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ABSTRACT

This paper develops a novel computational approach to quan-

tify the uncertainty in prognostics in the context of condition-

based monitoring. Prognostics consists of two major steps;

first, it is necessary to estimate the state of health at any time

instant, and then, it is required to predict the remaining useful

life of the engineering component/system of interest. While

the topic of estimation has been addressed through different

types of Bayesian tracking techniques, this paper primarily

focuses on the second aspect of future prediction and remain-

ing useful life computation, which is influenced by several

sources of uncertainty. Therefore, it is important to identify

these sources of uncertainty, and quantify their combined ef-

fect on the remaining useful life prediction. The computation

of uncertainty in remaining useful life can be treated as an

uncertainty propagation problem which can be solved using

probabilistic techniques. This paper investigates the use of

the Most Probable Point approach (which was originally de-

veloped to estimate the failure probability of structural sys-

tems) for calculating the probability distribution of the re-

maining useful life prediction. The proposed methodology

is illustrated using a battery which is used to power an un-

manned aerial vehicle.

1. INTRODUCTION

Research in the past few years has been advocating the use

of an onboard health management system in engineering sys-

tems used for time-critical, safety-critical, and cost-critical

missions. An accurate health management system constantly

monitors the performance of the engineering system, per-

forms diagnosis (fault detection, isolation, and estimation),

prognosis (predict possible failures in the future and estimate

Shankar Sankararaman et al. This is an open-access article distributed un-

der the terms of the Creative Commons Attribution 3.0 United States Li-

cense, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

remaining useful life) and aid online decision-making (fault

mitigation, fault recovery, mission replanning, etc.). The pre-

diction of remaining useful life is an important aspect of prog-

nostics, and is directly useful in different types of decision-

making. This paper focuses on the calculation of remain-

ing useful life in the context of model-based prognostics and

condition-based monitoring.

In practical applications, there are several sources of uncer-

tainty which affect the performance of both the engineering

system and the health management system. For example, the

loading conditions and operating conditions of the engineer-

ing system may be random in nature. The sensors, which

are part of the health management system, may not be ac-

curate due to measurement errors, and this may prevent ac-

curate estimation of the system state. The system models

which are used by the health management system for esti-

mation and prediction may have certain errors. As a result

of the presence of such uncertianties, it is important to rig-

orously account for the sources of uncertainty during diag-

nosis, prognosis, and decision-making. While the topic of

uncertainty quantification in diagnosis has gained attention

in literature (Sankararaman & Mahadevan, 2011b, 2013), the

importance of uncertainty significantly increases in the con-

text of prognosis, since the focus is on predicting future be-

havior, which is far more challenging and uncertain than fault

diagnosis. The primary objective of this paper is to develop

a computational methodology which can quantify the com-

bined effect of the various sources of uncertainty on prog-

nostics, and estimate the overall uncertainty in the remaining

useful life (RUL) prediction.

In the past, several researchers have used different types

of methods to quantify uncertainty in prognostics. Tang

et al. (Tang, Kacprzynski, Goebel, & Vachtsevanos, 2009)

discuss the use of Bayesian tracking algorithms for uncer-

tainty quantification and management in prognostics for In-
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tegrated Vehicle Health Management (IVHM) systems. The

“Damage Prognosis Project” at Los Alamos National Labo-

ratory (C. R. Farrar, Lieven, & Bement, 2005; Inman, Far-

rar, Junior, & Junior, 2005) exclusively dealt with prognosis

and uncertainty quantification applied to structual compos-

ites. Several researchers worked on this project and pub-

lished articles that deal with model development, verifica-

tion, validation, prediction, and uncertainty quantification;

the conclusions of this project have been documented by

Farrar et al (C. Farrar & Lieven, 2007). Sankararaman et

al. (Sankararaman, Ling, Shantz, & Mahadevan, 2009, 2011)

quantified the uncertainty in fatigue crack growth prognosis

in metals, by using finite element models (for structural anal-

ysis), crack growth models (to predict future crack growth),

and Monte Carlo simulation (for uncertainty quantification).

Gu et al. (Gu, Barker, & Pecht, 2007) also used Monte Carlo

simulation in order to compute the uncertainty in damage in

electronics subjected to random vibration. In some practical

applications, Monte Carlo simulation using exhaustive sam-

pling may be computationally expensive, and this challenge

has inspired the development of intelligent sampling-based

algorithms (DeCastro, 2009; Orchard, Kacprzynski, Goebel,

Saha, & Vachtsevanos, 2008; Daigle, Saxena, & Goebel,

2012) and mathematical techniques such as relevance vector

machines (Saha & Goebel, 2008) and principle component

analysis (Usynin & Hines, 2007), that can reasonably approx-

imate the uncertainty in the prognostic predictions. Further,

Bayesian and maximum relative entropy methods (Guan et

al., 2011) have also been used for estimating uncertainty in

prognostics.

The above described methods for uncertainty quantification

are mainly based on sampling techniques, and may require

several thousands of samples to accurately calculate the un-

certainty in RUL prediction. This may be computationally

expensive for online monitoring, and therefore, Sankarara-

man et al. (Sankararaman, Daigle, Saxena, & Goebel, 2013)

discussed analytical approaches for predicting the uncertainty

quantification. These analytical methods are based on first-

order Taylor’s series expansion, and in particular, one method

known as the Inverse First-order Reliability Method was im-

plemented for calculating the uncertianty in RUL prediction.

