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ABSTRACT

This paper discusses the significance and interpretation of

uncertainty in the remaining useful life (RUL) prediction of

components used in several types of engineering applications,

and answers certain fundamental questions such as “Why is

the RUL prediction uncertain?”, “How to interpret the uncer-

tainty in the RUL prediction?”, and “How to compute the un-

certainty in the RUL prediction?”. Prognostics and RUL pre-

diction are affected by various sources of uncertainty. In or-

der to make meaningful prognostics-based decision-making,

it is important to analyze how these sources of uncertainty

affect the remaining useful life prediction, and thereby, com-

pute the overall uncertainty in the remaining useful life pre-

diction. The classical (frequentist) and Bayesian (subjective)

interpretations of uncertainty and their implications on prog-

nostics are explained, and it is argued that the Bayesian inter-

pretation of uncertainty is more suitable for remaining useful

life prediction in the context of condition-based monitoring.

Finally, it is demonstrated that the calculation of uncertainty

in remaining useful life can be posed as an uncertainty propa-

gation problem, and the practical challenges involved in com-

puting the uncertainty in the remaining useful life prediction

are discussed.

1. INTRODUCTION

The prediction of remaining useful life (RUL) is an important

functional aspect of an efficient prognostics and health man-

agement (PHM) system. The RUL prediction is not only nec-

essary to verify if the mission goal(s) can be accomplished

but also important to aid in online decision-making activi-

ties such as fault mitigation, mission replanning, etc. Since

the prediction of RUL is critical to operations and decision-

making, it is imperative that the RUL be estimated accurately.
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Since prognostics deals with predicting the future behavior of

engineering systems, there are several sources of uncertainty

which influence such future prediction, and therefore, it is

rarely feasible to obtain an estimate of the RUL with com-

plete precision. In fact, it is not even meaningful to make

such predictions without computing the uncertainty associ-

ated with RUL. As a result, researchers have been developing

different types of approaches for quantifying the uncertainty

associated with the RUL prediction and prognostics in gen-

eral.

Existing methods for quantifying uncertainty in prognostics

and remaining useful life prediction can be broadly classified

as being applicable to two different types of situations: of-

fline prognostics and online prognostics. Methods for offline

prognostics are based on rigorous testing before and/or after

operating an engineering system, whereas methods for online

prognostics are based on monitoring the performance of the

engineering system during operation. For example, there are

several research papers which discuss uncertainty quantifica-

tion in crack growth analysis (Sankararaman, Ling, Shantz,

& Mahadevan, 2011; Sankararaman, Ling, & Mahadevan,

2011), structural damage prognosis (Farrar & Lieven, 2007;

Coppe, Haftka, Kim, & Yuan, 2010), electronics (Gu, Barker,

& Pecht, 2007), and mechanical bearings (Liao, Zhao, &

Guo, 2006), primarily in the context of offline testing. En-

gel et. al (Engel, Gilmartin, Bongort, & Hess, 2000) discuss

several issues involved in the estimation of remaining useful

life in online prognostics and health monitoring. While some

of the initial studies on remaining useful life prediction lacked

uncertainty measures (Celaya, Saxena, Kulkarni, Saha, &

Goebel, 2012), researchers have recently started investigating

the impact of uncertainty on estimating the remaining useful

life. For example, there have been several efforts to quantify

the uncertainty in remaining useful life of batteries (Saha &

Goebel, 2008) and pneumatic valves (Daigle & Goebel, 2010)

in the context of online health monitoring. Different types

of sampling techniques (Daigle, Saxena, & Goebel, 2012)
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and analytical methods (Sankararaman, Daigle, Saxena, &

Goebel, 2013) have been proposed to predict the uncertainty

in the remaining useful life.

While the importance of uncertainty quantification in prog-

nostics and RUL estimation have been widely understood,

there have been few efforts to understand and appropriately

interpret such uncertainty. Celaya et al. (Celaya, Saxena, &

Goebel, 2012) discussed the interpretation of RUL in the con-

text of Kalman filtering-based prognostics techniques, and

explained that it is not approriate to arbitrarily force the vari-

ance of RUL to be small. It is necessary to further delve into

this topic in order to completely analyze the importance and

impact of uncertainty in prognostics.

This paper poses three fundamental questions in order to un-

derstand uncertainty in prognostics, particular in the context

of remaining useful life (RUL) prediction:

1. Why is the RUL prediction uncertain?

2. How do we interpret the uncertainty in RUL?

3. How do we calculate the uncertainty in RUL?

The answers to the above questions are sought from multiple

points of view. First, the topic of uncertainty in prognostics

is discussed from a qualitative point of view in Section 2; the

various sources of uncertainty in prognostics are discussed

and the different activities related to uncertainty quantifica-

tion and management are outlined. Second, the interpretation

of uncertainty is discussed from a statistical point of view in

Section 3. While statistics and probability methods have been

in existence for over 200 years, there has always been a dis-

agreement (amongst mathematicians and statisticians alike)

regarding the interpretation of probability. It is important to

understand this disagreement before attempting to interpret

uncertainty in prognostics. Third, the interpretation of un-

certainty in prognostics and RUL prediction is analyzed in

detail in Section 4, and it is explained all different interpre-

tations of probability may not be suitable for prognostics and

health monitoring purposes. Fourth, it is demonstrated that

calculating the uncertainty in RUL is, fundamentally, an un-

certainty propagation problem and the challenges in this re-

gard are outlined in Section 5. In this context, it is examined

whether it is possible to analytically construct the probability

distribution of remaining useful life prediction in certain sim-

ple example problems (consisting of linear models and Gaus-

sian variables) and it is demonstrated that it is impossible to

estimate closed-form analytical solutions without rigourous

mathematical considerations even for such simple example

problems.

2. UNCERTAINTY IN PROGNOSTICS

Prognostics is the art of predicting future component/system

behavior, identifying possible failure models, and thereby

computing the remaining useful life of the compo-

nent/system. There are several sources of uncertainty which

affect the prediction of future behavior, and in turn, the re-

maining useful life prediction. As a result of these sources

of uncertainty, it is practically impossible to precisely esti-

mate the remaining useful life prediction. In order to make

meaningful prognostics-based decision-making, it is impor-

tant to analyze how the various sources of uncertainty affect

the remaining useful life prediction and compute the overall

uncertainty in the remaining useful life prediction.

