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ABSTRACT

Hybrid systems diagnosis requires different sets of equations
for each operation mode in order to estimate the continuous
system behaviour. In this work we rely upon Hybrid Possible
Conflicts (HPCs), which are an extension of Possible Con-
flicts (PCs) for hybrid systems, that introduce the informa-
tion about potential system modes as control specifications
that activate/deactivate different sets of equations. We also
introduce the concept of Hybrid Minimal Evaluation Models
(H-MEMs) to represent the set of globally consistent causal
assignments in an HPC for any potential mode.

H-MEMs can be explored for a specific operation mode, and
its computational model automatically generated. In this
work, the selected computational models are minimal Dy-
namic Bayesian Networks (DBNs). Since DBNs can be di-
rectly generated from PCs, and can be used for fault detec-
tion and isolation, we propose to efficiently generate Mini-
mal DBNs models on-line using the H-MEM structure. By
introducing fault parameters in the DBN model, we can also
perform fault identification, providing an unifying framework
for fault diagnosis, under single fault assumption. We test the
approach in a simulation four-tank system.

1. INTRODUCTION

Dynamic systems with hybrid behaviour are present in almost
every field in our society. Fault diagnosis for these systems is
of capital importance to prevent malfunctions or breakdowns,
and to increase the security and the quality of the final prod-
ucts. However, it is difficult to provide accurate and timely
online fault diagnosis. because their behaviour is made up of
continuous behaviour commanded by discrete events.

For the last 15 years two research communities: the Con-
trol Theory, known as the FDI1 approach, and Artificial
Intelligence, known as the DX approach, have worked
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1Acronym for Fault Detection and Isolation.

on hybrid systems modelling and diagnosis (Cocquempot,
El Mezyani, & Staroswiecki, 2004; Hofbaur & Williams,
2004; Narasimhan & Biswas, 2007; Narasimhan & Brown-
ston, 2007). Current research activities are focused on two
main issues: full or approximate estimation of the set of pos-
sible states, and tracking of nominal and faulty system be-
haviour (Rienmüller, Bayoudh, Hofbaur, & Travé-Massuyès,
2009). To tackle the first issue, different kinds of automata
have been used to model the complete set of modes, and tran-
sitions between them, which introduces the need to enumer-
ate all the set of modes (states) and transitions, and to track
the entire set of consistent modes. Both issues do not scale
well for complex systems. To avoid the pre-enumeration
of modes, we have followed the proposal by Narasimhan et
al. (Narasimhan & Biswas, 2007), which uses Hybrid Bond-
Graphs (HBGs) to model the whole system, and depending on
the value of the switching junctions, used to model the hybrid
behaviour, it is able to generate on-line new models for track-
ing the new system mode. That work has been recently ex-
tended to efficiently generate simulation models using model
block diagrams based on HBGs properties (Roychoudhury,
Daigle, Biswas, & Koutsoukos, 2011), and to efficiently gen-
erate state observers (Podgursky, B., & Koutsoukos, 2010).

Bregon et al. (Bregon, Alonso, Biswas, Pulido, & Moya,
2012) introduced Hybrid Possible Conflicts (HPCs) as an
extension of Possible Conflicts (Pulido & Alonso-González,
2004) using HBGs (Narasimhan & Biswas, 2007), and Block
Diagrams (Roychoudhury et al., 2011). HPCs can track hy-
brid systems behaviour, efficiently changing on-line for each
mode the PC simulation model, and performing diagnosis
without pre-enumerating the set of modes in the system. But
HPCs do not provided a unified diagnosis framework using
one technique.

In this work we propose to use minimal Dynamic Bayesian
Networks, DBNs, derived from HPCs as a unique modelling
framework for hybrid systems fault detection, isolation, and
identification, together with new algorithms to automatically
generate on-line the DBN computational model, and then us-
ing that model to track the system. To automatically generate
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on-line the computational model we introduce the concept of
H-MEM, that provides the potential set of equations that can
appear in any HPC. The approach has been tested on a four-
tank laboratory plant with satisfactory results.

The rest of the paper is organized as follows. Section 2
presents the case study used along the paper and introduces
HBG modelling technique. Section 3 summarizes the HPCs
background. Section 4 describes our new diagnosis frame-
work with DBNs computed from HBGs. Section 5 presents
some results obtained applying our proposal to the case study.
Section 6 describes some related work and Section 7 draws
some conclusions and future work.

2. CASE STUDY

The hybrid four-tank system in Figure 1 will be used along
the paper. It has one input flow to tanks 1 and 3, that can
be sent to both tanks or only to one of them. Tanks 2 and 4
are connected to tanks 1 and 3, respectively, through a pipe
placed at a distance h above their bases. Sources of discrete
behaviour are: commanded valves at the input of tanks 1 and
3, and the pipes connecting tanks 1 and 2, and between tanks
3 and 4, at a given height hi > 0. There are four measure-
ments in the system: pressure sensors at the bottom of every
tank.

