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ABSTRACT 

In this paper, a framework for probabilistic delamination 

location and size detection is proposed. A delamination 

probability image using Lamb wave-based damage 

detection is constructed using the Bayesian updating 

technique. First, the algorithm for the probabilistic 

delamination detection framework using Bayesian updating 

(Bayesian Imaging Method - BIM) is presented. Following 

this, a fatigue testing setup for carbon-carbon composite 

coupons is introduced and the corresponding lamb wave 

based diagnostic signal is collected and interpreted. Next, 

the obtained signal features are incorporated in the Bayesian 

Imaging Method to detect delamination size and location, as 

along with corresponding uncertainty bounds. The damage 

detection results using the proposed methodology are 

compared with X-ray images for verification and validation. 

Finally, some conclusions and future works are drawn based 

on the proposed study. 

1. INTRODUCTION 

Composite materials are widely used in many applications, 

such as rotorcraft, aerospace, automobiles, and civil 

engineering structures because of their low weight and high 

strength properties. Delamination damage may happen 

within the composite plate due to impact loading or cyclic 

loadings. Because of the embedded nature of delamination 

damage, visual inspection is not able to easily detect it and, 

therefore, nondestructive evaluation (NDE) techniques are 

generally used and  extensively investigated for this type of 

diagnosis problems in composites. 

Currently, there are many deterministic non-destructive 

techniques (NDT) available for the delamination diagnosis, 

such as thermography (Koruk and Kilic 2009; Mielozyk, 

Krawczuk, Malinowski, Wandowski and Ostachowicz 

2012), ultrasonic (Kazys and Svilainis 1997), X-ray 

(Nicolleto and Hola 2010), and eddy currents (Grimberg, 

Premel, Savin, Le Bihan and Placko 2001; Sophian, Tian, 

Taylor and Rudlin 2001). A comprehensive review of these 

methods for delamination location and size detection is 

presented in (Cheng and Tian 2012). Most NDE methods 

require that the specimens to be maintained under certain 

strict experiment condition for ex-situ damage detection. 

Alternatively, with the development of Lamb wave-based 

damage detection methods, piezoelectric sensors have been 

widely used (Lemistre and Balageas 2001; Giurgiutiu, 

Zagrai and Bao 2002) for structural health monitoring 

because of their low cost and high efficiency (Constantin, 

Sorohan and Gavan 2011). Lamb waves can propagate in 

thin plate without significant dispersion in certain modes of 

wave propagation (Scalea, Francesco, Robinson, Tuzzeo 

and Bonomo 2002). Using proper mode selection, 

piezoelectric sensor networks can be used for damage 

inspection of composite plate structures (Wang, Rose and 

Chang 2004). The advantage of this method lies in that 

embedded or surface mounted PZTs can be used for in-situ 

monitoring of structure’s health condition. In this technique, 

damage features are extracted from the received Lamb wave 

signal using signal-processing algorithms. Several 

characteristics of the received signal (e.g., the attenuation, 
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phase shift, energy etc.) indicate changes from baseline i.e. 

damage features (Raghavan and Cesnik 2007). 

 
For Lamb wave detection methods, there are two common 

approaches (Raghavan and Cesnik 2007)- (a) pulse-echo, 

and (b) pitch-catch. Using pulse-echo based approach, 

damage position can be detected by methods like 

triangulation , (Su and Ye 2009; Zhou, Su and Cheng 2011) 

or using cumulative coefficient change (Zhao, Gao, Zhang, 

Ayhan, Yan, Chiman and Joseph 2007). Furthermore,  it 

also allows estimating detect the damage intensity if damage 

location is known (Peng, He, Liu, Saxena, Celaya and 

Goebel 2012).  However, most existing damage detection 

techniques based on Lamb waves are deterministic and 

cannot systematically include the uncertainties, such as 

measurement uncertainty and model parameter uncertainty 

in the damage diagnosis.  In view of the above mentioned 

difficulty, a probabilistic damage detection method for in-

situ applications is proposed in this study. This novel 

method is presented here to simultaneously detect the 

damage location and size, then provide their confidence 

information. The proposed method combines the Lamb 

wave-based damage detection technique and a novel 

Bayesian Imaging Method (BIM) to achieve this goal. 