2.1. Activities Related to Uncertainty in PHM

In the context of prognostics and health management, un-

certainties have been discussed from representation, quan-

tification, and management points of view (deNeufville, R.,

2004; Hastings, D. and McManus, H., 2004; Ng & Abram-

son, 1990; Orchard, Kacprzynski, Goebel, Saha, & Vachtse-

vanos, 2008; Tang, Kacprzynski, Goebel, & Vachtsevanos,

2009). While these three are different processes, they are of-

ten confused with each other and interchangeably used. In

this paper, the various tasks related to uncertainty quantifi-

cation and management are classified into four, as explained

below. These four tasks need to performed in order to ac-

curately estimate the uncertainty in the RUL prediction and

inform the decision-maker regarding such uncertainty.

1. Uncertainty Representation and Interpretation: The

first step is uncertainty representation and interpretation,

which in many practical applications, is guided by the

choice of modeling and simulation frameworks. There

are several methods for uncertainty representation that

vary in the level of granularity and detail. Some common

theories include classical set theory, probability theory,

fuzzy set theory, fuzzy measure (plausibility and belief)

theory, rough set (upper and lower approximations) the-

ory, etc. Amongst these theories, probability theory has

been widely used in the PHM domain (Celaya, Saxena,

& Goebel, 2012); even within the context of probabilistic

methods, uncertainty can be interpreted and perceived in

two different ways: frequentist (classical) versus subjec-

tivist (Bayesian). Sections 3 and 4 outline the differences

between these two schools of thought and argues that the

Bayesian approach provides a more suitable interpreta-

tion for uncertainty in PHM.

2. Uncertainty Quantification: The second step is uncer-

tainty quantification, that deals with identifying and char-

acterizing the various sources of uncertainty that may af-

fect prognostics and RUL estimation. It is important that

these sources of uncertainty are incorporated into models

and simulations as accurately as possible. The common

sources of uncertainty in a typical PHM application in-

clude modeling errors, model parameters, sensor noise

and measurement errors, state estimates (at the time at

which prediction needs to be performed), future loading,
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operating and environmental conditions, etc. The goal

in this step is to address each of these uncertainties sep-

arately and quantify them using probabilistic/statistical

methods. The Kalman filter is essentially a Bayesian tool

for uncertainty quantification, where the uncertainty in

the states is estimated continuously as a function of time,

based on data which is also typically available continu-

ously as a function of time.

3. Uncertainty Propagation: The third step is uncertainty

propagation and is most relevant to prognostics, since

it accounts for all the previously quantified uncertain-

ties and uses this information to predict (1) future states

and the associated uncertainty; and (2) remaining useful

life and the associated uncertainty. The former is com-

puted by propagating the various sources of uncertainty

through the prediction model. The latter is computed us-

ing the estimated uncertainty in the future states along

with a Boolean threshold function which is used to in-

dicate end-of-life. In this step, it is important to under-

stand that the future states and remaining useful life pre-

dictions are simply dependent upon the various uncer-

tainties characterized in the previous step, and therefore,

the distribution type and distribution parameters of future

states and remaining useful life should not be arbitrar-

ily chosen. Sometimes, a normal (Gaussian) distribution

has been assigned to the remaining useful life prediction;

such an assignment is erroneous and the true probability

distribution of RUL needs to be estimated though rig-

orous uncertainty propagation of the various sources of

uncertainty through the state space model and the EOL

threshold function, both of which may be non-linear in

practice.

4. Uncertainty Management: The fourth and final step is

uncertainty management, and it is unfortunate that, in

several articles, the term “Uncertainty Management” has

been used instead of uncertainty quantification and/or

propagation. Uncertainty management is a general term

used to refer to different activities which aid in managing

uncertainty in condition-based maintenance during real-

time operation. There are several aspects of uncertainty

management. One aspect of uncertainty management at-

tempts to answer the question: “Is it possible to improve

the uncertainty estimates?” The answer to this question

lies in identifying which sources of uncertainty are sig-

nificant contributors to the uncertainty in the RUL pre-

diction. For example, if the quality of the sensors can be

improved, then it may be possible to obtain a better state

estimate (with lesser uncertainty) during Kalman filter-

ing, which may in turn lead to a less uncertain RUL pre-

diction. Another aspect of uncertainty management deals

with how uncertainty-related information can be used in

the decision-making process.

Most of the research in the PHM community pertains to the

topics of uncertainty quantification and propagation; few ar-

ticles have directly addressed the topic of uncertainty man-

agement. Even within the realm of uncertainty quantification

and propagation, the estimates of uncertainty have sometimes

been misinterpreted. For example, when statistical principles

are used to estimate a parameter, there is an emphasis on cal-

culating the estimate with the minimum variance. When this

principle is applied to RUL estimation, it is important not

to arbitrarily reduce the variance of RUL itself. Celaya et

al. (Celaya, Saxena, & Goebel, 2012) explored this idea and

explained that the variance of RUL needs to be carefully cal-

culated by accounting for the different sources of uncertainty.

2.2. Sources of Uncertainty

In many practical applications, it may even be challenging

to identify and quantify the different sources of uncertainty

that affect prognostics. Some researchers have classified the

different sources of uncertainty into different categories in

order facilitate uncertainty quantification and management.

While it has been customary to classify the different sources

of uncertainty into aleatory (physical variability) and epis-

temic (lack of knowledge), such a classification may not be

suitable for condition-based monitoring purposes; this point

will be explained in detail in the next section. A completely

different approach for classification, particularly applicable

to condition-based monitoring, is outlined below:

1. Present uncertainty: Prior to prognosis, it is important

to be able to precisely estimate the condition/state of the

component/system at the time at which RUL needs to be

computed. This is related to state estimation commonly

achieved using filtering. Output data (usually collected

through sensors) is used to estimate the state and many

filtering approaches are able to provide an estimate of the

uncertainty in the state. Practically, it is possible to im-

prove the estimate of the states and thereby reduce the

uncertainty, by using better sensors and improved filter-

ing approaches.