This method was originally developed by structural engineers

for calculating the failure probability of structural engineer-

ing applications. This method is based on the concept of Most

Probable Point (MPP) Estimation, and this paper further in-

vestigates the applicability of this approach to different types

of loading conditions and RUL calculation. Note that the term

“reliability method” is avoided in the rest of the present paper

in order to avoid confusion with “reliability testing” methods

for prognostics, since the proposed methodology is primarily

applicable to condition-based online monitoring.

The rest of the paper is organized as follows. Section 2 dis-

cusses a framework for uncertainty quantification in prognos-

tics, and explains that the problem of estimating the uncer-

tainty in the RUL prediction can be viewed as an uncertainty

propagation problem. Section 3 discusses the importance of

future loading conditions, and describes three different types

of future loading scenarios for prognostics. Section 4 ex-

plains the proposed computational methodology for quanti-

fying prognostics uncertainty and estimating the uncertainty

in the remaining useful life prediction; this methodology is

illustrated using a numerical example in Section 5. Finally,

conclusions are drawn in Section 6.

2. UNCERTAINTY QUANTIFICATION IN CONDITION-

BASED MONITORING AND PROGNOSTICS

This section discusses the need for uncertainty quantification

in prognostics and health monitoring. First, a model-based

framework for prognostics is presented, and then, the vari-

ous sources of uncertainty are discussed with reference to this

framework. Finally, it is illustrated that uncertainty quantifi-

cation in prognostics can be viewed as an uncertainty propa-

gation problem.

2.1. Model-based Framework for Prognostics

The goal of prognostics is to predict the future behavior of

a component/system at any generic instant of prediction, de-

noted by tP . This is accomplished by estimating the states of

the systems at all time instants t > tP . The inputs (u(t)) and

outputs (y(t)) to the system are known until the prediction

time t = tP , and in order to perform prediction, the future

inputs i.e., u(t) ∀ t > tP also need to be available. A gener-

alized prognostics architecture is showed in Fig. 1.

The first step in prognostics is to estimate the state at time

tP . Using the estimated state, the second step is to predict

future states until failure; thereby, the end-of-life (EOL) and

the remaining useful life (RUL) can be predicted.

State-space models are used for both estimation and predic-

tion. Consider a generic state space model which is used to

continuously predict the state of the system, as:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)

where x(t) ∈ R
nx is the state vector, θ(t) ∈ R

nθ is the

parameter vector, u(t) ∈ R
nu is the input vector, v(t) ∈

R
nv is the process noise vector, and f is the state equation.

This state equation can be constructed using physics-based

principles, or using data-driven techniques.

While Eq. 1 is used for state prediction, actual sensor mea-

surements (which are available until time t = tP ) are used

for state estimation. The sensor measurements are modeled

using a generic output equation, such as:

y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

where y(t) ∈ R
ny , n(t) ∈ R

nn , and h denote the output vec-
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u(t) y(t) x(tP )
System Check for failure1. Estimation 2. Prediction

3. Estimate End-of-Life

Continue future state prediction until failure

x(t)

t > tP

Figure 1. Model-Based Prognostics Architecture

tor, measurement noise vector, and output equation respec-

tively. Note that output measurements are available only until

time t = tP . Therefore, the output equation is used only in

the estimation stage, and not in the prediction stage.

(Note: While the above framework for state-space represen-

tation is general, some practical systems are time-invariant.

Therefore, f and h may not depend on t. Sometimes, the

output equation h may depend only on the states x(t) and

not the inputs u(t). While the proposed methodology is pre-

sented using the general framework, simplifications and as-

sumptions may be included depending on the physical system

under consideration.)

2.2. State Estimation

Bayesian tracking approaches as Kalman filtering, particle fil-

tering, etc. can be used for state estimation. These methods

use Bayes theorem to update the uncertainty in the states con-

tinuously as a function of time, as and when new measure-

ments are available. While particle filtering is the most gen-

eral method that can account for different distribution types

and account for non-linearity, Kalman filtering can be used

only when Eq. 1 is linear and all the uncertain quantities are

Gaussian. When the uncertain quantities are Gaussian, the

extended Kalman filter can be applied by linearizing Eq. 1.

Similarly, the unscented Kalman filter (Daigle et al., 2012)

can be used to approximate the mean and variance of response

quantities (future states and remanining useful life predic-

tion), even for non-linear models.

2.3. Prognostics: Future Prediction

Prognostics consists of predicting future behavior of engi-

neering systems, identifying possible failure modes, and es-

timating the remaining useful life. Estimating system state is

an essential precursor to prognostics, because damage and/or

system faults can be represented using state variables or a

collection of state variables. Therefore, predicting how the

damage will progress or how the fault will grow is equivalent

to estimating future states of the systems, based on the infor-

mation available at the prediction time instant tP . In order

predict future behavior and thereby perform prognosis until

end-of-life (denoted by E(tP ) = t+ R(tP ), where R(tP ) is

the remaining useful life), the following pieces of information

are necessary:

1. State prediction model, as in Eq. 1.

2. Present state estimate (x(tP )); using the present state es-

timate and the state space equations in Eq. 1, the future

states (x(tP ), x(tP + 1), x(tP + 2), ..., x(tP +R(tP )))
can be calculated.

