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ABSTRACT 

Vibration signatures contain information regarding the 
health status of the machine components. One approach to 
assess the health of the components is to search 
systematically for a list of specific failure patterns, based on 
the physical specifications of the known components (e.g. 
the physical specifications of the bearings, the gearwheels or 
the shafts). It is possible to do so, since the manifestation of 
the possible failures in the vibration signature is known a 
priory. The problem is that such a list is not comprehensive, 
and may not cover all possible failures. The manifestation of 
some failure modes in the vibration signature may be less 
investigated or even unknown. In addition, when more than 
one component is malfunctioning, unexpected patterns may 
be generated. Anomaly detection tackles the more general 
problem: How can one determine that the vibration 
signatures indicate abnormal functioning when the specifics 
of the abnormal functioning or its manifestation in the 
vibration signatures are not known a priori?  In essence, 
anomaly detection completes the diagnostics of the 
predefined failure modes. In many complex machines (e.g. 
turbofan engines), the task of anomaly detection is further 
complicated by the fact that changes in operating conditions 
influence the vibration sources and change the frequency 
and amplitude characteristics of the signals, making them 
non-stationary. Because of that, joint time-frequency 
representations of the signals are desired. This is different 
from other vibration based diagnostic techniques, which are 
designated for stationary signals, and often focus on either 
the time domain or the frequency domain.  

For the purpose of this article, we will refer as TFR (time-
frequency representation) to all 3D representations which 
employ on one axis either time, or cycles, or RPM, and on 
the other axis either frequency, or order. The proposed 
method suggests a solution for anomaly detection by 
analysis of various TFRs of the vibration signals (primarily 

the RPM-order domain).  

In the first stage, TFRs of healthy machines are used to 
create a baseline. The TFRs can be obtained using various 
methods (Wigner-Ville, wavelets, STFT, etc). In the next 
stage, the distance TFR between the inspected recording and 
the baseline is computed. In the third stage, the distance 
TFR is analyzed and the exceptional regions in the TFR are 
found and characterized. A basic classification of the 
anomaly type is suggested. The different stages of analysis: 
creating baselines, computing the distance TFR, identifying 
the exception regions, are illustrated with actual data. 

1. INTRODUCTION 

Monitoring of vibrations can be used to detect machine 
faults, including roller bearing degradation, gearwheels 
degradation, eccentricity, mechanical looseness, unbalance, 
misalignment, oil film bearing instabilities, structural 
resonance, and cracked rotors. In most methods, the 
detection is based on comparison of vibration levels at 
specific frequencies to reference or “baseline” values, 
representing the healthy cases. The specific frequencies 
used for tracking are defined separately for each failure 
mode of each component. Detection of all the possible 
failure modes of a machine implies definition of all the 
possible failure modes of all components including all the 
relevant combinations of failure modes such that all the 
frequencies of interest will be covered. In spite of the fact 
that many failure modes can be pre-defined with their 
associated patterns, the definition and listing of all the 
frequencies of interest is a very complex task, often 
impossible. In order to complete the diagnostic process 
when only a part of the frequencies of interest can be 
predefined, an anomaly detection algorithm is required. 

Diagnostics of rotating machinery during regular operation 
involves in many cases analysis of non-stationary signals. 
This is because rotating speeds, loads, and environmental 
conditions vary (in some cases rapidly) with time. Often, 
even the assumption of quasi-stationarity may not be 
appropriate. In such an environment, an efficient way to 
evaluate condition indicators may be based on time-
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frequency or time-order representations that reveal the 
evolution of the spectra with time. The time-frequency or 
time-order representations (TFR) can be computed using 
different techniques of signal processing such as Short Time 
Fourier Transform (STFT), Wavelets decomposition or 
Wigner-Ville representations (see Polyshchuk et al 2002, 
Juluri & Swarnamani 2003, Yang & Ren 2004, Bradford 
2006, Klein et al 2011).  

