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ABSTRACT 

In a nuclear power plant (NPP), most of the systems are 

linked due to processes of fluid flow, heat transfer etc., and 

their natural tendency to respond to changes during accident 

conditions. These relationships can be utilized to develop 

smart applications for plant accident monitoring and 

management. In this research, the statistical relationships 

among the process parameters have been analyzed. It has 

been embarked that the characteristics of a safety system 

during a particular interval can be estimated by utilizing the 

other affected parameters, employing statistical correlation 

and regression models developed from the simulation data 

offline, when evaluated for the same set of conditions on 

accident sequence and safety systems. The proposed 

methodology has been demonstrated for a specific loss of 

coolant accident scenario using correlation coefficient and 

neural networks, for the time interval when containment 

spray system was initiated at the particular stage of accident 

progression and remained operational for some designed 

time. Virtual sensor networks were constructed for the 

estimation of reactor vessel level during that time period, 

which demonstrates the realization of methodology. The 

estimations from such virtual sensor networks are expected 

to improve by utilizing the importance measures and 

concepts to generalize the neural networks. Also, correlation 

voting index (CVI) provides a capability to select a set of 

related outputs, which would be used as a yardstick for 

comparing results in case, missing or uncertain inputs are 

present.  

 

1. INTRODUCTION 

Nuclear instrumentation and control (I&C) system is to 

provide reliable information on process parameters during 

normal and abnormal conditions. It should also have the 

capability to represent information regarding process and 

safety parameters in easily interpretable manner by 

numbers/displays. The display capabilities of I&C systems 

have been greatly improved after the TMI event 1979 where 

operators were failed to take right actions due to 

misinterpretation of available signals. Modern I&C systems 

are programmed with computers where they can 

simultaneously utilize the monitoring data for sensor or 

equipment fault diagnosis. Such intelligent systems have 

made online calibration and testing of sensors a reality. 

However, during the Fukushima accident in Japan, we could 

observe the modern I&C was again failed due to a 

combination of reasons that appeared to include: loss of 

power, evaporation of liquid in sensing lines, failure of 

sensors due to environmental conditions, instrument ranges 

that were not suitable for monitoring plant conditions, and 

lack of alternative data for use in validating instrument 

readings. Therefore, the capability of I&C systems is 

extremely important during severe accidents characterized 

by a combination of basic events and followed by failures of 

designed safety systems. 

Nuclear industry has launched exhaustive research projects 

to address safety challenges in the severe accidents. At a 

broader level, for a complete accident management and 

emergency planning the areas to be focused are transitional 

procedures, onsite and offsite interactions, design and 

equipment and, and human and organizational factors. It has 
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been suggested that the severe accident management 

guidelines (SAMG) could only be useful if the monitoring 

of critical parameters is somehow made available to the 

operator, even in station blackout condition as mentioned by 

(American Nuclear Society, 2012) and (US Nuclear 

Regulatory Commission, 1983). Loss of information on 

process parameters increases the chances of information 

misinterpretation at control room which may lead to wrong 

operator actions. 

This research was motivated as a method to resolve 

aforementioned challenges. Our strategy is based on the 

development of an indirect way that is, a method to assess 

the safety critical parameters from other statistically related 

parameters.  

2. MATERIALS AND METHODS 

US NRC’s Regulatory Guide 1.97 provides the basic 

requirements for human-machine interface systems 

including I&C systems and for the monitoring of 

radioactivity releases following an accident. The SAMG 

classifies the important parameters in classes A-E (referred 

as SAMG parameters herein). Type A parameters are to 

provide primary information for manual operation. Type B 

parameters to provide information regarding the 

accomplishment of safety functions such as reactivity 

control, core cooling, maintain reactor coolant integrity, 

maintaining reactor containment integrity. Type C 

parameters are to provide information regarding variables 

that have a potential for causing a containment breach such 

as core exit temperature (CET), reactor coolant system 

(RCS) pressure, hydrogen concentration, containment 

pressure, and so on. Type D parameters are to indicate the 

operation of safety systems such as residual heat removal 

system, safety injection systems, refueling water storage 

tank level, primary coolant system, condensate storage tank 

level, containment cooling systems, radwaste systems, 

ventilation systems, power supplies etc., and Type E 

parameters are to indicate the amount of radioactive 

material to be released in case of containment breach. IEEE 

has also developed standards to support the specification, 

design, and implementation of accident monitoring 

instrumentation of NPPs. The recent document IEEE Std-

497 (revision 2010) provides criteria for selection, 

performance, design, qualification, display and quality 

assurance of the nuclear I&C system (IEEE Power and 

Energy Society, 2010).Westinghouse has proposed an 

advanced system for post-accident monitoring (PAM) to 

implement the SAMG parameters (Westinghouse Electric 

Company, 2012). The representative parameters are CET, 

reactor vessel level, hot and cold leg temperatures, RCS 

pressure, and so on (referred as PAM parameters herein).  