2. Future uncertainty: The most important source of un-

certainty in the context of prognostics is due to the fact

that the future is unknown, i.e. both the loading and

operating conditions are not known precisely, and it is

important to assess the uncertainty in loading and envi-

ronmental conditions before performing prognostics. If

these quantities were known precisely (without any un-

certainty), then there would be no uncertainty regarding

the true remaining useful life of the component/system.

However, this true RUL needs to be estimated using a

model; the usage of a model imparts additional uncer-

tainty as explained below.

3. Modeling uncertainty: It is necessary to use a func-

tional model in order to predict future state behavior.
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Further, as mentioned before, the end-of-life is also de-

fined using a Boolean threshold function which indicates

end-of-life by checking whether failure has occurred or

not. These two models are combinedly used to predict

the RUL, and may either be physics-based or data-driven.

It may be practically impossible develop models which

accurately predict reality. Modeling uncertainty repre-

sents the difference between the predicted response and

the true response (which can neither be known nor mea-

sured accurately), and comprises of several parts: model

parameters, model form, and process noise. While it may

be possible to quantify these terms until the time of pre-

diction, it is practically challenging to know their values

at future time instants.

4. Prediction method uncertainty: Even if all the above

sources of uncertainty can be quantified accurately, it is

necessary to quantify their combined effect on the RUL

prediction, and thereby, quantify the overall uncertainty

in the RUL prediction. It may not be possible to do this

accurately in practice and leads to additional uncertainty.

This topic will be revisited again, later in Section 5.

While the different sources of uncertainty and the various

uncertainty-related activities have been explained in detail, it

is important to understand how to interpret this uncertainty.

This topic is detailed in the next section.

3. INTERPRETING UNCERTAINTY

A probabilistic approach to uncertainty representation and

quantification has been most commonly used in the prognos-

tics and health management domain. Though probabilistic

methods, mathematical axioms and theorems of probability

have been well-established in the literature, there is consid-

erable disagreement among researchers on the interpretation

of probability. There are two major interpretations based on

physical and subjective probabilities, respectively. It is essen-

tial to understand the difference between these two interpre-

tations before attempting to interpret the uncertainty in RUL

prediction.

3.1. Physical Probability

Physical probabilities (Szabó, 2007), also referred to objec-

tive or frequentist probabilities, are related to random phys-

ical experiments such as rolling dice, tossing coins, roulette

wheels, etc. Each trial of the experiment leads to an event

(which is a subset of the sample space), and in the long run of

repeated trials, each event tends to occur at a persistent rate,

and this rate is referred to as the relative frequency. These

relative frequencies are expressed and explained in terms of

physical probabilities. Thus, physical probabilities are de-

fined only in the context of random experiments. The the-

ory of classical statistics is based on physical probabilities.

Within the realm of physical probabilities, there are two types

of interpretations: von Mises’ frequentist (Von Mises, 1981)

and Popper’s propensity (Popper, 1959); the former is more

easily understood and widely used.

In the context of physical probabilities, randomness arises

only due to the presence of physical probabilities. If the true

value of any particular quantity is deterministic, then it is not

possible to associate physical probabilities to that quantity.

In other words, when a quantity is not random but unknown,

then tools of probability cannot be used to represent this type

of uncertainty. For example, the mean of a random variable,

sometimes referred to as the population mean, is determinis-

tic. It is meaningless to talk about its probability distribution.

In fact, for any type of parameter estimation, the underlying

parameter is assumed to be deterministic and only an esti-

mate of this parameter is obtained. The uncertainty in the

parameter estimate is addressed through confidence intervals.

The interpretation of confidence intervals, as explained in the

forthcoming subsection, is sometimes confusing and mislead-

ing. Further, the uncertainty in the parameter estimate cannot

be used for further uncertainty quantification. For example,

if the model parameters of a battery model are estimated un-

der a particular loading condition, then this uncertainty can-

not be used for quantifying the battery-response for a similar

loading condition. This is a serious limitation, since it is not

possible to propagate uncertainty after parameter estimation,

which is often necessary in system-level uncertainty quantifi-

cation (Sankararaman, 2012).

Clearly, there are two limitations of the frequentist interpre-

tation of probability. First, a truly deterministic but unknown

quantity cannot be assigned a probability distribution. Sec-

ond, uncertainty represented using confidence intervals can-

not be used for further uncertainty propagation. The second

interpretation of probability, i.e. the subjective interpretation,

overcomes these limitations.

3.2. Subjective Probability

Subjective probabilities (de Finetti, 1977) can be assigned

to any “statement”. It is not necessary that the concerned

statement is in regard to an event which is a possible out-

come of a random experiment. In fact, subjective probabil-

ities can be assigned even in the absence of random exper-

iments. The Bayesian methodology is based on subjective

probabilities, which are simply considered to be degrees of

belief and quantify the extent to which the “statement” is

supported by existing knowledge and available evidence. In

recent times, the terms “subjectivist” and “Bayesian” have

become synonymous with one another. Calvetti and Som-

ersalo (Calvetti & Somersalo, 2007) explain that “random-

ness” in the context of physical probabilities is equivalent to

“lack of information” in the context of subjective probabil-

ities. In this approach, even deterministic quantities can be

represented using probability distributions which reflect the
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subjective degree of the analysts belief regarding such quan-

tities. As a result, probability distributions can be assigned to

parameters that need to be estimated, and therefore, this in-

terpretation facilitates uncertainty propagation after parame-

ter estimation. Interestingly, subjective probabilities can also

be applied in situations where physical probabilities are in-

volved (Sankararaman, 2012).

The concept of likelihood and its use in Bayes’ theorem are

key to the theory of subjectvive probability. The numerical

implementation of Bayes’ theorem may be complicated in

some practical cases, and several sampling techniques have

been developed by researchers to address this issue. Today,

Bayesian methods are used to solve a variety of problems in

engineering. Filtering techinques such as particle filtering,

Kalman filtering, etc. are also primarily based on the use of

Bayes theorem, and sequential sampling.