Usually the TFRs are representations of the vibration signal 
or its derivatives (synchronic average, envelope, pre-
whitened signals, etc.) in the RPM-frequency or RPM-order 
domains (see Antoni & Randall 2002, Antoni et al 2004, 
Sawalhi & Randall 2008, Klein et al 2012). TFRs are widely 
used in scientific and industrial applications for visual 
inspection of vibrations. The primary problem of the visual 
inspection is that in complex machinery, the TFR contains a 
huge amount of information and it is difficult to sort out and 
focus on the relevant information manually.  

Some methods of anomaly detection in TFRs have been 
proposed using different approaches (see below). In general, 
a statistical analysis of the spectrogram values or the over 
threshold values is used for detection of anomalies. This 
requires a definition of the probability density function 
(PDF) and an evaluation of the PDF parameters (differently 
for different zones of the TFR). There were different 
assumptions regarding the nature of the probability density 
function for spectrum or spectrogram values; Huillery et al 
(2008) show that for spectrograms and STFTs, when using 
Hanning windowing, the χ2 PDF (central or non-central for 
deterministic peaks) is adequate for detection of exceptions. 
Bechhoefer et al (2011) discussed Rayleigh PDFs for 
spectrum values and Nakagami PDFs for sums of Rayleigh 
distributed values. Clifton & Tarassenko (2009) showed that 
the PDF in spectrogram bins is approximately Gamma and 
that its tail can be described by a Gumbel distribution 
representing extremum values distribution. Hazan et al 
(2012 and 2013) proposed Peak Over Threshold (POT) and 
Frequency Dependent Peak Over Threshold (FDPOT) 
methods which were based on the assumption that the 
values exceeding a threshold can be approximated by a 
Generalized Pareto distribution. 

The current paper proposes an automatic procedure for 
anomaly detection which is adequate for all types of TFRs. 
The analysis algorithm emphasizes only the exceptions 
relative to the “baseline” or the reference TFR, allowing 
effective masking of huge amounts of less relevant 
information.  

The “baseline” is a statistical characterization of the TFRs 
derived from a set of healthy machines. The exceptions 
relative to the baseline are then examined to detect relevant 
regions corresponding to significant anomalies. In the first 
section of the article, we will describe the statistical 
characterization stage, or the baseline generation. Then we 
will show the algorithm for emphasizing the exceptions in 

the analyzed TFR (relative to the baseline). Next, we will 
explain the algorithm for automatic detection and 
classification of the exceptional regions. The algorithm is 
demonstrated with an example of a seeded test data, in 
which the presented algorithm was able to detect the fault 
without using any prior knowledge on the nature of the fault 
or the physical dimensions of the faulty part.  

2. BASELINE GENERATION 

The baseline is generated from a set of TFRs recorded in a 
set of healthy machines. In essence, the baseline is a 
statistical characterization of the data distribution in each 
cell of the TFR matrix: 
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where: µi,j  is the average of values in cell i,j , σi,j  is the 
standard deviation of the values in cell i,j , N is the number 
of TFRs in the baseline, and Pi,j,n is the value of the 
spectrum n in cell i,j . 

It is highly advisable to use similar operating conditions for 
baseline generation. This allows a better representation of 
the healthy population, hence a higher reliability in 
detecting anomalies. To illustrate that, let us consider slow 
acceleration versus fast acceleration in a jet engine. In our 
experience, the two cases differ significantly in their 
vibration patterns even at the same RPM. Evidently, loads 
vary significantly, some of the resonances that are excited 
during a slow acceleration may not be present at a fast 
acceleration, and there are also differences in the amplitude 
of peaks at characteristic frequencies. Combining both cases 
of fast and slow accelerations in the same baseline model 
may lead to a significant reduction in discrimination 
abilities of the condition indicators.  

Thus, it is essential to decide which operating conditions 
can be combined in the same baseline. This can be achieved 
by a relatively simple statistical hypothesis testing 
procedure, combined with a physical understanding of the 
load variations in the different operating conditions. 

Various other technical issues should be addressed during 
the implementation of the baseline algorithm.  