The focus of this research was on the PAM and SAMG 

parameters which should be secured during a severe 

accident to see the working of safety functions and their 

influence on accident progression. In this study the 

methodology to improve the information availability, by 

utilizing the statistical correlations among the PAM and 

SAMG parameters has been presented with a case study. 

Accident simulation data generated from the MAAP code 

for a probable loss of coolant accident (LOCA) scenario that 

led to containment damage (Park, 2009). The MAAP code 

generates time series data for more than 800 parameters 

following an initiating event for 2 days. This study was 

initiated to explore the following technical areas (Ahmed, 

2013), 

1. The statistical correlation of a process parameter 

with other parameters provides a basis for securing 

PAM parameters from SAMG parameters. The 

correlations among the process parameters can be 

utilized to estimate one parameter from the others. 

This would increase the virtual redundancy of the 

critical information.  

2. The relationships among the process variables can 

be used to develop several virtual networks to 

generate an important parameter. Therefore, we 

can have capability of virtually supplying a safety-

related sensor’s information during normal 

operation of critical sensor and also this 

information will be available if the original signal 

is unavailable to the operator. 

3. DEVELOPMENT OF PAM-SAM  RELATIONSHIP 

Thousands of sensors are installed at an NPP to measure 

parameters that are important to draw metrics for its 

performance and safety condition. However, a smaller set of 

parameters is vital for safety management. US NRC has 

provided a SAMG on preferred process parameters be 

monitored during and following an accident. We 

hypothesized that the statistical relationships among the 

process parameters can be utilized to serve as virtual sensor 

networks where PAM parameters could be estimated by 

several sets of SAMG parameters. However, the sets of 

SAMG parameters used to estimate a PAM parameter are 

expected to differ due to the underlying boundary conditions 

and involved safety systems.  

 

 
Figure 1: Structure of virtual sensor network. 
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The methodology can be directly extended to develop 

virtual networks to estimate SAMG parameters from other 

non-SAMG parameters as well. A system of such virtual 

networks is shown in figure 1. The connecting lines mean 

the statistical correlation and not a physical connection by 

wire or other data transferring mean. The complete stages 

for developing virtual networks for estimating PAM 

parameters are shown in figure 2. The remaining 

subsections are to discuss major processing step in brief.  

3.1. Simulation Database 

Major initiating events (1) large loss of coolant accident 

(LBLOCA), (2) medium loss of coolant accident 

(MBLOCA), (3) small loss of coolant accident (SBLOCA), 

(4) station blackout accident (SBO), (5) loss of off-site 

power accident (LOOP), (6) steam generator tube rupture 

accident (SGTR), and (7) loss of feed-water accident 

(LOFW) were simulated by using the MAAP code for 

Korean standard NPP, OPR-1000 (Park, 2009). The 

database comprised of a total of 70 accident scenarios 

analyzed on the basis of probabilistic safety analysis of 

OPR-1000 and presents the data for more than 800 thermal 

hydraulic and source term parameters for 72 hours 

following an accident.  

3.2. Scenario Analysis 

Accident management strategies have been developed and 

safety systems are designed to initiate when certain set of 

conditions meet and work for a particular time interval. 

With the MAAP code, the generated accident scenarios 

were to represent severe accident conditions, where several 

safety systems were assumed to fail. A set of representative  

LOCA scenarios are shown in figure 3 via event tree 

diagram, where the working of safety systems such as high 

pressure safety injection system (HPSIS), low pressure 

safety injection system (LPSIS), containment spray system 

(CSS) and cavity flooding system are conceivable. 

Scenarios having end state marked by a prominent yellow 

colored circle represent that the final Plant Damage State 

(PDS) was containment damage. To develop a particular 

application for severe accident monitoring system, the time 

intervals associated with the working or failure of safety 

systems should be considered to identify relationship among 

the parameters. 