3.3. Summary

Both the frequentist and subjectivist approaches have been

well-established in the literature, in order to aid uncertainty

quantification. In fact, both the approaches may yield sim-

ilar results (but different interpretations) for a few standard

problems involving Gaussian variables. Sometimes, both ap-

proaches may be suitable for a given problem at hand; for

example, Kalman filtering has a purely frequentist interpreta-

tion based on least squares minimization as well as a purely

Bayesian interpretation which relies on continuously updat-

ing the uncertainty in the state estimates using Bayes theo-

rem. It is acceptable to interpret uncertainty using the fre-

quentist approach or the Bayesian approach, provided the in-

terpretation is suitable for the problem at hand. The following

section further explores this idea in the context of PHM and

RUL estimation.

4. UNDERSTANDING UNCERTAINTY IN RUL

Consider the problem of estimating the remaining useful life

prediction, in the context of prognostics and health man-

agement. Researchers have pursued two different classes of

methods for this purpose; while the first method is based on

reliability-testing, the second method is based on condition-

monitoring and future behavior prediction. There is a sig-

nificant difference in the interpretation of uncertainty, when

RUL is estimated using these two different approaches. Un-

derstanding this difference is important for prognostics and

decision-making, and this is focus of the present section.

4.1. Testing-Based Prognostics

Consider a simple numerical example where the remaining

useful life needs to be calculated at a given time instant. As-

sume that a set of run to failure experiments have been per-

formed with high level of control, ensuring same usage and

operating conditions. The time to failure for all the n sam-

ples (ri; i = 1 to n) are measured. It is important to under-

stand that different RUL values are obtained due to inherent

variability across the n different specimens, thereby confirm-

ing the presence of physical probabilities. Assume that these

random samples belong to an underlying probability density

function (PDF) fR(r), with expected value E(R) = µ and

variance V ar(R) = σ2. The goal of uncertainty quantifica-

tion is to characterize this probability density function based

on the available n data. Theoretically, an infinite amount of

data is necessary to accurately estimate this PDF; however,

due to the presence limited data, the estimated PDF is not ac-

curate. As a result, both frequentists and subjectivists express

uncertainty regarding the estimate itself. However, frequen-

tists and subjectivists quantify and express this uncertainty in

completely different ways.

For the sake of illustration, assume that the entire PDF can be

equivalently represented using its mean and variance; in other

words, assume that the random variable R follows a two-

parameter distribution. Therefore, estimating the parameters

µ and σ is equivalent to estimating the PDF. In the context of

physical probabilities (frequentist approach), the “true” un-

derlying parameters µ and σ are referred to as “population

mean” and “population standard deviation” respectively. Let

θ and s denote the mean and the standard deviation of the

available n data. As stated earlier, due to the presence of lim-

ited data, the sample parameters (θ and s) will not be equal

to the corresponding population parameters (µ and σ). The

fundamental assumption in this approach is that, since there

are true but unknown population parameters, it is meaning-

less to talk about the probability distribution of any popula-

tion parameter. Instead, the sample parameters are treated as

random variables, i.e., if another set of n data were available,

then another realization of θ and s would have been obtained.

Using the sample parameters (µ and σ) and the number of

data available (n), frequentists construct confidence intervals

on the population parameters.

Confidence intervals can be constructed for both µ and

σ (Haldar & Mahadevan, 2000). It is important that these

intervals be interpreted correctly. As stated earlier, the inter-

pretation of confidence intervals may be confusing and mis-

leading. A 95% confidence interval on µ does not imply that

“the probability that µ lies in the interval is equal to 95%”;

such a statement is wrong because µ is purely deterministic

and physical probabilities cannot be associated with it. The

random variable here is in fact θ, and the interval calculated

using θ. Therefore, the correct implication is that “the proba-

bility that the estimated confidence interval contains the true

population mean is equal to 95%”.

Alternatively, it is also possible to address the problem of

computing fR(r) purely from a subjective (Bayesian) point of

view. One important difference now is that the Bayesian ap-

proach does not clearly differentiate between “sample param-
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eters” and “population parameters”. The probability distribu-

tion of µ is directly computed using the available data (recall

that this was impossible in the frequentist approach since µ

is the true parameter and precise but unknown), and this un-

certainty is referred to as the analyst’s degree of belief for the

underlying true parameter µ. Similarly, the probability distri-

bution of σ can also be computed. Recall that one realization

of the parameters (µ and σ) uniquely define the PDF fR(r).
However, since the parameters are themselves uncertain, R is

now represented by a family of distributions (Sankararaman

& Mahadevan, 2011), reflective of the fact that there is lim-

ited data. This family of distributions will shrink to the true

underlying PDF as the number of available data increases.

4.2. Condition-Based Prognostics

Most of the discussion pertaining to testing-based prognostics

is not applicable to condition-based monitoring and prognos-

tics. The distinctive feature of condition-based monitoring

is that each component/subsystem/system is considered by

itself, and therefore, “variability across specimens” is non-

existent. Any such “variability” is spurious and must not be

considered. At any generic time instant tP at which prognos-

tics needs to be performed, the component/subsystem/system

is at a specific state. The actual state of the system is purely

deterministic, i.e., the true value is completely precise, how-

ever unknown. Therefore, if a probability distribution is as-

signed for this state, then this distribution is simply reflective

of the analyst’s knowledge regarding this state and cannot be

interpreted from a frequentist point of view. Thus, by virtue

of definition of condition-based monitoring, physical proba-

bilities are not present here, and a subjective (Bayesian) ap-

proach is only suitable for uncertainty quantification.