This paper is organized as follows. First, the Bayesian 

theorem is introduced and a probabilistic delamination 

detection, localization, and size estimation framework 

(Bayesian Imaging Method) is developed. Then, a Lamb 

wave based test and signal analysis setup is presented for 

diagnostic feature extraction. Next, an example is presented 

to validate the proposed Bayesian Imaging method for 

delamination size and location detection. Damage diagnosis 

uncertainty bounds are simultaneously generated. Finally, 

some conclusions and future works are drawn based on the 

proposed study. 

2. DAMAGE DIAGNOSIS ALGORITHM  USING BAYESIAN 

IMAGING METHOD 

Bayes’ theorem is widely used in image processing, which 

combines the prior distribution of a realistic image and 

utilizes new measurement data to improve image resolution 

or segmentation (Li, Dong, Guan, Li and Zhou 2007; 

Pickup, Capel, Roberts and Zisserman 2009). It is also used 

to compress the information needed to reconstruct the image 

by optimizing the basis-function weights, which is a 

powerful tool to deal with the problem of limited 

measurements (Ji, Xue and Carin 2008). These methods are 

explained briefly next. 

2.1. Bayes’ Theorem 

Bayes’ theorem is commonly used for probabilistic 

inference or learning process. It can combine the prior belief 

about parameters and current system response to provide a 

reasonable prediction of parameters distribution. Let      

denote the prior distribution of parameter  . According to 

the Bayes’ theorem, the posterior distribution of   is given 

as 

              |   (1) 

where     |   is the likelihood function, which reflects the 

current system response    and       is the posterior 

distribution of updated parameters. Let    be an in-situ 

measurement,      is the prediction value based on a 

model. If there is no measurement noise or model 

uncertainty, the measurement would be identical with the 

model prediction, i.e.         . However, this is usually 

never the case. Therefore, it is necessary to account for 

measurement noise   and model uncertainties   and the 

relationship between    and      can be expressed as 

             (2) 

Assuming that the two error term         are independent 

zero mean normal variables (Bell 2001; Adam 2002), the 

sum of them can be expressed as a new random variable 

       ~N(0,   ). Therefore the likelihood function 
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where   is the number of available measurements. 

Substituting Eq. (3) into Eq.(1), the posterior distribution of 

parameter   is expressed as 
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where the posterior distribution of the parameter   can be 

approximated by the samples drawn by the Markov chain 

Monte Carlo simulation. 

2.2. Damage Diagnosis and Bayesian Imaging 

Development 

In the damage detection problem, the sensor signal can be 

periodically accessed during the servicing operations of 

structures and signal features can be extracted using 

appropriate signal processing techniques.  To predict the 

damage size and location, a physics model      describing 

the relationship between the signal features and damage 

information should be developed first, which is developed 

using information extracted from available testing datasets. 

Next, a likelihood function for the updated parameters, i.e., 

delamination size and location is built considering the 

measurement and model uncertainties. Now, the posterior 

belief about damage can be estimated from the posterior 

distribution of the updated parameters. In this case the 

parameter vector    comprises of delamination geometric 

center coordinate (  ,  ) and delamination size  . Since no 

prior belief is available for any of these three parameters, 
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the prior distribution   ,    are assumed to be uniform 

distribution cover the whole possible region where the 

delamination may appear. The delamination size distribution 

is uniformly distributed from zero to a large size (e.g, the 

physical length of the specimen as the largest possible 

delamination size). A very small quantity (i.e., 0.001 mm) 

for the delamination distribution lower bound is used to 

avoid numerical difficulties. The overall diagnosis 

framework is shown in Fig. 1. 