3. Future loading (u(tP ), u(tP +1), u(tP +2), ..., u(tP +
R(tP ))); these values are needed to calculate the future

state values using the state space equations.

4. Parameter values from time tP until time tP + R(tP )
(denoted by θ(tP ), θ(tP + 1), ..., θ(tP +R(tP ))).

5. Process noise (v(tP ), v(tP + 1), v(tP + 2), ..., v(tP +
R(tP ))).

While writing “θ(tP ), θ(tP + 1), ..., θ(tP + R(tP ))”,

note that unit time discretization has been used for the sake

of illustration. During implementation, appropriate time-

discretization values need to be selected.

During prognosis, all the future states can be predicted as a

function of the above quantities, and in a practical engineer-

ing system, all of them may be potentially uncertain. First, the

state-prediction model is prone to have modeling errors. Sec-

ond, the state estimate at time tP is uncertain as a result of the

Bayesian tracking method used for estimation. Third, future

loading cannot be precisely known in many applications, and

therefore, uncertainty regarding future loading needs to be

considered. Fourth, model parameters are usually estimated

using filtering; but it is challenging to know future parameter

values. In this paper, model parameter values are assumed

to be constant over time and precisely known (without un-

certainty). Fifth, process noise is conventionally assumed to

follow a probability distribution (usually, Gaussian with zero

mean and a specified variance), and needs to be accounted for

in prognostics.

Since prognostics needs to be performed until failure, a

boolean function (Sankararaman et al., 2013) of the states

is necessary to define end-of-life of the engineering system.

Such a boolean function can be defined as:

TEOL(x(t),θ(t),u(t)) =

{

1, c(x(t),θ(t),u(t)) ≤ 0

0, otherwise,

(3)
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where c(x(t),θ(t),u(t)) ≤ 0 represents failure criterion.

There may be multiple failure criteria too (Daigle et al., 2012;

Sankararaman et al., 2013) in some cases, and therefore, the

definition of TEOL needs to account for all such failure crite-

ria.

In fact, it can be easily shown that TEOL is a function of the

above list of quantities, and this functional relationship can be

expressed through a graphical flowchart, as shown in Fig. 2.

As seen in Fig. 2, both the End-of-life (EOL, denoted by

E(tP )) and the remaining useful life (RUL, denoted by

R(tP )) can be calculated as a function of the above list of

quantities. Let the function, which predicts the RUL, be de-

noted as:

R = G(X), (4)

where X represents the concatenated vector of quantities

contained in (1) present state estimates (x(tP )); (2) future

loading values (u(tP ), u(tP + 1), u(tP + 2), ..., u(tP +
R(tP ))); and (3) future process noise values. Again, note that

unit time discretization has been used for illustration. Since

these quantities are uncertain, the problem of estimating the

uncertainty in prognostics, and thereby computing the uncer-

tainty in EOL and RUL can be viewed as propagating the un-

certainty in X through G (Sankararaman & Goebel, 2013a).

3. FUTURE LOADING CONDITIONS

In order to perform efficient prognosis, it is necessary to know

what loading conditions the system will experience in the

future. However, in many practical applications, it is chal-

lenging to be able to precisely predict future loading. There-

fore, it is essential to estimate the uncertainty in future load-

ing conditions and incorporate this information in prognos-

tics. Time-series analysis techniques and signal processing

methods can be used to represent future loading conditions,

continuously as a function of time. Further, different types of

engineering application may require different types of tech-

niques for loading characterization and uncertainty represen-

tation. Therefore, a good prediction methodology should be

able to account for different types of representation.

Three different types of future loading conditions - constant

amplitude loading, white noise loading, variable amplitude

loading - are discussed in this paper. Uncertainty represen-

tation for each of the above types of loading conditions are

explained in the remainder of this section. Sample loading

trajectories are graphically explained through appropriate il-

lustrations.

3.1. Type I: Constant Amplitude Loading

This is the simplest form of loading, where the value of u

is constant at all time instants. However, the constant value

is assumed to be random, and one random variable is suf-

ficient to represent uncertainty in this type of loading con-

dition. Multiple realizations of constant amplitude loading

conditions are shown in Fig. 3.
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Figure 3. Type-I Loading: Multiple Realizations

3.2. Type II: White Noise Loading

Now, the probability distribution of u(t) is assumed to be

known. For the sake of simplicity, this probability distribu-

tion is assumed to be constant at all time instants. Therefore,

at any time instant, the loading value is selected by sampling

from this probability distribution. Let fU(t)(u(t)) denote the

probability density function (PDF) of this distribution. Load-

ing values at multiple time instants are independently sam-

pled from this distribution. A typical realization of this type

of loading condition is shown in Fig. 4.

0 200 400 600 800 1000
0

5

10

15

20

Time

L
o

ad
in

g

Figure 4. Type-II Loading: One Realization

The number of random variables necessary to represent

such a type of loading condition depends on the number of

time steps from prediction time tP until end-of-life E(tP ),
which in turn depends on the chosen time-discretization level.

Therefore, the number of variables may range from a few tens

to several thousands, and this poses a computational chal-

lenge for uncertainty propagation. Therefore, a new method-

ology is proposed in this paper to overcome this challenge.