The goal in condition-based prognostics is, at any generic

time instant tP , to predict the remaining useful life of the

component/subsystem/system as condition-based estimate of

the usage time left until failure. First, measurements until

time tP are used to estimate the state at time tP . Then,

using a forecasting method (which may be model-based or

data-driven), future state values (corresponding to time in-

stants greater than tP ) are computed. In order to forecast fu-

ture state values, it is also necessary to assume future loading

conditions (and operating conditions) which is a major chal-

lenge in condition-based prognostics. Typically, the analyst

subjectively assumes statistics for future loading conditions

based on past experience and existing knowledge; thus, the

subjective interpretation of uncertainty is clearly consistent

across the entire condition-based monitoring procedure, and

therefore, inferences made out of condition-based monitor-

ing also need to be interpreted subjectively. This forecast-

ing is stopped when failure is reached, as indicated by the

aforementioned boolean threshold function. This indicates

the end-of-life (EOL) and the EOL can be directly used to

compute the remaining useful life (RUL) prediction. Note

that it is important to interpret the uncertainty in EOL and

RUL subjectively.

4.3. Why is the RUL Prediction Uncertain?

In light of the above discussion, it is necessary to revisit the

question “Why is the RUL uncertain?” from a new perspec-

tive. While Section 2 explained that RUL is uncertain be-

cause there are several sources of uncertainty which influ-

ence RUL estimation, now it is clear that the uncertainty in

RUL could arise due to variability across multiple specimens

(testing-based prognostics scenario) or simply due to subjec-

tive uncertainty regarding a single specimen (condition-based

prognostics). The following section discusses the computa-

tion of RUL in detail by presenting a detailed framework for

uncertainty quantification in prognostics, and explains how to

calculate the uncertainty in remaining useful life prediction.

5. UNCERTAINTY QUANTIFICATION IN RUL

First, a general computational framework for uncertainty

quantification in prognostics and remaining useful life pre-

diction in presented. Second, it is illustrated as to how the

problem of computing uncertainty in the remaining useful life

prediction can be viewed as an uncertainty propagation prob-

lem. Third, the need of rigorous mathematical algorithms for

uncertainty quantification in RUL is demonstrated using cer-

tain numerical examples. Finally, the challenges involved in

computing RUL uncertainty are discussed in detail.

5.1. Computational Framework for Prognostics

Suppose that it is desired to perform prognostics and pre-

dict the RUL at a generic time-instant tP . Daigle and

Goebel (Daigle & Goebel, 2011) explain that it is important to

develop an architecture for model-based prognostics for prac-

tical engineering purposes. This paper considers the architec-

ture in Fig. 1, where the whole problem of prognostics can be

considered to consist of the following three sub-problems:

1. Present state estimation

2. Future state prediction

3. RUL computation

5.1.1. State Estimation

The first step of estimating the state at tP serves as the pre-

cursor to prognosis and RUL computation. Consider the state

space model which is used to continuously predict the state

of the system, as:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)

where x(t) ∈ R
nx is the state vector, θ(t) ∈ R

nθ is the

parameter vector, u(t) ∈ R
nu is the input vector, v(t) ∈ R

nv

is the process noise vector, and f is the state equation.

The state vector at time tP , i.e., x(t) (and the parameters θ(t),

6
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u(t) y(t) x(tP )
System Check for failure1. Estimation 2. Prediction

3. RUL Computation

Continue future state prediction until failure

x(t)

t > tP

Figure 1. Model-Based Prognostics Architecture

if they are unknown) is (are) estimated using output data col-

lected until tP . Let y(t) ∈ R
ny , n(t) ∈ R

nn , and h de-

note the output vector, measurement noise vector, and output

equation respectively. Then,

y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

Typically, filtering approaches such as Kalman filtering, par-

ticle filtering, etc. may be used for such state estimation. It

must be recalled that these filtering methods are collectively

known as Bayesian tracking methods, not only because they

use Bayes theorem for state estimation but also are based on

the subjective interpretation of uncertainty. In other words,

any time instant, there is nothing uncertain regarding the true

states. However, the true states are not known precisely, and

therefore, the probability distributions of these state variables

are estimated through filtering. The estimated probability dis-

tributions are simply reflective of the subjective knowledge

regarding those state variables.

5.1.2. State Prediction

Having estimated the state at time tP , Eq. 1 is used to predict

the future states of the component/system. This differential

equation can be discretized and used to predict x(t + 1) as a

function of x(t). Therefore, using this recursive relation, the

state at any future time instant t > tP can be calculated.

5.1.3. RUL Computation

RUL computation is concerned with the performance of the

component that lies outside a given region of acceptable be-

havior. The desired performance is expressed through a set of

nc constraints, CEOL = {ci}
nc

i=1
, where ci : Rnx × R

nθ ×
R

nu → B maps a given point in the joint state-parameter

space given the current inputs, (x(t),θ(t),u(t)), to the

Boolean domain B , [0, 1], where ci(x(t),θ(t),u(t)) = 1 if

the constraint is satisfied, and 0 otherwise (Daigle & Goebel,

2013).

These individual constraints may be combined into a single

threshold function TEOL : Rnx × R
nθ × R

nu → B, defined

as:

TEOL(x(t),θ(t),u(t)) =

{

1, 0 ∈ {ci(x(t),θ(t),u(t))}
nc
i=1

0, otherwise.
(3)

TEOL is equal to 1 when any of the constraints are violated.

Then, the End of Life (EOL, denoted by E) at any time instant

tP is then defined as the earliest time point at which the value

of TEOL becomes equal to one. Therefore,

E(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t),u(t)) = 1}. (4)

The Remaining Useful Life (RUL, denoted by R) at time in-

stant tP is expressed as:

R(tP ) , E(tP )− tP . (5)

Note that the output equation (Eq. 2) or output data (y(t)) is

not used in the prediction stage, and EOL and RUL are depen-

dent only on the state estimates at time tP ; though these state

estimates are obtained using the output data, the output data

is not used for EOL/RUL calculation after state estimation.

For the purpose of implentation, f in Eq. 1 is transformed into

the corresponding discrete-time version.

5.2. RUL Estimation through Uncertainty Propagation

Thus, it is clear that RUL predicted at time tP , i.e., R(tP )
depends on

1. Present state estimate (x(tP )); using the present state es-

timate and the state space equations in Eq. 1, the future

states (x(tP ), x(tP + 1), x(tP + 2), ..., x(tP +R(tP )))
can be calculated.