 

Figure 1. Flowchart for the damage diagnosis method 

 

In Bayesian updating, it is nontrivial to derive an analytical 

solution if the posterior distribution is non-parametric or 

very complex, which is the case in this problem. Therefore, 

the Markov-Chain Monte-Carlo (MCMC) method is used to 

draw samples. Detailed discussion on MCMC method can 

be found in several references (Hasting 1970; Peskun 1973; 

Cowles and Carlin 1996; Fort, Moulines and Priouret 2012) 

and is, therefore, not discussed here. 

The key idea behind the proposed BIM is that the entire 

specimen is discretized into many small cells (e.g., with size  

1mm  1mm in the current study) and each cell is assigned 

an associated probability of damage. The probability of 

damage is updated based on measured signal features using 

the Bayesian technique. The updated posterior distribution 

at each cell can be used to construct an image that directly 

represents the damage location and size. 

3. DELAMINATION DIAGNOSIS EXPERIMENT USING 

PIEZOELECTRIC SENSOR 

In this section, the proposed BIM is demonstrated using an 

experimental study. The testing datasets are used to train the 

model      to get the likelihood function.  The Bayesian 

updating results are compared with X-ray images for model 

verification and validation. Details are presented next. 

3.1. Fatigue Cycling Experiment Setup 

In a separate effort run-to-failure fatigue experiments were 

conducted using composite coupons with 12 plies. Torayca 

T700G uni-directional carbon-prepreg material was used for 

this 15.24cm   35.56cm dog bone geometry coupons and a 

notch (5.08 mm   19.3mm) is introduced to induce stress 

concentration, as shown in Fig. 2.  

 

 
Figure 2. The geometry of the dog bone coupon (unit: cm) 

 

These experiments served several objectives - (i) collection 

of run-to-failure data with periodic system health data using 

PZT sensors, (ii) collection of ground-truth data for the 

delamination to validate the sensor measurement analysis, 

(iii) accounting for variations between samples of same 

internal structure (layup), and (iv) characterizing  variations 

between samples of different internal structures. Three 

symmetric layup configurations were chosen to account for 

the effect of the ply orientation: Layup 1: [      ]   Layup 

2: [                   ] , and Layup 3: [         
    ] . Two six-PZT sensor SMART Layers from Acellent 

Technologies, Inc (Fig. 3(a)) were attached to the surface of 

each sample. In Fig. 3(a), actuator 1 to 6 were used to 

actuate the PZT signal and sensors 7-12 collect the 

corresponding signal propagation through the plate. Each 

actuator and sensor acted as a diagnosis path to interrogate 

the damage information. A more detailed description about 

these experiments is given in (Saxena, Goebel, Larrosa, 

Janapati, Roy and Chang 2011). Fig. 3(a) shows such a path 

form actuator 5 to sensor 8, which is represented as path 

5 8.  The other paths follow the same rule as above in the 

following sections.  
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Figure 3. (a) Coupon specimen, SMART layers location, 

and diagnostic path from actuator 5 to sensor 8, 

 (b) Development of matrix cracks and delamination leading 

to fatigue failure, 

(c) Growth in delamination area during the increased 

loading cycles. 

Using this configuration of sensor network, all PZTS are 

used one by one as actuator to actuate the Lamb wave, 

which is received by other acting as sensors. It is expected 

that the growth in delamination size will be captured in the 

received signals from a particular diagnosis paths that cover 

delamination area (e.g. path 5 8), which was validated by 

the comparison between features and delamination size in 

literature (Saxena, Goebel, Larrosa, Janapati, Roy and 

Chang 2011). For diagnosis path 5 8, the signal received 

by sensor 8 at different loading cycles is plotted in Fig. 4. 