Note that the value of loading varies from time to time, since

it is sampled individually at every time instant. Suppose that

the time-variant process is replaced with a time-invariant con-

stant value denoted by uE . In other words,

u(t) = uE ∀ t ∈ [tP , tP +R(tP )] (5)
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Compute x(t+ 1)

Discretize Eq. 1
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if TEOL = 0
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R = G(X)

Figure 2. Uncertainty in Prognostics: An Uncertainty Propagation Problem

The above equation means that the same realization of load-

ing will be used for prediction at every future time instant. In

order for this to be valid, it is important to choose a suitable

probability distribution for uE , so that the effect of propa-

gating this distribution through G is equivalent to propagat-

ing the original distribution of u(t) through G. This can be

accomplished by computing the likelihood of uE such that

Eq. 5 is satisfied. In other words, any value of uE has an

associated probability with which Eq. 5 is satisfied; the like-

lihood of uE is proportional to this probability. The proba-

bility distribution of the true loading distribution can be used

to calculate this likelihood, as:

L(uE |R(tP )) ∝

t=tP+R(tP )
∏

t=tP

fU(t)(u(t) = uE) (6)

where fU(t)(v(t)) is the probability density function of the

true loading u(t). Also note that the likelihood function is

conditioned on the RUL and written as R(tP ). Further, the

above equation assumes that the loading values at two dif-

ferent times are independent of each other. If any statisti-

cal dependence is unknown, then it can be easily included

in the above equation by conditioning appropriately. Having

calculated the likelihood, the PDF of uE can be calculated

as (Sankararaman & Mahadevan, 2011a):

fUE (uE |R(tP )) =
L(uE |R(tP ))

∫

D
L(uE |R(tP ))duE

(7)

In Eq. 7, the domain of integration D is chosen such that

uE ∈ D if and only if L(uE) 6= 0. Now, propagating the

uncertainty in uE through G is equivalent to propagating the

uncertainty in u(t) through G. Therefore, uE is referred to

as equivalent time-invariant loading and its distribution is re-

ferred to as the equivalent time-invariant loading distribution.

The use of the equivalent time-invariant loading variable re-

duces the number of variables to the same number as the con-

stant loading case, and therefore facilitates computation for

uncertainty propagation. Now, the time-invariant equivalent

variable uE is used in X in Eq. 4, instead of the true loading

values. The corresponding probability distribution (which is

actually a function of R(tP )) will be used in uncertainty prop-

agation to calculate uncertainty in RUL, as explained later in

Section 4.

Note that the above equivalent time-invariant concept can

be used to address process noise (Sankararaman & Goebel,

2013b), since the process noise is also treated as white noise

(Gaussian, in several models) in many practical applications.

3.3. Type III: Variable Amplitude Loading

In this type loading, multiple time-windows of varying

lengths are considered, and within each time-window, the

loading is assumed to be a constant. The number of time-

windows is assumed to be known; the length of each time

window is assumed to be a random variable, and the constant

amplitude for each time window is also considered to be a

random variable. Therefore, if there are five time-windows,

then ten random variables are needed to represent the en-

tire loading trajectory. Each realization of the set of random

variables will correspond to one particular loading trajectory.

Multiple realizations of a variable amplitude loading scenario

are depicted in Fig. 5.
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Figure 5. Type-III Loading: Multiple Realizations

Since the number of random variables is small (linear func-

tion of number of windows), the proposed uncertainty quan-

tification methodology can be directly applied for this type of

loading condition.

4. MOST PROBABLE POINT APPROACH FOR UNCER-

TAINTY QUANTIFICATION

This section develops the proposed methodology for quanti-

fying prognostics uncertainty and estimating the uncertainty

in the remaining useful life prediction. A generic method-

ology is presented using the functional relationship R =
G(X), explained earlier in Eq. 4 in Section 2. It is also ex-

plained as to how the methodology can be adapted for the

different types of loading conditions discussed in the previ-

ous section.

4.1. Most Probable Point Concept

The Most Probable Point (MPP) concept was originally de-

veloped by structural engineers to predict the failure proba-

bility of structural engineering applications. In this paper, this

concept is used for uncertainty quantification in prognostics

and remaining useful life prediction.

Consider the functional relationship R = G(X). The goal

of uncertainty propagation is to compute the uncertainty in

R, given the uncertainty in X . In order words, the goal is to

compute the probability density function (PDF) or cumulative

distribution function (CDF) of R, based on the probability

distribution of X . Let fX(x) and FX(x) denote the PDF and

CDF of X respectively. Note that an upper case letter is used

to represent the random variable and a corresponding lower

case letter to represent a generic realization of that random

variable.

If all the variables X are Gaussian (i.e., normal) and if G

is linear, then it can be easily proved that R is also Gaus-

sian, and the statistics of R can be calculated analytically.

In the context of prognostics, even if the state-space mod-

els and the EOL threshold function are linear, their combi-

nation renders G non-linear. Therefore, it is necessary to es-

timate the distribution of R by considering non-linear func-

tions and non-normal variables since the uncertain quantities

may not necessarily follow Gaussian distributions. This is

accomplished through a two-step procedure; first, all the un-

certain quantities are transformed into Gaussian variables us-

ing well-known standard normal transformations, and then,

the non-linear function is linearized using first-order Taylor’s

series expansion, as explained below.