First, all the TFRs need to have the same scale. This can be 
achieved either by interpolation of the existing TFRs to a 
new common scale, or by calculation of the TFRs using a 
predefined common scale. The predefined common scale is 
achieved by calculating the TFRs at predefined ranges of 
rotating speeds and similar frequency/order resolution.  

If interpolation is used, one should be careful not to 
introduce artifacts to the data when the time scale does not 
fit the variation rate of the load. For example, when the time 
resolution or RPM resolution is too low compared to the 
acceleration rate, and adjacent spectra differ abruptly in 
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amplitude, the interpolated spectrum may generate an 
erroneous baseline TFR with high variances. 

Another issue is how to set a correct scale. A higher 
resolution in time or RPM will provide better detection 
capabilities, but setting the resolution too high may leave 
some time segments of the TFR too short for a reliable 
spectrum calculation. The scale should be adapted to the 
operating modes of the inspected machinery so that most of 
the TFR will be calculated correctly. 

3. DISTANCE TFR 

When a new data is available, the TFR is interpolated to 
obtain the same scale as the scale that was used during 
baseline generation. A new representation, the distance 
TFR, is calculated, where each cell represents the 
corresponding distance from the model of healthy machines.  

The distance TFR emphasizes the cells that deviate from the 
distribution of healthy machines (see Figure 1 and Figure 2).  

Mahalanobis distance is used for comparison (Eq. 2). 
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where: Di,j  is cell i,j  in the distance TFR, Pi,j is the 
corresponding cell in the TFR of the new data, µi,j  is the 
mean of i,j  cell in the baseline, and σi,j is the baseline 
standard deviation of the corresponding cell. 

 

Figure 1. Comparison between baseline and a newly 
obtained TFR in the RPS-order domain (RPS – Rotation Per 
Second). The white surface represents the baseline (µ+3σ) 
and the dark green surface represents the inspected TFR. 

 

The distance TFR represents the distance of the actual TFR 
from the healthy population in terms/units of standard 
deviations, i.e. it contains data that is statistically 
normalized. The way the distance is calculated does not 
imply a specific probability distribution. 

Faults of mechanical components generate specific known 
vibration patterns such as characteristic frequencies with 
sidebands due to modulation. Appropriate algorithms 
allowing diagnostics of components based on TFRs can 
recognize these patterns automatically (such an algorithm 
operating on the distance TFR was proposed for detection of 
faulty bearings in Klein et al 2012). 

In other cases where the exceptions do not follow a specific 
pattern it will not be possible to associate the failure with 
one of the mechanical components. Nevertheless, automatic 
diagnostics of abnormal behavior can be performed with 
good reliability and detection capabilities. 

 

Figure 2. Illustration of the distance TFR 

4. DETECTION OF EXCEPTIONAL REGIONS 

The goal of the algorithm is to identify continuous regions 
of exceptional cells. The algorithm flowchart is described 
schematically in Figure 3. 

First a surface defining the threshold for each cell is defined. 
Then the exceptional cells exceeding the local threshold are 
found. The exceptional cells are grouped into continuous 
regions. The number of cells and volume of each 
exceptional region are calculated and compared to the 
criteria defined for identification of anomalies. 

Searching for over threshold values as an only criterion was 
found to be insufficient. To avoid false alarms, there was a 
need to screen out noise phenomena in single cells, and 
highlight exceptions only if they belong to continuous and 
sizeable regions. To accomplish that, the algorithm is 
searching for exceptional regions satisfying the following 
additional criteria: 

• The number of cells Nk, in a continuous region k, 
should exceed a minimum value – to avoid 
consideration of spurious peaks. 

• The volume Vk (�� = ∑ ��,�∀�,�∈� ) of an exceptional 
region k should exceed a minimum value. The volume 
represents a measure of the number of cells and their 
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values. We want to guarantee that at least one of these 
is large enough to be considered as significant. 

