DC current transmitter (50A Max) 

15 ISH262 Stuck IT267 AC current transmitter (12A Max) 

16 ST516 Stuck, Offset ST265 AC frequency transmitter 

17, 18, 19 FAN416 FailedOff, under speed, over speed ST516 Speed (RPM) transmitter 

20 EY275 Stuckopen, stuckclosed TE228 Temperature 

21 CB266 Tripped, failedopen TE229 Temperature 

22 INV2 FailedOff XT267 Phase angle transducer 

23 CB262 Tripped, failedopen   

24 EY260 Stuckopen, stuckclosed   

25 EY244 Stuckopen, stuckclosed   

26 CB236 Tripped, failedopen, stuckclosed   

27 ISH236 Stuck   

28 XT267 Stuck, offset   

29 ST265 Stuck, offset   

30 ESH244A Stuck   

Table 3. Diagnosis time for each fault (fault injected at 50s) 

 
HyDe QED 

D-matrix 

diagnoser 

Motor Friction Fault BL 50.2s 50.25s 50.2s 

Parasitic Load 50.05s 51.2s 50.05s 

Voltage Sensor 1 Bias 50.1s 50.3s 50.15s 

with erroneous values. All these faults are injected at 50s. 

Temperature sensors have high detection delays (see Table 

2), therefore, the corresponding diagnostic delays will also 

be longer. The DMFD algorithm with delays (Kodali et al., 

2013) delivers intermediate diagnosis at each time-step with 

partial test information and updates it as the test information 

becomes available.  

The inputs to DME framework are initial D-matrix and 

delay metrics in Table 2. Then, at iteration 1, the time to 

diagnosis is high due to detection delays of temperature 

sensors. There can be 2 repair actions for this case. Either, 

the test logic can be changed for the temperature sensors or 

they can be removed. But, changing test logic cannot avoid 

detection delays. Thus, the tests relating to temperature 

sensors are removed. This improves the time to diagnosis 

with out compromising the isolability for the listed fault  

universe2. The results with updated D-matrix are 

comparable with other diagnostic algorithms (HyDe, QED 

(Narasimhan et al., 2012) in Table 3 (the faults are injected 

at 50s). 
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Figure 3. E235 sensor measurement when fault is injected  

3.2. Example System 2: ADAPT-Lite 

Here, we used the dataset generated from ADAPT-Lite 

system for DX workshop tier 1 competition 2009 (Kurtoglu, 

Narasimhan, Poll, Garcia, Kuhn, de Kleer, van Gemund, &  

                                                           
2 This strategy may not hold if we expand the fault universe. Here, 

this is demonstrated as an example.  
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Figure 4. E235 sensor measurement: (a) nominal case (b) when fault 19 is injected (red line indicates the fault injection time) 

Figure 5. DME process to generate modified D-matrix from initial D-matrix (ADAPT system) 

Feldman, 2009). This dataset has 2 parts: sample and 

competition data. Data (sensor measurements) is collected 

for 238.5s with a sampling rate of 0.5s, thus the data 

contains a total of 478 time steps for both nominal case and 

when faults are injected. Each fault is injected and the 

corresponding continuous sensor measurements over time 

are noted (see Table 4 for list of faults and tests). Initially, 

D-matrix is generated by visualizing the sensor 

measurements in sample data. As seen in Figure 3, there is a 

clear change in the mean value of the sensor E235 when 

fault E235 is injected. Then, the corresponding row-column 

entry in D-matrix is depicted as 1 in the D-matrix. The 

corresponding test logic in terms of threshold logic is also 

generated to suit fault detection.  

In DME framework, at iteration 1 using sample data, rows 

17-19 corresponding to different fault modes, viz., failed 

off, under speed, and over speed for the component FAN 

have similar fault signature. These are identified as 

ambiguous rows. Also, when faults 18 and 19 occur, they 

are misdiagnosed as fault 3 (IT 267 sensor fault). This is 

identified as either incorrect test logic or D-matrix entries in 

DME framework. But, most of the tests connected to faults  
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Table 5. Competition data results 

(in %) 
Initial D-

matrix 

Modified entries of D-

matrix 

False positive rate 4.85 6.94 

False negative rate 2.39 2.41 

Classification 

accuracy 
94.57 96.15 

18 and 19 didn't fail. Thus, the former repair is rejected. 

Therefore, the D-matrix entries are changed to generate new 

fault signatures for faults 18 and 19 (shown in Figure 5). 

The entries corresponding to voltage and current sensors are 

changed to 0. This is because, the effect of these faults on 

the corresponding sensor values is very low, i.e., the change 

in the measurement values is minimal. This is evident in 

Figure 4. Even though there is a clear indication of shift in 

the measurement value when fault is injected in Figure 4(b), 

those faulty values are overlapping with the values in the 

nominal case (24.3-24.36V). The repaired D-matrix is 

shown in Figure 5. These D-matrix repairs are verified on 

competition data using DMFD algorithm (Singh et al., 

2009) (see Table 5). Classification accuracy is the 

percentage number of events that are correctly diagnosed 

(both nominal and faulty cases over 478 time-steps). 

Evidently, the diagnostic performance with modified D-

matrix is better; thus, the corresponding repair strategy is 

accepted. Note that, the false positive and false negative 

rates are increased with modified D-matrix. But, here, the 

classification accuracy is considered as the decisive 

performance metric. There are no further changes in 

subsequent iterations. 

4. SUMMARY AND FUTURE DIRECTIONS 

Traditionally, diagnostics is viewed as an open-loop 

cascading process with the D-matrix as the input to the 

inference algorithm. In this context, DME is proposed to 

allow feedback from the diagnoser to the initial model via 

D-matrix repairs. Here, most importantly, the D-matrix can 

be updated to account for noise, lag and other effects by 

validating it through a time-series data stream or any other 

information that comes along during or after system 

development and operational deployment. Thus, in this 

iterative process, DME updates D-matrix and the 

corresponding test logic through a sequential procedure in 

the order of cost-effective repairs using the time-series data 

stream.  

In our future research, DME framework will be updated and 

implemented as an automatic process. We will also 

experiment with systems that can accommodate the other 

repair strategies. We will also define user's role to validate 

the repair recommendation based on performance and 

mission directives and experiment with different metrics as 

the performance criteria. Most importantly, we will provide 

user-computer interface to communicate repair actions and 

provide necessary feedback. A systematic process to 

transverse the repairs back to the system model will also be 

investigated. 
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