 

3.3. Groups Formation 

For the development of virtual sensor networks, statistical 

relationship among the process parameters was required 

during working or failure of a safety system. Correlation 

coefficient is the most widely used statistical measure and is 

being used in process industry as a basis for grouping 

related variables for online monitoring applications (Ahmed, 

et al., 2012; Heo, et al., 2012). Equation (1) defines the 

simple correlation for two variables ‘x’ and ‘y’ having ‘n’ 

values in each. 
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Where sx and sy are sample standard deviations for given x 

and y vectors, respectively. An algorithm was implemented 

to collect top correlated SAMG parameters with PAM 

parameters on the basis of absolute value of correlation 

coefficient.  

3.4. Construction of Virtual Networks 

A virtual sensor network is a group of statistically related 

physical sensors where some of the signals are taken as 

input to produce others employing a regression model. 

Possible input combinations for the estimation of a 

parameter Pn from three inputs S1, S2 and S3 are shown in 

figures 4 (a), 4 (b) and 4 (c) . Where the subscripts i, j and k 

of input signal ‘S’, can assume any values from the set (1, 2, 

3) for generating the same output Pn. Therefore, seven (7) 

virtual networks can be developed for a system having three 

inputs and one output. For each virtual sensor network to be 

operational a regression model is indispensible. Among 

several regression models, ANN is widely used to map 

between a set of inputs and a set of targets and is quite 

robust. An ANN is an information processing system 

characterized by its architecture, training algorithm and 

activation function. A two-layer feed-forward network with 

sigmoid hidden neurons and linear output neurons is mostly 

used (Fausett, 1994). For ANN training Levenberg-

Marquardt back propagation algorithm is generally 

preferred, in case there is not enough memory, the scaled 

 
 

Figure 2: Steps for the development of parameter 

estimation relationships. 
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Figure 3: Event tree for a LOCA scenario. 
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conjugate gradient back propagation is recommended (Beale, 

et al., 2012). 

3.5. Network Importance Measures 

The estimations from a virtual sensor network are subjected 

to changes depending upon characteristics of underlying 

regression model and sensors’ uncertainties. The 

characteristics of regression models are beyond the scope of 

this paper however, a concept of importance measures is 

introduced here to characterize the influence of sensors’ 

uncertainties on the accuracy of estimations computed from 

a regression model. It is therefore, quite conceivable that the 

importance measures will adhere to the characteristics of 

underlying regression model (Ahmed, 2013). In this study 

the outputs of virtual sensor networks are produced by using 

ANN therefore, a mean square error (mse) was used to 

define the importance measures, since it is the basic 

measure of neural network performance and is widely used 

due to its ease of computation and quick optimization 

(Masters, 1993). The mathematical relationship to calculate 

‘mse’ is given in equation (2). 

2

1

)ˆ(
1 N

i

ii yy
N

mse

             

         (2) 

Where  represents the actual value of ith member of 

output vector and is the corresponding value estimated 

value. Two importance measures, accuracy improvement 

factor (AIF) and accuracy reduction factor (ARF) have been 

proposed to characterize the importance of a particular 

sensor in the virtual network owing to input perturbations. 

AIF for a particular sensor is to reflect a sensor’s 

importance on network estimations when the signal from 

that particular sensor is correct and remaining sensors are 

uncertain. AIF can be computed from equation (3) 
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Where mse
(i)

 and mse
(n)

 are the values of ‘mse’ when only 

the signal from ith sensor is correct and when signals from 

all other ‘n-1’ sensors are uncertain.  A lower value (close to 

zero) of AIF
(i)

 would indicate the higher importance to 

network estimations and a relatively lesser influence of  

uncertainties in the remaining members of the network. This 

means that the particular virtual sensor network would 

produce accurate results provided the signal at the sensor 

having smallest AIF is secured.  

Another metric to assess the importance of a sensor is ARF 

which is to represent a sensor importance when it is 

uncertain and the remaining sensors are correct. ARF can be 

computed from equation (4) 

)1,(

)(
)(

ni

n
i

mse

mse
ARF                           (4) 

 

Where mse
(i,n-1)

and mse
(n)

 are the values of ‘mse’ when only 

the signal from ith sensor is corrupted and all other signals 

from ‘n-1’ sensors are correct. The value of ARF for a 

particular sensor will always lie between zero and one. A 

value close to zero would indicate higher sensitivity of 

model estimation to the perturbations in a particular sensor, 

and a value close to unity would indicate otherwise. This 

means that the estimations from a particular virtual sensor 

network are quite sensitive to the perturbations in the signal 

of sensor having smallest ARF value.  

