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ABSTRACT

Vibration signatures contain information regardirnige
health status of the machine components. One agiprima
assess the health of the components
systematically for a list of specific failure patis, based on
the physical specifications of the known compondatg.
the physical specifications of the bearings, thergbeels or
the shafts). It is possible to do so, since theifestation of
the possible failures in the vibration signaturekiwn a
priory. The problem is that such a list is not coety@nsive,
and may not cover all possible failures. The matégon of
some failure modes in the vibration signature mayldss
investigated or even unknown. In addition, when enthran
one component is malfunctioning, unexpected pattenay
be generated. Anomaly detection tackles the morergé

problem: How can one determine that the vibratio

signatures indicate abnormal functioning when thecsgics
of the abnormal functioning or its manifestation time
vibration signatures are not known a priori? lsetge,

anomaly detection completes the diagnostics of théj

predefined failure modes. In many complex machieeg.
turbofan engines), the task of anomaly detectiofuither
complicated by the fact that changes in operatonglitions
influence the vibration sources and change theu&aqy
and amplitude characteristics of the signals, ngkhem
non-stationary. Because of that, joint time-frequen
representations of the signals are desired. Thdifierent
from other vibration based diagnostic techniqudsictvare
designated for stationary signals, and often famusither
the time domain or the frequency domain.

For the purpose of this article, we will refer aBRT (time-
frequency representation) to all 3D representativhgch
employ on one axis either time, or cycles, or RRNG on
the other axis either frequency, or order. The pseg
method suggests a solution for anomaly detection
analysis of various TFRs of the vibration signgdgrarily
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the RPM-order domain).

In the first stage, TFRs of healthy machines aredu®
create a baseline. The TFRs can be obtained usingus

is to searchethods (Wigner-Ville, wavelets, STFT, etc). In thext

stage, the distance TFR between the inspecteddiagaand
the baseline is computed. In the third stage, tistance
TFR is analyzed and the exceptional regions inTR are
found and characterized. A basic classification thé
anomaly type is suggested. The different stagemalysis:
creating baselines, computing the distance TFRutiigéng
the exception regions, are illustrated with actiath.

1. INTRODUCTION

Monitoring of vibrations can be used to detect niaeh
faults, including roller bearing degradation, gelagels
degradation, eccentricity, mechanical looseneskalance,
misalignment, oil film bearing instabilities, sttucal
resonance, and cracked rotors. In most methods,
etection is based on comparison of vibration leval
Specific frequencies to reference or “baseline” ueal
representing the healthy cases. The specific frerjas
used for tracking are defined separately for eaature
mode of each component. Detection of all the péssib
failure modes of a machine implies definition of Hie
possible failure modes of all components includatigthe
relevant combinations of failure modes such thattla
frequencies of interest will be covered. In spifehe fact
that many failure modes can be pre-defined withirthe
associated patterns, the definition and listing adif the
frequencies of interest is a very complex taskeroft
impossible. In order to complete the diagnosticcpss
when only a part of the frequencies of interest te&n
predefined, an anomaly detection algorithm is negli

the

b{é)iagnostics of rotating machinery during regulaeigtion
n

volves in many cases analysis of non-stationégpads.
This is because rotating speeds, loads, and eméntal
conditions vary (in some cases rapidly) with tin@dten,
even the assumption of quasi-stationarity may net b
appropriate. In such an environment, an efficiemty vio
evaluate condition indicators may be based on time-
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frequency or time-order representations that revib@l the analyzed TFR (relative to the baseline). Ned, will
evolution of the spectra with time. The time-freqoye or  explain the algorithm for automatic detection and
time-order representations (TFR) can be computédgus classification of the exceptional regions. The athm is
different techniques of signal processing suchtastSTime  demonstrated with an example of a seeded test data,
Fourier Transform (STFT), Wavelets decomposition omwhich the presented algorithm was able to deteetfault

Wigner-Ville representations (see Polyshchuk e2@02,

without using any prior knowledge on the natureéhef fault

Juluri & Swarnamani 2003, Yang & Ren 2004, Bradfordor the physical dimensions of the faulty part.

2006, Klein et al 2011).

Usually the TFRs are representations of the vibrasignal
or its derivatives (synchronic average, envelopeg- p
whitened signals, etc.) in the RPM-frequency or Rétller
domains (see Antoni & Randall 2002, Antoni et aD20
Sawalhi & Randall 2008, Klein et al 2012). TFRs aidely
used in scientific and industrial applications feisual
inspection of vibrations. The primary problem oé thisual
inspection is that in complex machinery, the TFRtams a
huge amount of information and it is difficult tors out and
focus on the relevant information manually.