2. Future loading (u(tP ), u(tP +1), u(tP +2), ..., u(tP +
R(tP ))); these values are needed to calculate the future

state values using the state space equations.

3. Parameter values from time tP until time tP + R(tP )
(denoted by θ(tP ), θ(tP + 1), ..., θ(tP +R(tP ))).

4. Process noise (v(tP ), v(tP + 1), v(tP + 2), ..., v(tP +
R(tP ))).

For the purpose of RUL prediction, all of the above quan-

tities are independent quantities and hence, RUL becomes a

dependent quantity. Let X = {X1, X2, ...Xi, ...Xn} denote

the vector of all the above dependent quantities, where n is

the length of the vector X , and therefore the number of un-

certain quantities that influence the RUL prediction. Then the

calculation of RUL (denoted by R) can be expressed in terms

7
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of a function, as:

R = G(X) (6)

The above functional relation in Eq. 6 can be graphically ex-

plained, as shown in Fig. 2.

For example, consider the case where the component/system

is subjected to uniform loading (characterized by one vari-

able, the amplitude which remains constant with time), mod-

eled using one parameter (which is time-invariant), and char-

acterized using two states (the state estimates at time tP and

Eq. 1 can be used to predict the state values at any future time

instant). Then, excluding the effect of process noise, there

are n = 4 quantities that affect the RUL prediction. Note

that there are R(tP ) + 1 process noise terms for each state;

therefore, the inclusion of process noise increases the value

of n, and therefore the dimensionality of the problem. This

raises a practical concern and has been addressed in an earlier

publication by replacing the time-variant process noise using

an equivalent time-invariant process noise (Sankararaman &

Goebel, 2013). In the rest of the paper, a generalized frame-

work is presented without using this equivalent time-invariant

process noise concept.

Knowing the values of X , it is possible to compute the value

of R, using Fig. 2 that is equivalently represented by Eq. 6.

The quantities contained in X are uncertain, and the focus in

prognostics to compute their combined effect on the RUL pre-

diction, and thereby compute the probability distribution of

R. The problem of estimating the uncertainty in R is equiva-

lent to propagating the uncertainty in X through G, and it is

necessary to use computational methods for this purpose.

5.3. Need for Computational Approaches

The problem of estimating the uncertainty in R using uncer-

tainty propagation techniques is a non-trivial problem, and

needs rigorous computational approaches. This involves es-

timating the probability density function of R (PDF, denoted

by fR(r)) or equivalently the cumulative distribution func-

tion of R (CDF, denoted by FR(r)). In some rare cases, it is

possible to analytically obtain the distribution of R. Some of

such special cases are listed below:

1. Each and every quantity contained in X follows a nor-

mal (Gaussian) distribution, and the function G can be

expressed as a weighted linear combination of the quan-

tities in X . In this case, R also follows a normal distri-

bution, and its statistics can be calculated analytically.

2. Each and every quantity contained in X follows a log-

normal distribution, and if the logarithm of the function

G can be expressed as a weighted combination of the

quantities in X , then log(R) follows a normal distribu-

tion whose statistics can be estimated analytically. In

other words, R also follows a lognormal distribution.

While Gaussian distributions and linear state space models

(linear f in Eq. 1) may be commonly used in the prognostics

and health management domain, it is important to understand

that using linear state space models is not equivalent to G

being linear. In other words, the use of the threshold function

along with the linear state models automatically renders G

non-linear.

In order to illustrate this important point, and to empha-

size the importance of using rigorous computational meth-

ods, consider a simple example where the state state equation

is given by:

x(t+ 1) = a.x(t) + b. (7)

Assume that a suitable time-discretization has been chosen

for the purpose of implementation. It is desired to predict fu-

ture behavior and compute RUL at tP = 0, and state value at

this time is denoted by x(0) which is a Gaussian random vari-

able. Further a and b are constants (i.e., not random) which

are used to predict future states. It can be easily demonstrated

that the state value at any future time instant can be expressed

as a function of x(0).

x(n) = an.x(0) +

j=n−1∑

j=0

ajb (8)

It is clear from Eq. 8 that the state value at any future time

instant is a linear function of x(0), and therefore is also Gaus-

sian. In order to compute the remaining useful life, it is neces-

sary to chose a threshold function. Depending on the choices

of a and b, x(n) may either be an increasing function or a

decreasing function. If x(n) is a decreasing function, then

the threshold function will indicate that failure occurs when

the state value x becomes smaller than a critical lower bound

(l). Alternatively, if x(n) is an increasing function, then the

threshold function will indicate that failure occurs when the

state value x becomes greater than a critical upper bound u.

Without loss of generality, any of the two cases may be cho-

sen for illustrative purposes. For example, consider that x(n)
is decreasing and failure happens when x < l. Therefore, the

remaining useful life (r, an instance of the random variable

R) is equal to the smallest n such that x(n) < l. Therefore

RUL can be calculated as

r = inf{n : an.x(0) +

j=n−1∑

j=0

ajb < l}, (9)

Assuming that the chosen time-discretization level is in-

finitesimally small, it is possible to directly estimate the RUL

by solving the equation:

ar.x(0) +

j=r−1∑

j=0

aj .b = l. (10)

8



Annual Conference of the Prognostics and Health Management Society 2013

Compute x(t+ 1)

Discretize Eq. 1

x(tP )

Present State

u(tP ), u(tP + 1),

... u(tP +R(tP )

Future Loading

θ(tP ), θ(tP + 1),

... θ(tP +R(tP ))

Future Parameters

v(tP ), v(tP + 1),

...v(tP +R(tP ))

Future Process Noise

TEOL

Using

x(t)

t = tP

Assign t = t+ 1

if TEOL = 1

if TEOL = 0

R = t− tP

R = G(X)

Figure 2. Definition of G

The above equation calculates the RUL (r) as a function of the

initial state (x(0)). Hence, the above equation is similar to G

defined earlier in Fig. 2. The difference now is that the only

considered source of uncertainty is the state estimate x(0);
model uncertainty, future loading uncertainty, etc. are not

considered here. The RUL R follows a Gaussian distribution

if and only if it is linearly dependent on x(0). In other words,

R follows a Gaussian distribution if and only if Eq. 10 can be

rewritten as:

α.r + β.x(0) + γ = 0 (11)

for some arbitrary values of α, β, and γ. If it were possible to

estimate such values for α, β, and γ, the distribution of RUL

can be obtained analytically.