Figure 1. Schematics of the four-tank system

We used HBGs, an extension of Bond-Graphs
(BGs) (Karnopp, Margolis, & Rosenberg, 2006), to model
our system. BGs is a domain-independent energy-based
topological modelling language for physical systems. BGs
rely upon primitive elements: storage (capacitances, C, and
inductances, I), dissipative (resistors, R) and energy transfor-
mation (transformers, TF, and gyrators, GY) elements. There
are also effort and flow sources (Se and Sf) to define interac-
tions between the system and the environment. Elements in
a BG are connected by 0 or 1 junctions (representing ideal
parallel or series connections between components). Each
bond has two associated variables (effort and flow). The rate
of energy is defined as effort × flow for each bond. The
SCAP algorithm (Karnopp et al., 2006) is used to assign

causality automatically to the BG.

Related to the primitive elements, sources and junctions there
is a set of well-established equations relating flow and effort
variables. The exact expression of each equation depends on
the assigned causality. For instance, for a resistance, R, ele-
ment with effort and flow variables, e1, f1, the correspond-
ing equation would be e1 = R × f1 or f1 = R × e1.
Energy storage elements, such as a capacitor C, provide
the following equation e2 = 1

C

∫
f2dt, for variables effort

and flow, e2, f2, in integral causality. Finally, 0-junctions
and 1-junctions model ideal common effort or common flow
connections, where efforts (equivalently flows) are all equal
(e1 = e2 = e3), while sum of flows (correspondingly efforts)
must equal zero (f1−f2+f3 = 0). Additionally, there are ef-
fort and flow detectors, De and Df respectively, that provide
measurements of system magnitudes.

To model hybrid systems we need to use some kind
of connections which allow changes in their state.
HBGs (Narasimhan & Biswas, 2007) extend BGs by includ-
ing those connections. If a switching junction is set to ON,
it behaves as a regular junction. When it changes to OFF,
all bonds incident on the junction are deactivated forcing 0
flow (or effort) for 1 (or 0) junctions. A finite state machine
control specification (CSPEC) implements those junctions.
Transitions between the CSPEC states can be triggered by
endogenous or exogenous variables, called guards. CSPECs
capture controlled and autonomous changes as described in
(Roychoudhury et al., 2011).

Figure 2 shows the HBG model of the four tanks system,
where there are four measurements for diagnosis: the level
of the four tanks by means of pressure sensors, pi related
to capacitances Ci, that are represented as effort detectors
De : pi, i = 1..4 in the BG.

Figure 2. Bond graph model of the plant.

Regarding the hybrid behaviour, it has four switching junc-
tions: SW1, SW2, SW3 and SW4. SW1 and SW3 are con-
trolled ON/OFF transitions, while SW2 and SW4 are au-
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tonomous transitions related to water level of tanks 1 and 3
surpassing the height h and overflowing to tanks 2, and 4 re-
spectively. Both kind of transitions are represented using a
finite state machine. Figure 3 shows: a) the automaton asso-
ciated with switching SW1 and b) the automaton representing
the autonomous transition in SW2 (since the system is sym-
metric, automata for SW3 and SW4 will be equivalent).

ON 
OFF 

sw1 

! sw1 

ON 
OFF 

hT1 > h 

hT1 ≤ h 

a)  b) 

Figure 3. a) Automaton associated with the ON/OFF
switching junction SW1; b) Automaton representing the au-
tonomous transition in SW2.

3. HYBRID PCS AND MINIMAL DBNS BACKGROUND

3.1. Hybrid Possible Conflicts (HPCs)

The Possible Conflict, PC, approach is a dependency-
compilation technique from the DX community (Pulido &
Alonso-González, 2004), that have been successfully used
for system model decomposition in consistency-based diag-
nosis of continuous systems. PCs define minimal structurally
overdetermined subsets of equations with sufficient analytical
redundancy to generate fault hypotheses from observed mea-
surement deviations. In the original approach, only structural
and causal information from the system model is used. PCs
are computed using a hypergraph abstracting the structural
model of the system. Recently, we have proposed an exten-
sion that allows to compute PCs directly from bond graph
models (Bregon, Biswas, & Pulido, 2012).

The PC approach has been recently extended to cope
with hybrid system dynamics, using Hybrid Bond-
Graphs (Roychoudhury et al., 2011; Narasimhan &
Biswas, 2007) as the modelling approach. The extension
is called Hybrid Possible Conflicts (Bregon, Alonso, et
al., 2012). Main advantage of HBG modelling technique
is that pre-enumeration of the modes in the system is not
necessary. However, its main concern when applied to
fault diagnosis of hybrid systems (Narasimhan & Biswas,
2007) is related to the task of causality reassignment for
the entire bond graph model, because during this causality
reassignment process, the diagnosis system needs to stop
tracking the behaviour of the system, making it sensitive to
miss faults that occur during (or immediately after) such
reassignment process. However, recent proposals for fast
causality reassignment in HBGs can be used to speed up this
process for efficient on-line simulation (Roychoudhury et
al., 2011). Typically, changes in causality do not propagate

within the model, or only a small part of the model causality
needs to be reassigned. Moreover, when causality needs to
be reassigned, changes will be typically local to the hybrid
junction. HPCs incorporate the proposal by Roychoudhury
et al. (Roychoudhury et al., 2011) to generate new causality
assignments for HPCs once a mode change is observed.
Currently, our main assumption is that we are able to track
the current system mode.