1. Standard normal transformation: First, it is necessary

to transform all the variables in X to equivalent normal

distributions. For the sake of uniformity, all the vari-

ables are transformed to the standard normal distribution.

There are several two-parameter and three-parameter

transformations discussed in the literature (Haldar & Ma-

hadevan, 2000). This paper uses a simple one-parameter

transformation. Consider a single random variable Xi

(instead of the vector denoted by X) with PDF fXi
(xi)

and CDF FXi
(xi). Then, based on the probability inte-

gral transform concept, every xi can be transformed into

a corresponding ui using the equation:

ui = Φ−1(FXi
(Xi = xi)) (8)

where Φ−1(.) refers to the inverse of the standard nor-

mal distribution function (Haldar & Mahadevan, 2000).

Now, ui is function of xi, and for any chosen distri-

bution for Xi, the corresponding Ui follows the stan-

dard normal distribution N(0, 1). Eq. 8 first calculates

the CDF which is equivalent to transforming the origi-

nal variable to the standard uniform distribution (upper

and lower bounds of 0 and 1 respectively), and then cal-

culates the inverse CDF of the standard normal distribu-

tion, thereby transforming to the standard normal distri-

bution. Note that the above transformation is performed

for each variable Xi individually, and hence it is not di-

rectly applicable if the variables X are statistically de-

pendent or correlated. In such cases, it is necessary to

transform X into an uncorrelated standard normal space.

Such a transformation can be generically represented as

U = T (X), and the corresponding inverse transforma-

tion can be written as X = T−1(U). Several mathe-

matical transforms have been discussed in the literature

for this purpose; for example, refer to Liu and Der Ki-

ureghian (Liu & Der Kiureghian, 1986) for details re-

garding the Morgenstern transform (Morgenstern, 1956)

and the Nataf transform (Nataf, 1962).

2. Linearize “G” using Taylor’s Series: Now that all the

variables X have been transformed into equivalent stan-

dard normal variables U , the next task is to linearize

G(X) using Taylor’s series methodology. Obviously, the

point or location of linearization will affect the estimate

of the statistics of R, and hence needs to be chosen care-

fully. The Most Probable Point (MPP) concept guides in

choosing the point of linearization, as explained below.
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G(x)− r = 0

MPP

u1
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Space Region 1
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G(x) > r
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Figure 6. Most Probable Point Estimation

Instead of trying to estimate the complete statistics of R

by choosing one “global” linearization point, the concept of

MPP advocates to solve a “local” problem by focusing on

the CDF value at a particular realization of R, i.e., P (R ≤
r) = FR(r) = η. Then, the method linearizes the curve

represented by the equation G(x) − r = 0, by choosing an

appropriate point of linearization. It is evident that an arbi-

trary location (say, mean of X) cannot be chosen as the loca-

tion of linearization, since it may not even satisfy the above

equation for a generic value of r. Therefore, the first con-

dition the point of localization must satisfy is the equation

G(x) − r = 0. Of the several points that lie on the curve

represented by the equation G(x) − r = 0, the point which

has the highest likelihood of occurrence is chosen and there-

fore, the point of linearization is called as the Most Probable

Point (MPP). The likelihood of occurrence is proportional to

the PDF value and the joint PDF needs to be maximized; in

practice, this maximization can be easily performed in the

standard normal space. In the standard normal space U , the

closer any point is to the origin, the higher is its likelihood

of occurrence. Therefore, the MPP is estimated through an

optimization problem by estimating the point on the curve

G(x) − r = 0 which is closest the origin in the standard

normal space, as shown in Fig. 6.

4.2. Calculating the CDF of RUL

The MPP can also be described as the minimum distance

(measured from the origin in the standard normal space) point

on the curve represented by the equation G(x)−r = 0. Let β

denote this minimum distance, i.e., the distance of MPP from

the origin in the standard normal space. Then, it can be easily

proved (Haldar & Mahadevan, 2000) that:

FR(r) = P (R ≤ r) = η = Φ(−β) (9)

where Φ(.) represents the standard normal distribution func-

tion. Thus, estimation of MPP directly leads to the calcula-

tion of the CDF FR(r), only locally at R = r. In a practical

problem, the goal is to compute the uncertainty in R, and

therefore, it may not be possible to choose a suitable value

for r. Inversely, given the value of η, it is also possible to cal-

culate the value of r which satisfies Eq. 9, using optimization.

An iterative, numerical procedure for such an optimization is

outlined below:

1. Given a value of η, compute β such that η = Φ(−β).

2. Initialize counter j = 0 and start with an initial guess

for the MPP, i.e., xj = {xj
1, x

j
2, ... x

j
i , ...x

j
n}, and a cor-

responding initial guess for r is obtained.

3. Transform into uncorrelated standard normal space u =
T (x) and calculate u

j = {uj
1, u

j
2, ... u

j
i , ...u

j
n}. During

this transformation, the original distributions of the vari-

ables are used. In the case of process noise, the equiv-

alent time-invariant process noise distribution is used.

If Gaussian white process loading is considered, then,

the equivalent time-invariant loading distribution is used.

Recall that the time-invariant distribution is a function of

r, which was calculated in the previous step.

4. Compute the gradient vector in the standard normal

space, i.e., α = {α1, α2, ...αn}, a column vector where

αi =
∂G

∂ui

=
∂G

∂xi

×
∂xi

∂ui

(10)

The above derivatives depends both on G, and the chosen

transformation T .