In order to examine if this is possible, rewrite Eq. 10 as:

x(0) =
1

ar
(l −

j=r−1∑

j=0

aj .b) (12)

While x(0) is completely on the left hand side of this equa-

tion, r appears not only as an exponent in the denominator

but is also indicative of the number of terms in the summa-

tion on the right hand side of the above equation. Therefore,

it is clear that the relationship between r and x(0) is not lin-

ear. Therefore, even if the initial state (x(0), a realization of

X(0)) follows a Gaussian distribution, the RUL (r, a real-

ization of R) does not follow a Gaussian distribution. Thus,

it is clear that even for a simple problem consisting of lin-

ear state models, an extremely simple threshold function, and

only one uncertain variable that is Gaussian, the calculation of

the probability distribution of R is neither trivial nor straight-

forward.

Practical problems in the prognostics and health management

domain may consist of:

1. Several non-Gaussian random variables which affect the

RUL prediction,

2. A non-linear multi-dimensional state space model,

3. Uncertain future loading conditions,

4. A complicated threshold function which may be defined

in multi-dimensional space.

The fact that the distribution of RUL simply depends on the

quantities indicated in Fig. 2 implies that it is technically in-

accurate to artifically assign the probability distribution type

(or any statistic such as the mean or variance) to RUL.

5.4. Illustrations

Sometimes, the probability distribution of RUL may be ex-

tremely skewed; for example, the RUL of a lithium-ion bat-

tery used to power an unmanned aerial vehicle was predicted

by Sankararaman et al. (Sankararaman et al., 2013) and it

was observed that the probability distribution was particu-

larly skewed near failure. The PDFs of the End-of-Discharge

(EOD) prediction at various time instants (T = 0 seconds

through T = 4000) are shown in Fig. 3 and then the PDF

of End-of-Discharge predicted at T = 5000 seconds (which

corresponds to near-failure) is indicated in Fig. 4. The RUL

can be calculated by simply subtracting the prediction time-

instant from the EOD prediction. Note the significant change

in the shape of the PDF near failure. It is extremely important

to be able to accurately predict the RUL particularly as failure

9



Annual Conference of the Prognostics and Health Management Society 2013

is approaching, and it is clear from Fig. 4 that assuming a nor-

mal distribution or an arbitrary standard deviation would not

be able to achieve this goal; only a theoretically accurate un-

certainty quantification method can reproduce this probabil-

ity distribution, whose mode almost coincides with its lower

bound (left-hand-side tail).
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Figure 3. EOD Prediction at Multiple Time Instants
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Figure 4. EOD Prediction at T = 5000 seconds (near failure)

Sometimes, depending on the chosen statistics of future load-

ing conditions, the distribution of EOD may even be multi-

modal. For example, Saha et al. (Saha & Goebel, 2008) calcu-

lated future loading statistics that lead to a multi-modal PDF

for the EOD, as shown in Fig. 5.

It is important to capture such characteristics of the RUL

(which is equivalent to the end-of-discharge in Fig 3-5) prob-

ability distribution, and this can be accomplished only by us-

ing accurate uncertainty quantification methodologies with-

out making critical assumptions regarding the shape of the

PDF of the RUL, its mean, median, mode, standard devia-

tion, etc. Therefore, the goal must be to accurately calcuate

the probability distribution of R by propagating the different

sources of uncertainty through G as indicated in Fig. 2.
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Figure 5. A Multi-Modal PDF

5.5. Uncertainty Propagation Methods

In order to answer the obvious question: “How to calculate

the uncertainty in R and estimate the PDF of R?”, it is neces-

sary to resort to rigorous computational methodologies which

have been developed by statisticians and researchers in the

field of uncertainty quantification in order to solve a typical

uncertainty propagation problem. There are different types of

sampling methods such as Monte Carlo sampling (Caflisch,

1998), Latin hypercube sampling (Loh, 1996), adaptive sam-

pling (Bucher, 1988), importance sampling (Glynn & Igle-

hart, 1989), unscented transform sampling (Van Zandt, 2001),

etc. Alternatively, there are analytical methods such as the

first-order second moment method (Dolinski, 1983), first-

order reliability method (Hohenbichler & Rackwitz, 1983),

second-order reliability method (Der Kiureghian, Lin, &

Hwang, 1987), etc. In addition, there are also methods such

as the efficient global reliability analysis (Bichon, Eldred,

Swiler, Mahadevan, & McFarland, 2008) method which in-

volve both sampling and the use of analytical techniques. All

of these methods empirically calculate the probability distri-

bution of RUL; while some of these methods calculate the

PDF (fR(r)) of RUL, some other methods calculate the CDF

(FR(r)), and some other methods directly generate samples

from the target probability density function (fR(r)). Due to

some limitations of each of these methods, it may not be pos-

sible to accurately calculate the actual probability distribution

of R. Accurate calculation is possible only by using infinite

samples for Monte Carlo sampling. Any other method (for

example, the use of a limited, finite number of samples) will

lead to uncertainty in the estimated probability distribution,

and this additional uncertainty is referred to as prediction-

method uncertainty. It is possible to decrease (and maybe

eventually eliminate) this type of uncertainty either by us-

ing advanced probability techniques or powerful computing

power.

It is necessary to further investigate the aforementioned un-
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certainty propagation methods, and identify whether they can

be applied to prognostics health monitoring. Some earlier

publications have investigated the use of certain methods

such as Monte Carlo sampling, unscented transform sam-

pling, first-order reliability methods, etc. in this regard.