• The total volume of exceptions ∑ ���   should exceed a 
minimum value. The total volume represents the 
number of exceptional regions and their mean volume 
giving the option to define at what level we will 
consider the TFR as exceptional. 

These criteria allow sufficient flexibility to tune the 
detection algorithm and adapt it to different needs. For 
example, if we suspect that the distance of peaks (from the 
baseline of healthy machines) maybe of low amplitude, we 
may want to set the threshold to a low value (e.g. Ti,j = 3σ), 
and to compensate it by setting a large threshold for the 
number of cells in a region and/or the minimum volume of a 
region. 

jiTD jiji ,,, ∀>

 

Figure 3. Algorithm flowchart 
 

It is important to note that the proposed solution for general 
anomaly detection should attempt to cover several types of 
TFRs. For example, when a fault exists in a rotating 
component like a bearing or a gearwheel, we would expect 
to detect several exceptional regions, each related to a 
specific harmonic or a sideband (each region will contain 
several cells covering different rotating speeds). The 
exceptional regions can be detected in the order domain, but 
they can be better emphasized in the order domain of the 
dephased signal or in the order domain of the envelope (see 
Antoni & Randall 2002, Antoni et al 2004, Sawalhi & 
Randall 2008, Klein et al 2009, Bechhoefer et al 2011).  

4.1. Definition of the threshold surface 

The selection of threshold values is important and 
influences the reliability of anomaly detection. The 
threshold can be constant for all the cells of the TFR, 
defining a plane parallel to the time frequency plane, or can 
vary defining any positive surface. 

Several considerations affect the selection of the threshold 
surface:  

First, it is possible to use the threshold surface for masking 
out effects of faults discoverable by the direct search 
algorithms. For example, faults in specific gearwheels are 
discoverable in some specific frequencies/orders. We may 
want to set very high threshold values to the corresponding 
frequencies/orders to mask out these effects. 

The second consideration for selection of the threshold 
surface is the type of the probability distribution function 
(PDF) of the healthy population belonging to the baseline. It 
is also possible that the PDF parameters differ from one cell 
to another. The determination of these parameters for each 
cell may require a large data set of healthy TFRs. 

Because we are using the distance TFR, which is already 
normalized, the threshold for several types of PDFs can be 
constant and generic. This is true for Rayleigh, χ2, and 
Gamma PDFs.  

One last word on threshold selection: Because thresholds 
are not the sole parameter used (the algorithm also uses the 
criteria of area and volume, i.e. number of exception cells 
and accumulated sum of values), the proposed method is 
relatively tolerant to imperfections in selecting the 
thresholds. The algorithm was applied on several TFRs of 
healthy machines, using relatively low thresholds, without 
triggering false alarms. 

4.2. Classification of anomalies 

The algorithm for anomaly detection targets faults which are 
not covered in the direct search algorithms. It can be used as 
a start point to learn about and define new patterns to search 
for, thus enlarging the knowledge about faults in a specific 
machine. The detection of anomalies should be amended 
with an examination of experts and field feedback on the 
status of the machine. 

The classification of anomalies should allow as much as 
possible hints on their origin and nature. The hints can be 
based on the type of TFR in which the anomaly was 
detected (e.g. TFR of the raw vibration signal, TFR of the 
synchronous average, TFR of the resampled signal, TFR of 
the dephased signal, etc.), as well as the range of 
frequencies or orders. 

The simplicity of the algorithm and the fact that only the 
threshold surface depends on the assumed PDF makes it 
useful and easy to apply in different TFRs and different 
configurations. 

5. EXAMPLE OF ALGORITHM PERFORMANCE 

The example is based on data recorded during a seeded fault 
back to back test in a turbofan engine. The fault was 
introduced on the outer race of a bearing in which the inner 
race rotates at a speed proportional to shaft A rotating speed. 
The example demonstrates that the algorithm was able to 
detect the fault, without using any prior knowledge on the 
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nature of the fault or the physical dimensions of the faulty 
bearing. 