It should be noted that AIF and ARF are based on 

estimations computed from a regression model and would 

adhere to the characteristics of that regression model. 

Therefore, AIF and ARF reflect a sensor’s characteristics in 

a virtual sensor network, which is a group of sensors whose 

inputs are integrated using a regression model.  

4. ANALYSIS AND RESULTS 

This section describes the application of the presented 

methodology for developing system-specific relations for 

containment spray system during a specific LOCA scenario.  

The LOCA scenario was assumed to follow the sequence of 

events shown in table 1. We can recognize three important 

phases of this accident in time, 1) starting from pipe break 

in the primary system followed by success/failure of several 

systems till the start of containment sprays at 1,280 sec, 2) 

time interval during which containment spray system 

worked and eventually expired at 7,730.2 seconds and 

recirculation system came into play, and 3) time interval 

starting with the recirculation system’s action to the failure 

of containment.  

The first part within the first 1,280 seconds following the 

accident was marked by action and failure of several safety 

features which was quite rapid and therefore, an effort to 

apply proposed methodology would be quite uncertain and 

have limited applicability due to many influencing 

parameters in practical situation. 

 
Figure 4: Input combinations for generating similar 

output parameter from neural networks. 
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The second part (1,280 – 7,730 seconds) where only the 

containment spray systems was operational, the proposed 

methodology was implemented and correlations were 

computed for PAM parameter with the SAMG parameters. 

For this part, the explanation for reactor vessel level (RVL) 

is given. For other parameters the strategy can be directly 

extended. The parameter RVL was found to have correlation 

with containment (CNMT) water level measuring sensors, 

radioactive waste storage tank (RWT) level, containment 

gas temp, pressurizer (PZR) temperature, cold leg 

temperature, reactor vessel gas temperature, and 

temperature measuring devices installed in reactor core, at a 

correlation coefficient higher than 0.85.  

The third part (after 7,730 second), was marked by the 

build-up of pressure in the containment building which was 

not controlled by recirculation system and eventually led to 

the containment rupture.  

4.1. Estimations of PAM 

Since, many virtual sensor networks can be developed 

depending upon the number of correlated parameters. One 

representative example for RVL signal recovery in case of 

original sensor failure is presented here, where candidates 

for the input were three sensors CNMT water level (m), 

RWT level (m) and cold leg temperature (K). The variation 

of input and output parameters is shown in figure 5. The 

trained neural network was tested against an arbitrary 

sample taken from the data. The estimation of virtual 

network against the actual normalized value of RVL is 

shown in figure 6. The accuracy and sensitivity issues were 

explored by computing the network importance measures. 

 

4.2. Comparison of Importance Measures 

In our network importance measure calculations, AIF for 

each sensor was computed by assuming a uniform random 

noise of ±5% in other members of the network, while during 

the calculation of ARF the error was considered to be 

present only in that sensor whose ARF was required. AIF 

and ARF computed values for the network members are 

given in table 2. From AIF values the signals CNMT water 

level, RWT level and cold leg temperature are important to 

the correct estimations in descending order. 

On the basis of ARF values, the network estimations are 

less sensitive to perturbations (<±5%) to the CNMT water 

level and more sensitive to the perturbations in RWT level 

and cold leg temperature.  

4.3. Unavailability Problem 

A common problem of concern is the unavailability of all of 

instrumentation or a part of it. Of course, the problem of 

absolute loss of information cannot be resolved by methods 

relying upon information, therefore the problem of partial 

loss of information was considered.  

 

 
Figure 6: Estimation of RVL using neural network. 

 
Figure 5: Variation of few correlated parameters with 

reactor vessel level.  

Table1: Sequence of events following LOCA simulated 

in MAAP for OPR-1000.  