5. In the iterative procedure, the next point uj+1 is calcu-

lated as:

u
j+1 = −

α

|α|
β (11)

6. Transform back into the original space using X =
T−1(U). In other words, compute x

j+1, and continue

starting from Step 3 until the iterative procedure con-

verges. Using tolerance limits δ1 and δ2, convergence

can be verified if the following two criteria are satis-

fied: (i) the point lies on the curve of demarcation, i.e.,

|G(xj)− r| ≤ δ1; and (2) the solution does not change

between two iterations, i.e., |xj+1 − x
j | ≤ δ2.

Note that the above iterative algorithm relies on the existence

of a unique minimum distance point. If G is non-convex

or if there are multiple local minima, then the above algo-

rithm may not be able to identify the optimal MPP. This may

happen when the probability distribution of RUL is multi-

modal. The applicability of the inverse-FORM approach to

such cases needs to be investigated in future research. In this

paper, it is assumed that the MPP can be identified using the

above algorithm, usually within four or five iterations.

Hence, given a value of η, the value of FR(r) can be calcu-

lated using the above algorithm. Note that η denotes a prob-

ability level, and by choosing multiple values of η such as

7
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Figure 7. Battery equivalent circuit

0.01, 0.1, 0.2, ... 0.9, 0.99, it is possible to estimate the en-

tire CDF of R. In the context of condition-based monitor-

ing, this procedure is repeated at every time instant prognosis

needs to be performed. Note that the proposed methodology

is an analytical procedure and can produce repeatable (deter-

ministic) calculations as against Monte Carlo sampling-based

approaches. This is an important criteria for existing verifica-

tion, validation, and certification protocols in the aerospace

domain. Further, this methodology requires a few tens of

prognostic evaluations (in contrast with several hundreds of

evaluations required by sampling-based methods), and there-

fore, directly aids in real-time, online prognosis.

5. CASE STUDY: BATTERY PROGNOSTICS

The proposed methods are illustrated using a lithium-ion bat-

tery that powers an unmanned aerial vehicle (Saha, Quach,

& Goebel, 2012) at NASA Langley Research Center. This

unmanned aerial vehicle is being used as a test-bed for prog-

nostics and decision-making at NASA Ames Research Center

and NASA Langley Research Center.

5.1. Description of the Model

The battery model, extended from that used by Daigle et

al. (Daigle et al., 2012) for prognosis, is similar to the models

presented by Chen and Rincon-Mora (Chen & Rincon-Mora,

2006). The model is based on an electrical circuit equivalent

as shown in Fig. 7, where the large capacitance Cb holds the

charge qb of the battery. The nonlinear Cb captures the open-

circuit potential and concentration overpotential. The Rsp-

Csp pair captures the major nonlinear voltage drop due to

surface overpotential, Rs captures the so-called Ohmic drop,

and Rp models the parasitic resistance that accounts for self-

discharge. This empirical battery model is sufficient to cap-

ture the major dynamics of the battery, but ignores tempera-

ture effects and other minor battery processes. The governing

equations for the battery model are presented in continuous

time below. The implementation of the proposed methodol-

ogy considers a discrete-time version with a discrete time-

step of 1 second.

The state-of-charge, SOC, is computed as

SOC = 1−
qmax − qb

Cmax

, (12)

where qb is the current charge in the battery (related to Cb),

qmax is the maximum possible charge, and Cmax is the max-

imum possible capacity. The resistance related to surface

overpotential is a nonlinear function of SOC:

Rsp = Rsp0
+Rsp1

exp (Rsp2
(1− SOC)), (13)

where Rsp0
, Rsp1

, and Rsp2
are empirical parameters. The

resistance, and, hence, the voltage drop, increases exponen-

tially as SOC decreases.

Voltage drops across the individual circuit elements are given

by

Vb =
qb

Cb

, (14)

Vsp =
qsp

Csp

, (15)

Vs =
qs

Cs

, (16)

Vp = Vb − Vsp − Vs, (17)

where qsp is the charge associated with the capacitance Csp,

and qs is the charge associated with Cs. The voltage Vb is

also the open-circuit voltage of the battery, which is a nonlin-

ear function of SOC (Chen & Rincon-Mora, 2006). This is

captured by expressing Cb as a third-order polynomial func-

tion of SOC:

Cb = Cb0 + Cb1SOC + Cb2SOC2 + Cb3SOC3 (18)

The terminal voltage of the battery is

V = Vb − Vsp − Vs. (19)

Currents associated with the individual circuit elements are

given by

ip =
Vp

Rp

, (20)

ib = ip + i, (21)

isp = ib −
Vsp

Rsp

, (22)

is = ib −
Vs

Rs

. (23)

The charges are then governed by

q̇b = −ib, (24)

q̇sp = isp, (25)

q̇s = is. (26)

It is of interest to predict the end-of-discharge as defined by

a voltage threshold VEOD (16 V, in this example). So, CEOL

consists of only one constraint:

c1 : V > VEOD. (27)

8
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The parameters of the battery model are assumed to be deter-

ministic and are shown in Table 1. If the parameters are un-

certain, and described through probability distributions, then

parameter uncertainty can also be easily included, as indi-

cated in Fig. 2.