As illustrated in Fig. 4, an increase in delamination size can 

be captured by monotonic trends in features (amplitude, 

correlation coefficient, and phase change). Conceptually, a  

change (decrease) in normalized amplitude reflects the 

energy dissipation due to the damage. The phase angle 

change is attributed to the increased wave traveling distance 

induced by the damage. The correlation coefficient change 

reflects the signal perturbation due to the new waves 

generated at the damage surfaces due to reflections 

(Raghavan and Cesnik 2007). All of these features are 

computed by comparing the received signal from a pristine 

coupon, called baseline and the signals from damaged 

coupons. 

 
Figure 4. Changes in signal received at sensor 8 as a 

function increasing fatigue cycles.  

3.2. Data Processing 

Observation from x-ray images of the damaged coupons 

reveal that damage grows from the tip of the slit in a 

characteristic way extending as a half elliptical lobes. 

Therefore, damage shapes are modeled as half elliptical 

lobes. Using the sensor network and the analysis method 

described above, there are two parameters describing these 

half elliptical shapes that would possibly affect the received 

signal, which is shown in Fig. 5.  The green ellipse is the 

delamination area observed from the x-rays and the red 

envelope is introduced to cover the entire area, whose radius 

is used as a proxy for delamination size  . The distance 

from the delamination center to the diagnosis path is 

denoted by  .  Features extracted from measurements can 

be related to these two parameters. For instance, 

corresponding features for actuator  5 are given in Fig. 6.  

 

        

 
 

Figure 5. X-ray image and schematic representation 

delamination 
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(b) 

 

(c) 

Figure 6. Features related to actuator 5 for different 

delamination size and distance. (a). Normalized amplitude, 

(b). Correlation coefficient, (c). Phase change  

As shown in Fig. 6, the correlation coefficient and phase 

change features are more sensitive to the distance compared 

to the normalized amplitude.  For example for a fixed 

distance, these two features have monotonic relationship 

with the delamination size, which is consistent with the 

trend in Fig. 4. In order to use these two features in the BIM 

proposed earlier, a model is introduced to express the 

relationship between the features with the delamination size 

and position. A generic expression can be written as  

                 (5) 

where   is the delamination size,   is the distance from the 

delamination center to the direct diagnosis path. It should be 

noted that Eq. (5) is a generic expression and does not limit 

to a specific function type. In this study, a  polynomial 

regression model is used.  Using the trend in the datasets, 

the model used for these two features is given as  

                                 (6) 

where                      for correlation coefficient;  

    is regression coefficients, which can be obtained by 

learning from the training datasets. After tuning these 

coefficients, the testing and fitted results for features are 

shown in Fig. 7. The yellow dots are the validation data and 

the rest are used for the training. It is can be seen that the 

simple regression model above gives satisfactory results 

except for the regions where the delamination is far away 

from the diagnostic path. 

 
(a) 

 
(b) 

Figure 7. The testing data and curve fitting 

(a). Correlation coefficient, (b). Phase change 

The data analysis presented above is from a single actuator 

(actuator 5), but a similar trend is observed for data from 

other actuators. For a given delamination defect, damage 

information from different actuators and wave paths can be 

combined to provide a better estimation of the delamination 

size and location. The following section, presents an 

example of the BIM method application. 

4. DEMONSTRATION EXAMPLE 

As described in section 2, the physics model      is needed 

to show the relationship between damage information and 

signal features, which can be substituted by the fitting 

model shown in Eq. (6). The posterior belief about the 
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damage is estimated by the posterior distribution of the 

updated parameters. Parameter    represents the 

delamination center coordinate (  ,  ) and delamination 

size  . Since no prior belief is available for these three 

parameters, the prior distributions of location is assumed to 

be                 ,             , which covers all the 

possible location where delamination may appear. The 

coordinate definition of this specimen is given in Fig. 8. The 

delamination size distribution is assumed as 

             , where U means uniform distribution. The 

likelihood function is built based on the difference between 

fitting model and real experimental data.  The measurements 

from actuator 5 and 6 are utilized in Bayesian updating, as 

given in Table 1. It should be noted that each updating 

iteration incorporates one measurement in the BIM 

framework. The aspect ratio for these two dimensions are 

assumed to be 2.5 based on the experimental X-ray image. 