For the case study we have found four HPCs. Each one of
them estimates one of the measured variables (p1, p2, p3, or
p4). Figure 4 shows the HBG fragments of these four HPCs.

In this example, we first computed HPCs assuming that all
switching junctions are set to ON, but when any of these junc-
tions is switched to OFF, causality in the system needs to be
reassigned. Even though causality may change, the HPC gen-
eration process does not need to be restarted again (Bregon,
Alonso, et al., 2012).

There are two basic possibilities for the existing HPCs de-
pending on whether the change in the switching junction in-
duces a change in causality or not. First, the change in the
switching junction induces a change in causality which af-
fects the HPC. A new causality will be assigned to the HPC
and it will be updated. If there is not a valid causal assign-
ment, the HPC will disappear. Second, as a result of the
change in the switching junction there is no change in causal-
ity. In this case, either a PC can remain the same, or a part
of the PC can be affected by the switch and disappear or the
whole PC can disappear (the discrepancy node disappears).

HBGs main advantage is that the complete set of modes do
not need to be known or enumerated in advance. However,
many times there is no such HBG model available. In this
work we propose to compute HPCs for a generic set of ODEs,
given that some of them are only valid under given system
configurations, thus it is needed to extend original algorithms
to compute PCS by introducing the information about dis-
crete dynamics. To show our approach we have used as sys-
tem model the set of equations that can be derived from an
HBG model, as explained above in order to ease the compar-
ison of this approach with the previous one. But in general,
any set of ODEs can be our system model because for com-
puting our HPC models we work mainly at the structural and
causal level.

Figure 5 represent one possible MEM for PC2 in Figure 4.
The MEM provides a computational model that can be imple-
mented as a simulation or state-observer model (Pulido, Bre-
gon, & Alonso-González, 2010). In this work we propose to
implement our PCs as a set of Dynamic Bayesian Networks,
providing a framework capable to perform not only fault de-
tection and isolation but fault identification using the same
computational model.
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Figure 4. Hybrid Bond graphs of the four HPCs found for the four-tank system.

Figure 5. MEM for PC2 subsystem in Figure 4. The effort
and flow variables in the graph correspond to pressures and
flows in PC2 in Figure 4.

3.2. Minimal Dynamic Bayesian Networks(DBNs)

Dynamic Bayesian Networks (DBNs) are a probabilistic tem-
poral model representation of a dynamic system. Basically, a
DBN is a two slices Bayes Network (BN). Assuming that the
system is time invariant and a First Order Markov process,
two static and identical BN connected by inter slice arcs are
enough to model the system (Murphy, 2002). Inter slice arcs
model system dynamics. Intra slice arcs model instantaneous
(algebraic) relations.

The system variables (X,Z,U, Y ) represented in a DBN are
the inputs (U ), the state variables (X), the observed or mea-
sured variables (Y ) and, in some cases, other hidden variables
(Z) . Once we have the nodes, we need to define the arcs

and the parameters in the model, the state transition model
(graphically represented by the inter slice arcs) and the ob-
servational model (represented by intra slice arcs).

Figure 6 represent the DBN for MEM2 in Figure 5. Blue
arrows represent the inter slice arcs modelling system dy-
namics. Orange arrows represent the intra slice or instanta-
neous relations among system variables. Alonso-Gonzalez
et al (Alonso-Gonzalez, Moya, & Biswas, 2011) provided
the method to automatically transform a MEM from a PC to
a DBN model. Following the method we obtain the DBN
model in Figure 6.

Figure 6. DBN for the PC2 subsystem in Figure 5. Input
node is measured pressure e5 = De:p1, state variable is the
pressure in tank 2, e10, and the output node is the measured
pressure in tank 2 De:p2.

Exact inference in DBNs is not computationally tractable.
Hence, Monte Carlo simulation methods are used for approx-
imate inference, particularly Particle Filter algorithm (Koller
& Lerner, 2001). The unknown continuous stochastic dis-
tribution of the state is approximated by a discrete distribu-
tion obtained by weighted samples. After propagation of the
state, the weights are updated with current observations. In
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this work, we assume a Gaussian distribution.

DBNs can be used along all the stages in the diagnosis pro-
cess. They provide a unified framework for fault diagno-
sis. DBNs can be generated from a PC derived from a
BG model (Alonso-Gonzalez et al., 2011) and have been
successfully applied for fault diagnosis of continuous sys-
tems (Roychoudhury, Biswas, & Koutsoukos, 2008; Alonso-
Gonzalez et al., 2011) .

In this work, we propose to integrate DBNs to monitor the
continuous behaviour of the system, and to use HPCs to gen-
erate different DBNs for each new mode. We propose to build
a different DBN for each mode, instead of using a hybrid
DBN able to track the complete set of modes related with
the HPC.