Action Time (seconds) 

PZR heaters on 1.2 

PZR heaters off 10.4 

HPI on 11.7 

Reactor scram 11.7 

Motor-driven Auxiliary feed-

water on 
11.7 

MSIV closed 11.7 

Main FW off 11.7 

Upper compartment spray on 1280.1 

Upper compartment sprays off 7730.2 

Recirculation system in 

operation 
7730.2 

Accumulator water depleted 247447.2 

Containment failed 247447.2 
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As mentioned in section 3.4, several virtual networks of 

varying size and combinations of inputs can be used to 

estimate the same parameter. A new measure, correlation 

voting index (CVI) helps to identify faulty sensor and to 

identify the outputs to be relied upon (Ahmed, 2013). The 

mathematical form of CVI is given by  

n

j

jiPcorriCVI
1

)),(()(                       (5) 

In equation (5) CVI(i) is correlation voting index for ith 

neural network, P is matrix of estimated outputs from ‘n’ 

neural networks and ‘corr(P(i,j))’is used here to represent 

function to calculate correlation coefficient between the ith 

and jth estimation of ‘n’ neural networks stored in matrix P. 

The small values (especially negative) of CVI indicate the 

outliers due to their poor correlation with the rest of the 

estimations. The highest values of CVI represent the set of 

outputs from networks with lesser uncertainty. 

For the RVL estimation, a set of neural networks like shown 

in figure 4 were developed. Three cases, representing 

failures of one signal, 1) S1: CNMT water level, 2) S2: RWT 

level and 3) S3: cold leg temperature, respectively were 

analyzed. The CVI values for each network for each case 

are given in table 3. The positive values represent the 

consistent set of outputs. For instance for case-I (S1 

unavailable), the acceptable outputs set are produced by 

networks S2, S3, S1S3, and S2S3. A unity value 1 for S1 

corresponds to the faulty sensor. The final estimation can be 

computed either by relying only upon the highest value of 

CVI, in this case for S2S3 network (Ahmed, 2013) or by 

using the mixing models techniques discussed by (Bishop, 

2006).  

 

5. CONCLUSIONS 

In this research, the statistical relationship among the 

process parameters has been analyzed. The proposed 

methodology has been demonstrated for a specific LOCA 

scenario for the time interval where containment spray 

system was initiated at a particular instant of accident 

propagation. Virtual sensor network constructed for the 

estimation of RVL demonstrates the realization of 

methodology and its improvement is expected by utilizing 

other networks and importance measures. The CVI performs 

to select a set of related outputs and gives a yardstick for 

comparing results in case exact values are not known. 

However, to extend this strategy for real power plant 

application requires the evaluation of system-specific 

relationships via neural networks at safety system’s 

operation set-points and for a set of conditions expected to 

occur at a power plant. There is a need to bring 

improvements and refinements to the proposed 

methodology in the areas of parameter grouping and 

generalization and optimization of neural networks. Also, 

the neural networks can also be replaced by other regression 

technique. The importance measures presented in this study 

can be defined on the basis of any other performance 

measures for a regression technique however, it should be 

remembered that these measures represent importance 

determined by the characteristics of underlying regression 

technique and not the importance in physical sense.  

The application of the proposed methodology has been 

demonstrated in the aspect of virtual redundancy of a 

sensor’s information, and unavailability problem. The first 

would lead to the capability of online validation of critical 

sensors without installing more physical sensors and the 

second would provide the capability of estimating critical 

parameters in case of partial loss of instrumentation along-

with the identification of faulty sensors.  
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NOMENCLATURE 

AIF accuracy improvement factor 

ANN       artificial neural network 

ARF accuracy reduction factor 

CNMT    containment 

Corr       function to compute correlation coefficient 

CSS        containment spray system 

CVI        correlation voting index 

FW         feed water 

HPI        high pressure injection 

HPSIS    high pressure safety injection system 

LPSIS     low pressure safety injection system 

mse        mean square error 

Table 3: CVI computed values for six neural network 

outputs. 

Neural network 
CVI 

(case I) 

CVI 

(case II) 

CVI 

(case III) 
S

1
 1.0000 0.7950 0.5826 

S
2
 1.4255 1.0000 1.2569 

S
3
 1.5624 0.8183 1.000 

S
1
S

2
 -1.2737 -0.6058 1.2781 

S
1
S

3
 1.0229 0.9360 -0.3763 

S
2
S

3
 2.0604 -0.6208 -0.3605 

 

Table 2: Network importance measures. 

Parameter AIF ARF 

CNMT water level 41.0685 0.0238 

RWT level 71.1913 0.0139 

Cold leg temperature 238.0302 0.0043 
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MSIV     main steam isolation valve 

PAM post-accident monitoring 

PZR       pressurizer 

RVL       reactor vessel level  

RWT      radioactive waste storage tank 

SA          severe accident 

SAM severe accident management 

SAMG    severe accident management guidelines 
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