Table 1. The sensor measurements for given delamination 
Actuator 

 

Sensor 

5 6 

Correlation 

Coefficient 

Phase 

change 

Correlation 

Coefficient 

Phase 

change 

8 0.7142 10 0.6858 10 

9 0.8351 7 0.8279 7 

10 0.9595 3 0.9476 4 

The posterior distribution of           ) can be estimated by 

the samples drawn using the MCMC, which updates the 

belief about the delamination location and delamination size 

at each updating iteration. At the same time, corresponding 

median and uncertainty bound predictions are computed  to 

describe the accuracy of each updating result. The 

delamination location estimates after each updating iteration 

are shown in Fig. 9. 

 

Figure 8. The definition of the sample coordination and 

specific area to show the Bayesian image  

 

 

Figure 9. The delamination location updating 

As shown here, the estimated delamination location is 

approaching the true location as more data are used for the 

updating. Additionally, the uncertainty bounds narrow down 

as more measurements become available. Fig. 10 illustrates 

the Bayesian Imaging  of the damage probability at each cell  

of the specimen. It is obvious that the possible delamination  

area is narrowed down and the probability is increasing as 

applied more updating iterations. At last, the location with 

the highest probability is considered as the most probable 

delamination centers, which is almost the same with the true 

value as show in Fig. 10(d).  
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(b) Four updating iterations  

 

(c) Eight updating iterations 

 

(d) Twelve updating iterations 

Figure 10. The damage location probability updating at each 

cell of the plate.  

 

Simultaneously, delamination size is updated gradually, as 

shown in Fig. 11. By incorporating the location and size 

information, the estimated delamination area can be 

calculated. Fig. 12 gives the comparison between the true 

delamination from the X-ray images and the updated results 

using the proposed BIM. Satisfactory agreement is 

observed.  

 
Figure 11. The delamination size updating 
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(c) Eight updating iterations 

 
(d)  Twelve updating iterations 

 

Figure 12. The comparison between the true value and 

updating result 

 

As given in Fig. 12, the predicted delamination is 

reconstructed based on the location and size prediction after 

each updating iteration.  More updating iterations  means 

more information is incorporated in the Bayesian updating. 

At the same time, the uncertainty bound is decreased as 

applied more updating iterations, which is consistent with 

the result given in Fig. 9 and Fig. 11.  

5. CONCLUSION 

In this paper, a probabilistic damage size and location 

updating algorithm is proposed, which incorporates the 

Lamb wave based signal features into the Bayesian updating 

framework.  The proposed method is validated by 

experimental measurements from X-ray images. Based on 

the results obtained above, several conclusions are drawn: 

1. The Lamb wave propagation based SHM method is able 

to capture the delamination size and location 

information  

2. The correlation coefficient and the phase change in the 

received signal are more sensitive to the damage 

location, but they are not very sensitive when the 

damage is far away from the sensor path.     

3. Bayesian updating can represent and manage the damage 

detection uncertainties, including both modeling 

uncertainty and measurement uncertainty. Probabilistic 

estimation of damage size and location can be obtained 

and the Bayesian image is constructed based on the 

probability of each cell. 

 

Currently, only two feature are utilized in the Bayesian 

updating. Further efforts are required to incorporate more 

features to give a better detection performance. 

Simultaneous, More parameters need to be found to 

characterize the delamination besides size and location. 

Other possible regression models needs further investigation 

to cancel the uncertainties between different specimens. 

Additionally, an irregular delamination shape needs further 

investigation, which can be done by attaching more sensors 

on the target region. 
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