5.6. Challenges

There are several challenges in using different uncertainty

quantification methods for prognostics, health management

and decision-making. It is not only important to understand

these challenges but also necessary to understand the require-

ments of PHM systems in order to integrate efficient un-

certainty quantification along with prognostics and aid risk-

informed decision-making. Some of the issues involved in

such integration are outlined below:

1. An uncertainty quantification methodology for prognos-

tics needs to be computationally feasible for implementa-

tion in online health monitoring. This requires quick cal-

culations, while uncertainty quantification methods have

been traditionally known to be time-consuming and com-

putationally intensive.

2. Sometimes, the probability distribution of RUL may be

multi-modal and the uncertainty quantification method-

ology needs to be able to accurately capture such distri-

butions.

3. Existing verification, validation, and certification proto-

cols require algorithms to produce deterministic, i.e., re-

peatable calculations. Several uncertainty quantification

methods are non-deterministic, i.e. produce different (al-

beit, only slightly if implemented well) results on repeti-

tion.

4. The uncertainty quantification method needs to be accu-

rate, i.e., the entire probability distribution of X needs

to be correctly accounted for, and the functional relation-

ship defined by G in Fig. 2. Some methods use only

a few statistics (usually, mean and variance) of X and

some methods make approximations (say for example,

linear) of G. Finally, it is important to correctly prop-

agate the uncertainty to compute the entire probability

distribution of RUL.

5. While it is important to be able to calculate the entire

probability distribution of RUL, it is also important to

be able to quickly obtain bounds on RUL which can be

useful for online decision-making.

Each uncertainty quantification method may address one or

more of the above issues, and therefore, it may even be

necessary to resort to different methods to achieve different

goals. Future research needs to continue this investigation,

analyze different types of uncertainty quantification methods

and study their applicability to prognostics before these meth-

ods can be applied in practice.

6. CONCLUSION

This paper discussed the significance and interpretation of un-

certainty the context of prognostics and health management.

The prediction of remaining useful life in engineering sys-

tems is affected by several sources of uncertainty, and it is

important to correctly interpret this uncertainty in order to

facilitate meaningful decision-making. Uncertainty can be

interpreted in two ways, either in terms of physical proba-

bilities from a frequentist point of view or in terms of sub-

jective probabilities from a Bayesian point of view. While

a frequentist interpretation may be suitable for testing-based

prognostics, there are no physical probabilities in the context

of condition-based prognostics. Therefore, uncertainty in the

context of condition-based monitoring needs to be interpreted

subjectively, and hence, a Bayesian approach is more suitable

for this purpose. It was also explained that Bayesian tracking

methods for state estimation are so-called not only because

they use Bayes theorem but are also based on the principle of

subjective probability.

This paper also emphasized the importance of accurately

computing the uncertainty in the remaining useful life predic-

tion. It was illustrated that it may not be analytically possible

to calculate the uncertainty in the remaining useful life pre-

diction even for certain simple problems involving Gaussian

random variables and linear state-prediction models. There-

fore, it is necessary to resort to computational methodologies

for such uncertainty quantification and compute the proba-

bility distribution of remaining useful life prediction. In this

process, it is important not to make assumptions regarding the

shape of the probability distribution of the remaining useful

life prediction or any of its statistics such as the mean, me-

dian, standard deviation, etc.

Finally, it was explained that the problem of estimating the

probability distribution of remaining useful life can be viewed

as an uncertainty propagation problem which can be solved

using different types of computational approaches. Sev-

eral sampling-based methods, analytical methods and hybrid

methods have been developed by researchers in the field of

uncertainty quantification and it is necessary to investigate

the applicability of these methods to prognostics and health

management. Further, several challenges involved in integrat-

ing uncertainty quantification techniques into prognostics and

health management were outlined. It is clear that further re-

search is necessary to address these challenges and develop

a comprehensive framework for uncertainty quantification in

prognostics and health management.
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Szabó, L. (2007). Objective probability-like things with and

without objective indeterminism. Studies In History

and Philosophy of Science Part B: Studies In History

and Philosophy of Modern Physics, 38(3), 626–634.

Tang, L., Kacprzynski, G., Goebel, K., & Vachtsevanos, G.

(2009, march). Methodologies for uncertainty manage-

ment in prognostics. In Aerospace conference, 2009

IEEE (p. 1 -12). doi: 10.1109/AERO.2009.4839668

Van Zandt, J. R. (2001). A more robust unscented trans-

form. In International symposium on optical science

and technology (pp. 371–380).

Von Mises, R. (1981). Probability, statistics and truth. Dover

Publications.

BIOGRAPHIES

Shankar Sankararaman received his B.S.

degree in Civil Engineering from the In-

dian Institute of Technology, Madras in In-

dia in 2007 and later, obtained his Ph.D. in

Civil Engineering from Vanderbilt Univer-

sity, Nashville, Tennessee, U.S.A. in 2012.

His research focuses on the various aspects

of uncertainty quantification, integration, and management

in different types of aerospace, mechanical, and civil engi-

neering systems. His research interests include probabilis-

tic methods, risk and reliability analysis, Bayesian networks,

system health monitoring, diagnosis and prognosis, decision-

making under uncertainty, treatment of epistemic uncertainty,

and multidisciplinary analysis. He is a member of the Non-

Deterministic Approaches (NDA) technical committee at the

American Institute of Aeronautics, the Probabilistic Methods

Technical Committee (PMC) at the American Society of Civil

Engineers (ASCE), and the Prognostics and Health Manage-

ment (PHM) Society. Currently, Shankar is a researcher at

NASA Ames Research Center, Moffett Field, CA, where he

develops algorithms for uncertainty assessment and manage-

ment in the context of system health monitoring, prognostics,

and decision-making.

Kai Goebel is the Deputy Area Lead for

Discovery and Systems Health at NASA

Ames where he also directs the Prognos-

tics Center of Excellence. After receiving

the Ph.D. from the University of California

at Berkeley in 1996, Dr. Goebel worked at

General Electrics Corporate Research Cen-

ter in Niskayuna, NY from 1997 to 2006 as a senior research

scientist before joining NASA. He has carried out applied re-

search in the areas of artificial intelligence, soft computing,

and information fusion and his interest lies in advancing these

techniques for real time monitoring, diagnostics, and prog-

nostics. He holds 17 patents and has published more than

250 papers in the area of systems health management.

13