4. EFFICIENTLY COMPUTING HYBRID PCS

In (Pulido & Alonso-González, 2004) PCs were computed
for a unique mode. The computation was made in two steps:
first, we obtained the set of minimally overdetermined sets
of equations, which are called Minimal Evaluation Chains,
MECs –equivalent to minimal ARRs (Analytical Redundancy
Relations) or MSO (Minimal Structurally Overdetermined)
sets of equations (Armengol et al., 2009)–. Second, introduc-
ing causal information in the model2, for each MEC we ob-
tained the complete set of globally consistent causal assign-
ments, each one called Minimal Evaluation Model or MEM.
Each MEM provides the computational model required to
build a simulation or a state-observer model (Pulido et al.,
2010).

In previous works we have demonstrated that the structural
and causal models can be automatically obtained from Bond-
Graph models, deriving a Temporal Causal Graph, TCG, that
represent a consistent causal assignment for the system in
one mode. And we can compute the set of Possible Con-
flicts from the TCG (Bregon, Pulido, Biswas, & Koutsoukos,
2009). But in this section we propose to extend the approach
to any causal model (we always can start from a system model
made up of a set of ODEs, and then to abstract the structural
and causal information in them to generate a causal model
where only the presence of measured and unknown variables
in an equation is relevant). In (Bregon, Alonso, et al., 2012)
we proposed how to obtain HPCs from HBGs, using HSCAP
(Roychoudhury et al., 2011) to avoid computing a new causal
assignment in the HBG whenever there is a mode change.

In this work we propose to compute the HPCs directly from a
set of labelled equations, obtained as an abstraction of the set
of ODEs which is our model. In order to efficiently generate
computational models as minimal DBN factors, we need to
extend the algorithms computing HPCs in two ways. First,

2We made difference between static and dynamic relations, called differen-
tial equations. Different causal assignments for differential equations pro-
vide integral or derivative approaches for behaviour estimation.

we need to compute the set of HPCs, i.e. PCs with labelled
equations related to discrete dynamics. Second, we need
to automatically and efficiently build the DBN behavioural
models from the computational model provided by a MEM.

4.1. Inclusion of constraints to represent discrete dynam-
ics

To fulfill the first requirement we first introduce information
about discrete dynamics in the model, and later on we modify
the original algorithms to compute PCs. In this work we as-
sume that each equation in the system model is valid in a set
of configurations, and these configurations can be character-
ized as constraints: one constraint is a well-formed formula,
WFF, in propositional logic. The propositions in the WFF
will represent the control specifications related to the switch-
ing junction automata (as shown in Figure 3) because they
will have only boolean values related to the ON/OFF state of
the switching junction.

These modifications can be summarized as follows:

• first, we add the information about constraints in the
equations as WFF. Each switching junction introduces
an atomic proposition, whose values true or false will be
function of the switching junction control specifications
being ON or OFF.

• Second, the automaton representing the switching junc-
tion is explicitly modelled as a set of constraints in adja-
cent equations, forcing different causal assignments.

For 1-junctions (and 0-junctions have a corresponding dual
version):

• when the switch is ON: flows must be equal fi = fj =
fk, and effort variables must sum up to 0:

∑
el = 0

• when the switch is OFF: there is no effort related to the
junction, and each flow is transformed into a zero flow
source: Sf : fi = 0, Sf : fj = 0, and Sf : fk = 0.

As an example, the behaviour of switching junction SW1 in
Figure 2 will provide the set of equations in Table ??, and
their corresponding evaluation forms3.

Table 1. Equations with no causality, their associated eval-
uation form (with some possible causality assignments), and
constraints for the equations in the four tank system model.

Equation Evaluation form Constraint
(ec3 : e2, e3, e4) ec31 : e3 := e2 − e4 sw1

(ec2 : f2, f3, f4) ec21 : f2 := f3; f2 := f4; f3 := f4 sw1

(ec4 : f3, e3) ec41 : f3 := e3/R01 sw1

(ec4 : f3, e3) ec42 : f3 := 0 ¬sw1

It must be noticed that there is no valid evaluation form for
(ec3 : e2 e3 e4) when ¬sw1 is true. Then, even if ec3

3HBGs provide a systematic way to derive the ODEs. But we can start the
process from any kind of modelling language.
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and ec4 share the unknown variable e3, they can only be used
together when sw1 is evaluated to true. Those equations with
no contraints represent equations that are valid in any working
mode.

Using this new system model, we only need to introduce
slight modifications in the algorithms developed to compute
PCs as described in (Pulido & Alonso-González, 2004); we
just need to include the information about the constraints
modelling discrete behaviour while building the set of MEMs
for a given HPC.

The algorithm for computing MECs is the same. Only those
MECs with a valid switching configuration will provide a
valid MEM, i.e., those MECs will be PCs. We consider a
switching configuration as valid if its associated WWF is sat-
isfiable, that is, there is at least one configuration where it is
consistent.

Algorithms for computing PCs can be easily extended to in-
troduce constraints related to mode changes: when building
each MEM, in each step we try to justify or remove one un-
known variable using known values. Now, we impose the
additional requirement that the set of constraints in the MEM
and the constraint in the new equation, if any, provide a satis-
fiable formula (i.e., it contains no contradiction). For any ex-
pression or equation where there is more than one constraint,
we must explore in parallel every potential solution. Hence,
for a given MEC we can obtain a collection of MEMs, and
each MEM will be valid in a limited set of operation modes,
determined by satisfiable WWFs.