In Table 1, all voltages are measured in Volts, resistances are

measured in Ohms, charges are measured in Coulombs, and

capacitances are measured in Coulombs per Volt (or Farads).

Note that Cb0 , Cb1 , Cb2 , and Cb3 are simply fitting parameters

in Eq. 18 and do not have physical meaning.

Table 1. Battery Model Parameters

Parameter Value Unit
Cb0 19.80 Farad (F)
Cb1 1745.00 Farad (F)
Cb2 −1.50 Farad (F)
Cb3 −200.20 Farad (F)
Rs 0.0067 Ohm (Ω)
Cs 115.28 Farad (F)

Rp 1× 104 Ohm (Ω)
Csp 316.69 Farad (F)
Rsp0 0.0272 Ohm (Ω)

Rsp1 1.087× 10−16 Ohm (Ω)
Rsp2 34.64 (No unit)

qmax 3.11× 104 Coulomb (C)
Cmax 30807 Coulomb (C)

The following sections deal with the different sources of un-

certainty that affect the RUL prediction, and implement the

proposed MPP-based methodology.

5.2. Future Loading Uncertainty

As explained earlier in Section 3, three types of future load-

ing uncertainty are discussed in this paper, and uncertainty

quantification results are presented for each type. In this nu-

merical example, loading refers to the current drawn by the

battery.

1. Type-I: The first type of future loading condition is con-

stant amplitude loading condition. The constant ampli-

tude (in Amps) is considered to be normally distributed

(N(35, 5)), and this distribution is truncated at a speci-

fied lower bound (5.0) and upper bound (80).

2. Type-II: The second type of future loading condition is

white noise, i.e., at every future time instant the load-

ing value is drawn from a particular distribution. In this

paper, the distribution is chosen to be truncated normal

(N(35, 5)) with a specified lower bound (5.0) and up-

per bound (80), and the loading values at multiple time

instants are considered to be independent of each other.

Note that the statistics are identical to that of Type-I load-

ing scenario, but the actual loading trajectory is com-

pletely different.

3. Type-III: The third type of future loading condition is

chosen to be variable amplitude loading with 6 different

segments. The time-length (T ) of each segment is chosen

at random and within each time-segment, the amplitude

is considered to be constant; further, the constant ampli-

tude (I) is also chosen randomly. Therefore, there are

12 random variables each of which is assumed to follow

a truncated normal distribution. This truncated normal

distribution is represented using the mean (µ), standard

deviation (σ), lower bound (l) and upper bound (u) of

random variable, and the statistics of the 12 random vari-

ables are tabulated in Table 2. The six segments in Ta-

ble 2 correspond to multiple flight segments such as take-

off, climb, cruise, landing, etc. Note that the statistics for

the amplitude are identical to that of Type-I and Type-II

loading, but the actual loading trajectory is completely

different.

Such statistics are chosen in order to enable comparison be-

tween the three types of loading condition; since the actual

amplitudes are similar, it is expected that that overall uncer-

tainty in RUL prediction for each loading scenario should not

be wholly different from another.

Table 2. Variable Amplitude Loading: Statistics

Segment Iµ Iσ Il Iu Tµ Tσ Tl Tu

I 35 5 5 80 60 10 50 75
II 35 5 5 80 120 10 90 140
III 35 5 5 80 90 10 70 115
IV 35 5 5 80 120 10 100 145
V 35 5 5 80 90 10 75 120
VI 35 5 5 80 60 10 40 80

5.3. Process Noise Uncertainty

At any time instant, there are three states, and hence three pro-

cess noise terms. Typically, the statistics of process noise are

calculated as a result of the parameter estimationg procedure.

In this study, all the three process noise terms were deter-

mined to have zero mean and variances equal to 1, 1× 10−4,

and 1 × 10−6 respectively. For the sake of illustration, it is

assumed that the three process noise terms are statistically in-

dependent, and further, these process noise values at two dif-

ferent time instants are also statistically independent of each

other. In this case, it can be shown that, if the true distribution

of the process noise follows a normal distribution with mean

0 and standard deviation σ, then the equivalent time-invariant

process noise follows a normal distribution with mean 0 and

standard deviation σ
√

R
, where R is the remaining useful life

prediction calculated using G.

5.4. State Uncertainty

Typically, the state estimation, which is an inverse problem,

is addressed using a filtering technique that can continuously

estimate the uncertainty in the state when measurements are

continuously available as a function of time. In this paper, the

focus is on prognostic uncertainty, and the state estimation is

not explicitly carried out. The state values are assumed to be

9
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available, and the uncertainty in the states are predetermined

based on the authors’ past experiences with the use of filter-

ing techniques for the above described problem. There are

three state variables ((1) charge in Cb; (2) charge in Csp; and

(3) charge in Cs) in this example and at any time instant, they

are assumed to be normally distributed with a specified mean.