Some methods of anomaly detection in TFRs have be

proposed using different approaches (see belowgeheral,
a statistical analysis of the spectrogram valuetherover
threshold values is used for detection of anomalidss
requires a definition of the probability densitynéition
(PDF) and an evaluation of the PDF parameterse(difftly
for different zones of the TFR). There were diffdre
assumptions regarding the nature of the probalidigsity
function for spectrum or spectrogram values; Huyllet al
(2008) show that for spectrograms and STFTs, wissmgu
Hanning windowing, the> PDF (central or non-central for
deterministic peaks) is adequate for detectionxeéptions.

2. BASELINE GENERATION

The baseline is generated from a set of TFRs recbi a
set of healthy machines. In essence, the basefina i
statistical characterization of the data distribatin each
cell of the TFR matrix:

P S-S ) ot Y
1,] N i I,],n ] N i I,],n

where:;; is the average of values in céjl, o;; is the

standard deviation of the values in dgll N is the number

&% TFRs in the baseline, anB;, is the value of the

spectrumm in celli,j.

It is highly advisable to use similar operating dibions for
baseline generation. This allows a better reprasent of
the healthy population, hence a higher reliability
detecting anomalies. To illustrate that, let ussider slow
acceleration versus fast acceleration in a jetrendgin our
experience, the two cases differ significantly ineit
vibration patterns even at the same RPM. Evidemhigds
vary significantly, some of the resonances that ex@ted
during a slow acceleration may not be present &asa

Bechhoefer et al (2011) discussed Rayleigh PDFs foacceleration, and there are also differences irathglitude
spectrum values and Nakagami PDFs for sums of Rpwyle of peaks at characteristic frequencies. Combiniotfy bases

distributed values. Clifton & Tarassenko (2009)wéd that
the PDF in spectrogram bins is approximately Garamz
that its tail can be described by a Gumbel distidvu
representing extremum values distribution. Hazanalet
(2012 and 2013) proposed Peak Over Threshold (R@d)

Frequency Dependent Peak Over Threshold (FDPOT,
methods which were based on the assumption that t
values exceeding a threshold can be approximated by o

Generalized Pareto distribution.

The current paper proposes an automatic procedure f

anomaly detection which is adequate for all type$FERs.

of fast and slow accelerations in the same basefiodel
may lead to a significant reduction in discrimioati
abilities of the condition indicators.

Thus, it is essential to decide which operatingddtions
an be combined in the same baseline. This cachiewed

a relatively simple statistical hypothesis tegti
ocedure, combined with a physical understandihthe
ad variations in the different operating condigo

Various other technical issues should be addredseidg
the implementation of the baseline algorithm.

The analysis algorithm emphasizes only the exceptio First, all the TFRs need to have the same scalis. Cém be

relative to the “baseline” or the reference TFRowing
effective masking of huge amounts of less
information.

The “baseline” is a statistical characterizationtttd TFRs
derived from a set of healthy machines. The exoapti
relative to the baseline are then examined to testevant
regions corresponding to significant anomaliesthia first
section of the article, we will describe the stats
characterization stage, or the baseline generaliban we
will show the algorithm for emphasizing the exceps in

achieved either by interpolation of the existingREFto a

relevaniew common scale, or by calculation of the TFRaigisl

predefined common scale. The predefined commore ssal
achieved by calculating the TFRs at predefined eangf
rotating speeds and similar frequency/order regmiut

If interpolation is used, one should be careful rot
introduce artifacts to the data when the time sdales not
fit the variation rate of the load. For example entthe time
resolution or RPM resolution is too low comparedttie
acceleration rate, and adjacent spectra differ plyruin
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amplitude,
erroneous baseline TFR with high variances.

Another issue is how to set a correct scale. A drigh
resolution in time or RPM will provide better deiiea
capabilities, but setting the resolution too highynieave
some time segments of the TFR too short for a bigia
spectrum calculation. The scale should be adapiethd
operating modes of the inspected machinery sontioest of
the TFR will be calculated correctly.

3. DISTANCE TFR

When a new data is available, the TFR is intergadlab
obtain the same scale as the scale that was usdéugdu
baseline generation. A new representation, theanlist
TFR, is calculated, where each cell
corresponding distance from the model of healthghirees.

The distance TFR emphasizes the cells that defriate the
distribution of healthy machines (see Figure 1 Biggire 2).