For instance, we can use ec31 to estimate the value of e3, then
use e3 and equation ec41 to estimate the value of f3 under the
constraint sw1, i.e. when switching junction SW1 is set to
ON. However, when switching junction SW1 is set to OFF,
¬sw1 is true and we can not use both equations ec31 and
ec41 . We can only use ec42 that fixes the value of f3 to zero.

Hence, each extended MEM represent now a global consis-
tent causal assignment for the equations in a HPC, together
with a WFF in propositional logic made up of the conjunc-
tion of every constraint. For instance, both sw1 ∧ sw2 ∧ sw3

and sw1∧¬sw2∧sw3 are satisfiable formula, but sw1∧¬sw1

is not. We term label of a MEM to its WFF.

The complete set of MEMs plus their associated constraints
represent all the consistent causal assignments for the equa-
tions in a HPC, i.e. they represent the evaluation form for
all the possible behavioural models in a HPC. Each MEM in
a HPC will have one discrepancy node4, but will have dif-
ferent sets of equations depending of the current mode on
the system. For any given MEM, the hyperarcs represent
the equations used to compute the head of the hyperarc us-

4The only variable estimated and measured, which can be the origin of a real
conflict. The discrepancy node is equivalent to a residual in FDI terminol-
ogy.

ing the variables in the tail of the hyperarc. Leaf nodes in
the hypergraph are either measured variables or previously
estimated unknown variables, i.e. potential cyclical configu-
rations. In the hypergraph differential constraints are repre-
sented as dashed hyperarcs, and they do not introduce loops.

We call that complete collection of extended MEMs for any
HPC, Hybrid MEM (H-MEM). In Figure 7 we show the H-
MEM for HPC1, in our case study. Labels in the right hand
side of the hyperarcs as {swj} or {¬swj} represent the con-
straints related to the original switching junction CSPECs.
Remainder labels represent either the name of the equation,
eck, or the faulty parameter related with the equation: either
Rx, or Cx for faults in resistance or capacitance elements in
the original BG model. This H-MEM represents the most
complex configuration in our case study, since the models for
HPC1 in different modes require different causality assign-
ments. For a given mode, we will use only those paths from
the leaf nodes to the discrepancy node (to compute a residual)
whose constraints are consistent.

f5 

e3 

ec1 

MEM3 
residual 

e5 

f3  f6  f8 

f1* e8 

e5  e10* 

{sw2} 

{!sw2} {sw2} 
e5 f12 

() 

RO3 {!sw3} 

e2 

RO1 {sw1} 

RO1 
{!sw1} 

() 

e13  e15* 

f12 

f3 f1* 

ec1 

RO3 {sw3} 

{sw3} 

R1 
R12 

() 

R12 

e5 

ec7 

C1 

e5* 
HMEM for HPC1{sw1, sw2, sw3} 

ec6 

ec10 

ec4 

ec3 

Figure 7. Hybrid Minimal Evaluation Model for HPC1. We
use dashed arcs for differential equations, and solid arcs for
instantaneous equations. Observed variables are marked with
an asterisk. Different arcs entering in a node represent differ-
ent paths.

We do not compute the complete H-MEM. We only need to
know the set of constraints contained in the HPC, because
each mode is defined by a WFF involving just the atomic
propositions for switching-junctions involved in the HPC.
Once we know the For instance, the H-MEM for HPC1 in
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Figure 75 has consistent MEMs in the following configura-
tions, among others:

sw1 ∧ sw2 ∧ sw3

¬sw1 ∧ sw2 ∧ sw3

sw1 ∧ ¬sw2 ∧ sw3

It must be noticed that in engineering systems, not every pos-
sible configuration is feasible for security reasons. For in-
stance, in our system is not possible to have both switches,
sw1 and sw3 both off at the same time. Hence, those models
will never be generated.

In fact, we do not need to know all these configurations. Once
a new mode is suspected, if one H-MEM contains constraints
related to that mode, we build its actual MEM, just using the
expressions of the equations that are valid under the current
mode, depending on the actual values of the switches. We
depth-first traverse, dft, the hypergraph from the discrepancy
node to the leaf nodes:

FUNCTION mem = create-MEM(hmen: H-MEM, m: mode)
begin
dft(hmem.discrepancy_node, hmem, m, mem);

return mem;
end FUNCTION

FUNCTION dft (c: node, hmen: H-MEM, m: mode, mem: MEM)
begin
insert(c) in mem; // c is current node
for y = each node in hmem | (c,y) is an edge in hmem
AND (c,y).label is compatible with m
do
if y was not visited yet then
insert(c, y) in mem;
insert(c,y).label in mem.label;
dft(y, hmem, m, mem);

end
end
end FUNCTION

The model described by that MEM can be implemented in
many different ways. In this work we opted for DBNs imple-
mented as Particle Filters.