The presented method was applied to TFRs consisting of 
RPM-orders spectrograms. The spectrograms used were 
based on PSDs. The PSDs were calculated in consecutive 
periods of fixed length, during accelerations and 
decelerations of a turbofan engine with similar rotating 
speed gradients. 

The presented results were based on spectrograms 
calculated with similar order resolution and varying RPM 
resolution. A study of the variations of the spectra levels in 
the healthy records revealed that the variations of the peak 
levels did not exceed the random error of the PSDs in bins 
of 5 Hz. Therefore, the periods for each PSD calculation 
were defined such that the rotating speed variations will be 
of maximum 5 Hz and the interpolation of the RPM axis 
was applied in bins of 3Hz.  

The statistics of the baseline were calculated on 28 
spectrograms from healthy runs. 

Figure 4 shows a part of the RPM-order spectrogram of the 
vibration signal from a run with the faulty bearing. Some 
energetic ridges corresponding to the shaft A harmonics and 
background noise can be observed (the highest ridges can be 
observed at orders above 35). As well, some harmonics of 
shaft B rotating speed can be observed. 

Figure 5 shows the distance TFR (based on the RPM-order 
spectrogram and corresponding baseline) calculated on the 
same data as in Figure 4. A pattern that was not visible in 
the regular spectrogram becomes evident after distance 
calculation. The shaft harmonics that are clearly observable 
at orders above 35 in Figure 4 are not seen in Figure 5. This 
means that the vibration levels corresponding to both shafts 
harmonics were close to the baseline of healthy systems and 
not exceptional. 

As one can see from comparison of Figure 4 and Figure 5, 
the distance TFR is a helpful tool for visual inspection of 
TFRs.  It emphasizes only the suspicious locations and 
allows a significant reduction of information for manual 
scan. 

 

Figure 4. RPM-Order spectrogram 

 

Figure 5. Distance TFR of the RPM-Order spectrogram 

 

Figure 6. Exceptions found in the distance-TFR of the 
RPM-Order spectrogram 
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Figure 7. Exceptions confirmed in the distance-TFR of the 
RPM-Order spectrogram 

 
Figure 6 shows the contours of the exceptional continuous 
regions found after the comparison with the threshold 
surface. Figure 7 shows the contours of the confirmed 
regions after application of all the criteria (i.e. the number of 
cells and the volume). It can be easily observed that in 
Figure 7 only the peaks related to the faulty bearing remain, 
and that their location indicates a very clear pattern that is 
easy to identify and diagnose.  

6. SUMMARY AND CONCLUSIONS 

A method for analysis and diagnosis of non-stationary TFRs 
of vibro-acoustic data was proposed. 

The method can be applied on any type of TFR, regardless 
of the analyzed signal or the method of the TFR calculation. 
The key idea of the method is the detection of the 
exceptional regions in the distance TFR (deviation from the 
baseline TFR).  

The method was demonstrated, using RPM-order 
spectrograms, for diagnosis of a damaged bearing in a 
seeded fault test of a turbofan engine (without relying on the 
specific physical information of the bearing). The method of 
extracting the exceptional regions was described. It was 
shown that the proposed method is effective for detection of 
the abnormal behavior resulting from a faulty bearing. 

It seems that the distance TFR is a powerful tool in 
detecting anomalies and emphasizing abnormal behavior.  

The distance TFR proved effective in emphasizing 
exceptions in a noisy environment, including unknown 
damage or anomalies of any kind. 

Last, the distance TFR can be used efficiently by experts for 
visual inspection and diagnostics of exceptions. Since the 
distance TFR emphasizes only the ridges or regions that 
deviate from the baseline population statistics, masking out 
the irrelevant data, it is easier and a more focused tool for 

visual inspection compared to the original time frequency 
representation. 

ABBREVIATIONS  

RPM Rotations Per Minute 
TFR Time-Frequency Representation 
STFT Short Time Fourier Transform 
PDF Probability Density Function 
PSD Power Spectral Density 
POT Peak Over Threshold 
FDPOT Frequency Dependent Peak Over Threshold 
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