Mahalanobis distance is used for comparison (Eg. 2)

_ Ri—H,

Oij
where: D;; is cell i,j in the distance TFRP;; is the
corresponding cell in the TFR of the new daig, is the
mean ofij cell in the baseline, and;; is the baseline
standard deviation of the corresponding cell.
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Figure 1. Comparison between baseline and a newly
obtained TFR in the RPS-order domain (RPS — Rota&ier
Second). The white surface represents the bagghi3e)
and the dark green surface represents the insp&eted

The distance TFR represents the distance of th@latTER
from the healthy population in terms/units of stamtl
deviations, i.e. it contains data that is statihc
normalized. The way the distance is calculated dusts
imply a specific probability distribution.

represents th<

the interpolated spectrum may generate aFaults of mechanical components generate speaifovk

vibration patterns such as characteristic frequenaiith
sidebands due to modulation. Appropriate algorithms
allowing diagnostics of components based on TFRs ca
recognize these patterns automatically (such aaritthgn
operating on the distance TFR was proposed forcteteof
faulty bearings in Klein et al 2012).

In other cases where the exceptions do not foll@pexific
pattern it will not be possible to associate thiéufa with
one of the mechanical components. Neverthelessneatic
diagnostics of abnormal behavior can be performétth w
good reliability and detection capabilities.

250

Figure 2. lllustration of the distance TFR

4. DETECTION OF EXCEPTIONAL REGIONS

The goal of the algorithm is to identify continuotegjions
of exceptional cells. The algorithm flowchart issdebed
schematically in Figure 3.

First a surface defining the threshold for eachisalefined.
Then the exceptional cells exceeding the localsthol are
found. The exceptional cells are grouped into cwtus
regions. The number of cells and volume of each
exceptional region are calculated and comparedht t
criteria defined for identification of anomalies.

Searching for over threshold values as an onlgmoih was
found to be insufficient. To avoid false alarmsrthwas a
need to screen out noise phenomena in single caiid,
highlight exceptions only if they belong to contius and
sizeable regions. To accomplish that, the algorittem
searching for exceptional regions satisfying thkofadng
additional criteria:

e The number of cellsN,, in a continuous regiork,
should exceed a minimum value to avoid
consideration of spurious peaks.

e The volumeVy (Vi = Xvijex Dy ;) of an exceptional
regionk should exceed a minimum value. The volume
represents a measure of the number of cells and the
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values. We want to guarantee that at least onbesfet
is large enough to be considered as significant.

e The total volume of exception$, V, should exceed a
minimum value. The total volume represents th

e

First, it is possible to use the threshold surflcemasking
out effects of faults discoverable by the directrsh
algorithms. For example, faults in specific gearelheare
discoverable in some specific frequencies/orders. May

number of exceptional regions and their mean volumd/a@nt to set very high threshold values to the spoeding

giving the option to define at what level we will
consider the TFR as exceptional.

These criteria allow sufficient flexibility to tunehe
detection algorithm and adapt it to different neeBer
example, if we suspect that the distance of pefnkm(the
baseline of healthy machines) maybe of low ampéitude
may want to set the threshold to a low value (&.g9= 30),
and to compensate it by setting a large threshotdtte
number of cells in a region and/or the minimum woduof a
region.

Distance TFR - D;; Threshold surface - T;;
( J

/\
__—Tark exceptions
T No—

— D, >T, Y,
By >T v
=

—
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¥

Group cells in
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Check criteria — AT ] .
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Figure 3. Algorithm flowchart

It is important to note that the proposed solufimngeneral
anomaly detection should attempt to cover sevegmdg of
TFRs. For example, when a fault exists in a rotatin
component like a bearing or a gearwheel, we woujtbet
to detect several exceptional regions, each relatech
specific harmonic or a sideband (each region walhtain
several cells covering different rotating speed$he
exceptional regions can be detected in the orderadn but
they can be better emphasized in the order donfatheo
dephased signal or in the order domain of the epe(see
Antoni & Randall 2002, Antoni et al 2004, Sawalhi &
Randall 2008, Klein et al 2009, Bechhoefer et dl190

4.1. Definition of the threshold surface

The selection of threshold values is
influences the reliability of anomaly detection. €Th
threshold can be constant for all the cells of WeR,
defining a plane parallel to the time frequencynplaor can
vary defining any positive surface.

Several considerations affect the selection ofttiieshold
surface:

frequencies/orders to mask out these effects.

The second consideration for selection of the tiokk
surface is the type of the probability distributiumction
(PDF) of the healthy population belonging to thedime. It
is also possible that the PDF parameters diffenfome cell
to another. The determination of these parametergdch
cell may require a large data set of healthy TFRs.

Because we are using the distance TFR, which eadyr
normalized, the threshold for several types of PB#s be
constant and generic. This is true for Rayleigh, and
Gamma PDFs.