4.2. From H-MEMs to minimal DBNs

In (Alonso-Gonzalez et al., 2011) it was described how to de-
rive the transition and the observational model of a DBN-PC
factor from a MEM. The transition model estimates the next
state(s) value(s) in the DBN from the inputs, and the current
state(s) value(s); the observational model computes the value
of the system output (only one output in a MEM because it is
minimal) given the state(s). In that work the model was built
manually. In this section we explain how to efficiently and
automatically derive the model for the DBN-PC factor from
the MEM; that model will be later implemented as a particle
filter in Matlab( c©MathWorks).

5To make the H-MEM more readable, we have collapsed every effort or
flow variable of the same junction with a unique index. For instance
e4=e5=e6=e7 or f2=f3=f4

While building a MEM it is trivial to identify the discrepancy
node, input and output variables (measurements), and state
variables: first, we are using integral causality to build the
DBN-PC factor, then it is straightforward to determine the
state variables that will be the nodes computed by the set of
differential constraints, i.e. those modeling dynamics. In our
case study, we have only one state variable for each HPC,
and they correspond to the capacitor elements in the original
Hybrid Bond-Graph: e5, e10, e15, and e20. Second, in the
HBG framework, only measured outputs can be the origin of
a discrepancy. Hence, there will be only one output variable
in each H-MEM, and that will be the discrepancy node.

Once we identify those elements, we implement the proposal
by Alonso-González et al. (Alonso-Gonzalez et al., 2011).
We assume that the analytical expression for each equation
in the MEM is known. Then, we just need to find the transi-
tion model and the observational model for the DBN factor.

Obtaining the observational model is simple: we depth-first
search in the MEM from the discrepancy node to state vari-
ables and inputs, just using instantaneous constraints. That
sequence of equations in reverse order is the analytical ex-
pression of the observational model.

FUNCTION get_observational_model (mem: MEM,
om: observational_model)
begin

return dfs(MEM.discrepancy_node, mem, om);
end FUNCTION

FUNCTION om = dfs (n: node, mem: MEM,
om: observational_model)
begin
for y = each node in mem | (n,y) is an edge in mem
do
add (n,y) at the beginning of om;
if (n,y) is a differential edge then
mark n as mem.observed-state-variable;

else
dfs (y, mem, om);

end
end
end FUNCTION

The transition model can be obtained searching depth first the
MEM from the state variables to state variables and inputs,
following the requirements in (Alonso-Gonzalez et al., 2011).
The analytical model is obtained from the transcription of that
sequence of equations in reverse order.

FUNCTION get_transition_model (mem: MEM,
tm: transition_model, om: observational_model)

begin
for st = each state-variable
in mem.observed-state-variable
do
dfs2 (st, mem, tm, om);

end
end FUNCTION

function dfs2 (st: node, mem: MEM,
tm: transition_model, om: observational_model)
begin
for y= each node | (n, y) is an edge in mem
AND (n,y) is not an edge in om

7
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do
if (st,y) has not yet been visited then

mark (st,y) as visited;
insert (st,y) at the beginning of tm;
tm= dfs2 (y, mem, tm, om);

end
end

end FUNCTION

Different proposals have been made to improve the algo-
rithms computing the set of PCs. One of them is able to find
any cyclical configuration (Pulido & Alonso, 2001). Those
configurations can introduce algebraic loops in the model.
Those loops containing differential constraints are no longer
loops; in fact, they represent the integration step in the sim-
ulation model. Those loops containing just algebraic loops
can be solved if there is a direct path from observed variables
to an unknown variable in the loop. Otherwise, we need to
create a subset of equations that need to be solved using a nu-
meric solver (Pulido et al., 2010). In this case, there could be
efficiency problems for the DBN-PC factor. All these analy-
sis must be done before we build either the observational or
the transition model.

Regarding the efficiency of this proposal, there will be al-
ways a trade-off in terms of space and computation time. De-
pending on the system under study, different heuristics can be
applied to customize the algorithms performance. For small
systems with a limited number of modes, most of the compu-
tation can be done off-line and cached to speed up the on-line
code generation. In the H-MEM there will be a number of
equations that will always appear in the system because they
are causality independent. These could be also pre-compiled,
since they will always provide the same analytical expression
in any MEM in any mode.

5. RESULTS

The four-tank hybrid system in Figure 1 has been used to
show the applicability of our proposal.

Simulated data has been generated with 5% level of noise,
during 1000 s with a sample period of 0.1. We run several
experiments with different mode configurations and different
faults, varying the size and time of fault occurrence. Results
for all these situations were equivalent to the example pre-
sented next.

5.1. Tracking and fault isolation results

For the four tank system we computed the set of four HPCs
and their corresponding H-MEMs, using the new algorithms.
Since our models were provided by the HBG of the whole
system when every switching-junction was set to ON, we ob-
tained the same results.

Figure 8 shows the results obtained for one of the experiments
run. First row (Figure 8) compares the three measurements
and its estimation by the DBN-PC, while second row shows

the residual obtained for each DBN-PC. DBN from HPC4
has not been included in the figure as this PC is always deac-
tivated during the experiment. The results of the experiments
have 10000 time stamps. The graphs built with those signals
were difficult to read due to its size. Some time intervals dur-
ing stationary state have been ommited to avoid that problem.
Because of that, the time stamps that are mentioned below
will not match with the time stamps in Figure 8, but the com-
ments about the real time stamps are correct.