First, the mean of the initial states are chosen to be 3.1×104,

0, and 0 respectively, and the mean values of the states at other

time instants are provided in Fig. 8—10. The standard devia-

tion of the states is chosen to 0.1 times the mean of the states;

if the mean is zero, then the standard deviation is chosen to

be equal to 0.1.
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Figure 8. State No. 1: Charge in Cb
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0 200 400 600 800
0

10

20

30

40

Time (s)

C
h

ar
g

e
(C

)

Figure 10. State No. 3: Charge in Cs

5.5. Prognostics Uncertainty Quantification

The results of prognostics uncertainty quantification are dis-

cussed in this section. As explained through Fig. 2, the afore-

mentioned sources of uncertainty affect future state predic-

tion and therefore, the remaining useful life prediction. The

proposed MPP-based methodology is used to calculate the

uncertainty in RUL, and the 90% probability bounds (esti-

mated by repeating the iterative algorithm for η = 0.05 and

η = 0.95) of RUL corresponding to the three different load-

ing types are plotted in Fig. 11—13.
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Figure 11. Type-I Loading: 90% Bounds of RUL
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Figure 12. Type-II Loading: 90% Bounds of RUL

0 200 400 600 800
0

200

400

600

800

1000

 

 

Time (s)

R
em

ai
n

in
g

U
se

fu
l

L
if

e
(s

) 5% Bound

Median

95% Bound

Figure 13. Type-III Loading: 90% Bounds of RUL

Note that the uncertainty is high at initial time instants, and

then gradually decreases near the end-of-life of the battery.
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Initially, the uncertainty in RUL is high because it is neces-

sary to predict at a farther time instant; future loading and the

associated uncertainty need to be considered for a longer pe-

riod of time. However, at a latter time instant, future loading

needs to be assumed for a reduced period of time and hence,

the uncertainty in the RUL decreases. In fact, any good prog-

nostic algorithm should depict this behavior, i.e., the predic-

tion of RUL at a later time instant must have lower uncertainty

than the prediction at an earlier time instant. From Fig. 11 -

13, it can be seen that the uncertainty in the RUL prediction is

similar for three loading cases; particularly, the uncertainty in

the case of Type-III loading was observed to be significantly

smaller than the other two loading scenarios. For example,

the 90% RUL bounds for Type-I, Type-II, and Type-III load-

ing scenarios at the initial time instant (tP = 0 seconds) are

[586 1137], [593 1154], and [667 967] respectively. Further,

in this example, the RUL prediction was found to be the most

sensitive to the first state variable, i.e., charge in Cb. That is

why the RUL prediction in Fig. 11 - 13 is similar to the state

evolution in Fig. 8.

For the sake of verification, the computation of RUL was also

performed using Monte Carlo sampling and the solutions in

Fig. 11—13 were compared. While Fig. 11—13 show the

RUL values corresponding to η = 0.05, η = 0.50, and

η = 0.95, all computations were actually peformed for 13

different η values (0.01, 0.05, 0.1, 0.2 ... 0.9, 0.95, 0.99) in or-

der to construct the entire CDF of RUL. This CDF was com-

pared with the Monte Carlo estimate and the solution from

the proposed method was in good agreement with the Monte

Carlo estimate. For example, the comparison between Monte

Carlo sampling and MPP-based method in the case of the

three loading scenarios (at selected time instants) is shown in

Fig. 14—16. As seen from these figures, the error in the pro-

posed methodology is very small, with respect to the Monte

Carlo solution. Further, while the Monte Carlo solution re-

quired thousand evaluations of G, the proposed MPP-based

method required much fewer evaluations. The precise num-

ber of evaluations for the MPP-based method depends on the

selected number of η values and dimension of X; typically,

favourable results are obtained by using about one-tenth of

the number of samples required for Monte Carlo sampling.

Considering that the proposed method requires much less

computational power than Monte Carlo, and that it may be

computationally infeasible to perform Monte Carlo sampling

at every time instant, it is evident that the MPP-based proce-

dure provides a good alternative for uncertainty quantification

in prognostics.

6. CONCLUSION

This paper presented a new computational methodology for

quantifying uncertainty in prognostics, in the context of

condition-based monitoring. First, a model-based computa-

tional framework for prognostics was discussed, and the dif-
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Figure 14. Comparison at Time = 400 s: Type-I Loading
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Figure 15. Comparison at Initial Time: Type-II Loading

ferent sources of uncertainty were analyzed in the context

of this framework. It was demonstrated that the problem

of quantifying uncertainty in prognostics and predicting the

end-of-life can be posed as an uncertainty propagation prob-

lem. An analytical methodology, based on the Most Proba-

ble Point (MPP) concept, was proposed to estimate the un-

certainty in end-of-life prediction and thereby the remaining

useful life prediction. The Most Probable Point concept was

originally developed by structural engineers to compute the

failure probability of structural engineering applications, and

in this paper, this approach has been extended to quantify

prognostics uncertainty.

Further, different types of future loading conditions were dis-

cussed for prognostics, and it was explained that the overall

prediction methodology may need to be adapted to suit each

type of loading condition. In this paper, uncertainty quantifi-

cation methodology was developed for three types of load-

ing conditions: constant amplitude loading, Gaussian white

noise loading, and variable amplitude loading, and demon-

strated using a numerical example of a battery used to power

an unmanned aerial vehicle. In this paper, it was assumed

that the information regarding future loading uncertainty was

available. Future work may address the characterization of

future loading uncertainty based on possible maneuvers and

trajectories, and characterization of model uncertainty. Fur-
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Figure 16. Comparison at Initial Time: Type-III Loading

ther, the applicability of the proposed methodology may also

be investigated to practical situations where the probability

distribution of the remaining useful life prediction may be

multi-modal in nature.
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