One last word on threshold selection: Because lioids
are not the sole parameter used (the algorithmwsss the
criteria of area and volume, i.e. number of exaeptiells
and accumulated sum of values), the proposed method
relatively tolerant to imperfections in selectinghet
thresholds. The algorithm was applied on severdRsl bf
healthy machines, using relatively low thresholghout
triggering false alarms.

4.2. Classification of anomalies

The algorithm for anomaly detection targets fawlkéch are
not covered in the direct search algorithms. Itlcamused as
a start point to learn about and define new paitesrsearch
for, thus enlarging the knowledge about faults ispacific
machine. The detection of anomalies should be aetnd
with an examination of experts and field feedbacktie
status of the machine.

The classification of anomalies should allow as mas
possible hints on their origin and nature. The shicsin be
based on the type of TFR in which the anomaly was
detected (e.g. TFR of the raw vibration signal, TéfRhe
synchronous average, TFR of the resampled sigifd®, df

the dephased signal, etc.), as well as the range of
frequencies or orders.

The simplicity of the algorithm and the fact thatlyo the
threshold surface depends on the assumed PDF niakes
useful and easy to apply in different TFRs and edéht
configurations.

Important an%. EXAMPLE OF ALGORITHM PERFORMANCE

The example is based on data recorded during @ddadlt
back to back test in a turbofan engine. The faultsw
introduced on the outer race of a bearing in whighinner
race rotates at a speed proportional to shaft &irg speed.
The example demonstrates that the algorithm was &bl
detect the fault, without using any prior knowledye the
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nature of the fault or the physical dimensionshaf faulty
bearing.

The presented method was applied to TFRs consisting 28
RPM-orders spectrograms. The spectrograms used wer o
based on PSDs. The PSDs were calculated in comgecut

periods of fixed length, during accelerations
decelerations of a turbofan engine with similaratioig
speed gradients.

The presented
calculated with similar order resolution and vagyiRPM
resolution. A study of the variations of the spadavels in
the healthy records revealed that the variationthefpeak
levels did not exceed the random error of the PBOsNns
of 5 Hz. Therefore, the periods for each PSD catauh
were defined such that the rotating speed variatigitl be
of maximum 5 Hz and the interpolation of the RPMsax
was applied in bins of 3Hz.

The statistics of the baseline were calculated @& 2

spectrograms from healthy runs.

Figure 4 shows a part of the RPM-order spectrogrthe
vibration signal from a run with the faulty bearingome
energetic ridges corresponding to the shaft A haiosoand
background noise can be observed (the highestsicae be
observed at orders above 35). As well, some hamsooii
shaft B rotating speed can be observed.

Figure 5 shows the distance TFR (based on the Rilgro
spectrogram and corresponding baseline) calculatethe
same data as in Figure 4. A pattern that was reiblei in
the regular spectrogram becomes evident after ndista
calculation. The shaft harmonics that are cleablgenvable
at orders above 35 in Figure 4 are not seen inr&iguThis
means that the vibration levels corresponding tih Isbafts
harmonics were close to the baseline of healthtesys and
not exceptional.

As one can see from comparison of Figure 4 andrEigu
the distance TFR is a helpful tool for visual insfien of
TFRs. It emphasizes only the suspicious locatiand
allows a significant reduction of information foramual
scan.

and

results were based on spectrogram 2‘6 ' '
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Figure 4. RPM-Order spectrogram
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Figure 5. Distance TFR of the RPM-Order spectrogram
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Figure 6. Exceptions found in the distance-TFRhef t
RPM-Order spectrogram
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Figure 7. Exceptions confirmed in the distance-Tdfhe

RPM-Order spectrogram

Figure 6 shows the contours of the exceptionalinaatis
regions found after the comparison with the thrégho
surface. Figure 7 shows the contours of the comfirm
regions after application of all the criteria (itke number of
cells and the volume). It can be easily observeat th
Figure 7 only the peaks related to the faulty bepremain,
and that their location indicates a very clear grattthat is
easy to identify and diagnose.

6. SUMMARY AND CONCLUSIONS

A method for analysis and diagnosis of non-statipa&Rs
of vibro-acoustic data was proposed.

The method can be applied on any type of TFR, thgss
of the analyzed signal or the method of the TFRudation.

visual inspection compared to the original timegfrency
representation.

ABBREVIATIONS

RPM  Rotations Per Minute

TFR  Time-Frequency Representation
STFT  Short Time Fourier Transform
PDF Probability Density Function
PSD Power Spectral Density

POT  Peak Over Threshold

FDPOT Frequency Dependent Peak Over Threshold
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