Initially, water tanks are empty, and start to fill in at constant
rate. Hence, the initial configuration of the system is SW1

and SW3 set to ON, and SW2 and SW4 set to OFF. Tanks
1 and 3 start to fill in, and approximately at instant 500 sam-
pling periods both tanks reach stationary state. At this time,
the level in tank 1, hT1, and the level in tank 3, hT3, are lower
than the height of the connecting pipes, h, and consequently,
there is no flow through the connecting pipes.

At instant 2000 sampling steps, controlled junction SW3 is
set to OFF, so the system mode changes. Simultaneously,
HPC1 and HPC3, which contain constraints related to
SW3, must change their models to accommodate the new op-
eration mode. It is necessary to reassign causality in our H-
MEMs. Once the new computational expression for the HPCs
have been generated, the corresponding DBNs are built. As
shown in Figure 8, DBN-PC1 and DBN-PC3 are able to cor-
rectly estimate the level of tank 1 and 3, respectivley, im-
mediately after the mode change. Regarding HPC2 and
HPC4, since both HPCs do not contain constraints related
to the switching junction SW3, none of them is affected by
the mode change so their DBNs do not need to be generated.

SW3 has been set to OFF, so the level of tank 3 decreases
until it becomes zero, while the level of tank 1 increases. At
instant 2100 sampling periods, the level of tank 1 reaches the
height of the connecting pipe between tanks 1 and 2. At this
point, the equations related to autonomous transition in SW2

are set to ON and water begins to fill in tank 2. HPC1 and
HPC2 are affected by this mode change. In both cases, the
models of their H-MEMs are updated and the DBNs are gen-
erated quickly. Both of them are able to correctly estimate the
measurements for the new mode.

At instant 7000 sampling periods a 20% leak in tank 1 occurs.
As a consequence, the level of tank 1 decreases, while the
estimation of HPC1 does not. Hence, residual of HPC1,
which is the only one containing C1 as a fault candidate, ac-
tivates, triggering the fault isolation procedure. Regarding
HPC2, since the level of tank 1 decreases due to the fault, at
instant 7050 sampling periods the autonomous junction SW2

transitions again to OFF mode, and HPC2 changes mode
again. The H-MEM for HPC2 is updated immediately and
DBN-PC2 is built; it is able to correctly estimate the level of
tank 2 for the new mode.
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Figure 8. Experiment for the four-tank system.

For the case study, the average time for updating the H-MEM
to generate the current MEM, and to generate the analytical
model for the DBN is less than 1 ms. The algorithms were
built in Java and they were run in a Intel Core i3 processor
with RAM of 4GB.

5.2. Fault identification results

A 20% leak in tank 1, which is related to parameter C1 in the
models, was introduced at instant 7000 sampling periods and
9 sampling periods later (0.9 seconds) DBN for HPC1, DBN-
PC1, detects a fault. According to the Fault Signature Matrix,
FSM, in Table 2, the set of fault candidates is {C1, R1, R01,
R03, R12}. The FSM describes the relation between the set
of faulty parameters in the model and the set of HPCs.

Table 2. Fault Signature Matrix for the four tank system. The
parameters in row are directly obtained from the BG model,
and their corresponding constituent equations.

HPC1 HPC2 HPC3 HPC4
C1 1
C2 1
C3 1
C4 1
R01 1 1
R03 1 1
R1 1
R2 1
R3 1
R4 1
R12 1 1
R34 1 1

DBN-PC1 can be extended with a node for the faulty param-
eter which needs to be identified as explained in (Alonso-
Gonzalez et al., 2011). In this scenario, five DBNs were
built, one for each fault candidate. Figure 9 shows the re-
sults obtained using the DBN-PC1 to estimate C1. The DBN

is able to track the system behavior and to obtain an estima-
tion for the parameter quickly converging to a 19.3% fault in
C1. DBN-PCs to estimate the remaining faults were not able
to converge. Hence, the candidates were discarded.

6. RELATED WORK

In our approach we do not need to enumerate the complete
set of modes, as required by other works using parameterized
ARRs (Cocquempot et al., 2004; Bayoudh, Travé-Massuyès,
& Olivé, 2009), or using pure discrete models. We just need
to provide the constraints for the equations. Later on, for each
HPC, its model will be generated for a specific working mode.
However, in the general case, we would need to compute the
set of HPCs at least for the configuration where every switch
is on. But we don’t need to instantiate them. We just need to
check what HPC has a valid causal assignment for the current
operation mode. In that set we build a superset of parame-
terized ARRs. Our main assumption to do so is that every
structural model is a subset of the structural model where ev-
ery switch is ON.

Using DBNs derived from HPCs for fault detection, iso-
lation and identification avoids using several techniques as
in (Narasimhan & Biswas, 2007; Rienmüller et al., 2009).
But the mode must be observed, thus requiring an hybrid state
estimation (Hofbaur & Williams, 2004; Koutsoukos, Kurien,
& Zhao, 2003).

Using minimal DBN-PCs as a unified model, we do not pro-
vide general solutions for hybrid systems diagnosis such as
HyDe (Narasimhan & Brownston, 2007). But we combine
continuous estimation with discrete changes, and we do not
restrict our solution to pure discrete systems as in HyDe or
probabilistic approaches. Moreover, interleaving different
DBN continuous models we avoid the usage of hybrid DBNs.

9
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Figure 9. Identifiying the fault in parameter C1.

Our work is closely related to efficient generation of simu-
lation (Roychoudhury et al., 2011) and state observer mod-
els (Podgursky et al., 2010) in TRANSCEND (Narasimhan
& Biswas, 2007), because we assume that changes in model
causality will be mostly local, but we do not rely upon the
Hybrid SCAP algorithm to generate a valid HBG model for
the entire system. Instead, we need to know every feasible
causal assignment in the system description, and perform on-
line local search in the H-MEMs. Finally, (Bregon, Alonso, et
al., 2012) proposed to obtain the set of HPCs from block dia-
grams derived from HBGs (Roychoudhury et al., 2011). We
improve that proposal by directly generating DBN computa-
tional models instead of simulation models, thus improving
fault detection capabilities, and the process can be performed
for any structural and causal model conform with our defini-
tions in section 4.

7. CONCLUSIONS

This work proposes an efficient and unified solution for hy-
brid systems fault detection, isolation and identification, as-
suming that it is possible to identify the current system state.

Efficiency is obtained by avoiding the explicit consideration
of every possible mode configuration. HPCs, avoid comput-
ing PCs from scratch for every new configuration. Finally, a
new algorithm is proposed for efficient on-line computation
of minimal DBN-PCs.

Implementing HPCs as minimal DBNs provides a unified so-
lution, because DBNs naturally allow fault detection, fault
isolation and fault identification of continuous systems. Us-
ing HPCs we transform a hybrid diagnosis problem in a se-
quence of continuous diagnosis problems, avoiding the use of
hybrid DBNs. An additional effect of using HPCs to generate
DBNs is that we must not simulate the complete system DBN
model, thus improving on-line computational efficiency.

As further work, we plan to integrate this proposal in a
common framework including both discrete and parametric
faults (Moya, Bregon, Alonso-González, Pulido, & Biswas,
2012; Moya, Bregon, Alonso-González, & Pulido, 2013).
Besides, we want to incrementally generate the MEM in new
modes from the MEM in the previous one; and to test the

approach in a more demanding scenario with larger set of
modes, and faster dynamics. Finally, we will couple this
framework with a reliable hybrid state estimator.
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Massuyès, L. (2009). Hybrid Estimation through Syn-
ergic Mode-Set Focusing. In Proc. of 7th IFAC Sym-
posium on Fault Detection, Supervision and Safety of
Technical Processes, Safeprocess’09 (p. 1480-1485).
Barcelona, Spain.

Roychoudhury, I., Biswas, G., & Koutsoukos, X. (2008,
Sept.). Comprehensive Diagnosis of Continuous sys-
tems Using Dynamic Bayes Nets. In Proc. of XIX Intl.
Workshop on Principles of Diagnosis, DX’08. Blue
Mountains, Australia.

Roychoudhury, I., Daigle, M., Biswas, G., & Koutsoukos, X.
(2011, June). Efficient simulation of hybrid systems:
A hybrid bond graph approach. SIMULATION: Trans-
actions of the Society for Modeling and Simulation In-
ternational(6), 467-498.

BIOGRAPHIES

Belarmino Pulido Belarmino Pulido received his Degree,
MsC degree, and PhD degree in Computer Science from the
University of Valladolid, Valladolid, Spain, in 1992, 1995,
and 2001 respectively. In 1994 he joined the Departamento de
Informatica in the University of Valladolid, where he is Asso-
ciate Professor since 2002. He has been working on Model-
based reasoning and Knowledge-based reasoning, and their
application to Supervision and Diagnosis. He has worked
in different national and European funded projects related
to Supervision and Diagnosis. He is a member of the IEEE
(M’2000), ACM (M’2003), and CAEPIA (1997, part of EC-
CAI) professional associations. He is also the coordinator of
the Spanish Network on Supervision and Diagnosis of Com-
plex Systems since 2005. Currently he is working on model-
based diagnosis and prognosis of continuous and hybrid sys-
tems, using both centralized and distributed approaches.

Noemi Moya receives her Degree, her MsC Degree, and PhD
Degree in Computing Sciences from the Universidad de Val-
ladolid, Valladolid, Spain, in 2006, 2008, and 2013, respec-
tively. From 2008 to 2013 she has been a research and teach-
ing assistant at the Departamento de Informatica from the
Universidad de Valladolid. She has been working in Model-
Based Diagnosis of continuous and hybrid systems. She has
been part of a national project related to diagnosis and she has
been a member of the Spanish National Network on Supervi-

11



Annual Conference of the Prognostics and Health Management Society 2013

sion and Diagnosis of Complex Systems.
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