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ABSTRACT 

Gas turbine health monitoring is a critical process in 

preventing costly unplanned maintenance and secondary 

damage. To monitor gas turbine health, control signals are 

typically collected and analyzed using anomaly detection 

rules and models to assess failure likelihood based on 

observed data patterns. An analytic designer will often deal 

with rule optimization tasks in order to maximize failure 

detection and reduce false alarms. Manual tradeoff analysis 

is typically time consuming and suboptimal. In this paper, 

we attempt to address this issue by introducing a strategy for 

automatic and efficient rule optimization. By focusing on 

optimizing rule parameters while keeping rule structure 

intact, we maximize the rule performance by integrating 

domain knowledge with data driven optimization 

techniques. Realizing that automated rule tuning can be 

computationally expensive and infeasible to complete in 

reasonable time, we will leverage our recently-developed 

scalable learning framework - iScale that allows for 

automatically distributing rule tuning tasks to a large 

number of cloud computers, which not only dramatically 

speeds up tuning process, but also enables us to handle big 

size of historical data for tuning. We also explore different 

search methods to make rule tuning more efficient and 

effective and finally demonstrate our rule optimization 

strategy by a real-world application. 

1. INTRODUCTION 

Today thousands of GE manufactured gas turbines are 

serving customers worldwide for a wide variety of industrial 

applications. Most customers are adopting a contractual 

service agreement (CSA) with GE and rely on GE’s OEM 

expertise for actively monitoring turbine health, i.e., to 

proactively detect anomalies and prevent costly unplanned 

maintenance. Aiming for more accurate and robust detection 

of incipient faults as early as possible, over the years we at 

GE have developed and fielded a spectrum of advanced 

analytics models (both rule-based and data-driven models as 

well).   

Pure data-driven modeling techniques work well if 

sufficient labeled data are available. However in real-world 

applications like in gas turbine monitoring, obtaining 

sufficient labeled data is labor-intensive, if ever possible. In 

particular, true positive cases might be sparse or noisy. 

Using small set of labeled data for data-driven modeling 

may cause model over-fitting or ill-formed model 

representation. In addition, pure data model may not have 

explicit knowledge structure or explainable reasoning logic 

that engineers prefer, which often hinders user acceptance of 

the model.  

 

Consequently, for gas turbine health monitoring 

applications, rule-based models are still dominantly used. In 

fact, most PHM systems make use of diagnostic rules in one 

form or another. For the sake of clarity, consider one of the 

simplest forms, which has the following form. 

IF	�	� < �	�	THEN	�	STATE = �	� 

What this rule basically says is that if a parameter (�) has a 

value that exceeds a limit (�), the system is in a specific 

state (�). Generally the state identified reflects a particular, 

degraded state. It is worth stressing that real-world rules in 

gas turbine monitoring are typically much more complex, 

not only consisting of a large number of such simple-form 

rules, but also having complex-form rules. 

 

Traditionally decision rules and their associated rule 

constants are determined by domain or engineering experts 

_____________________ 

W. Yan, et al. This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, which 

permits unrestricted use, distribution, and reproduction in any medium, 

provided the original author and source are credited. 



Annual Conference of Prognostics and Health Management Society 2013 

 

2 

based on their understanding of the physical system.  The 

rules are continuously refined until each rule produces 

acceptable detection accuracy. Such manual refinement not 

only is labor-intensive, but also often fails to find true 

optimal values. 

 

To address the above-mentioned challenge, in this paper we 

take a different approach, that is, to maintain the existing 

rule knowledge forms, but leverage machine learning based 

optimization platform to improve rule performance. By 

maintaining the expert rule forms we ensure correct physics 

understanding is maintained in rule logic. Tunable 

parameters, or knobs, are selected to optimize rule 

performance using training and testing data sets. The 

derived analytics benefits from both domain knowledge 

capturing as well as data driven optimization. The impact of 

having such a capability is significant in that instead of 

requiring detailed "face time" of an expensive engineer, an 

analyst could use this process to learn from labeled data and 

the tuning could be done in an automated and even online 

manner. 

To that end a generic rule optimization platform has been 

developed, which is independent of specific rules or rule 

platforms. It allows a user to create a rule tuning job through 

a web-based configuration interface. A user has the 

flexibility to choose among unit level or fleet wise 

optimized rule.  

In the remainder of this paper, we will first present the 

architecture of cloud-based machine learning system - 

iScale, followed by a discussion of available optimization 

method available. A case study will then be presented using 

iScale to perform a specific rule tuning job, and then the 

conclusions summary will be provided in the last section. 

2. SCALABLE LEARNING FRAMEWORK - ISCALE 

Creating solutions for analytically hard problems is 

presently a time- and cost-intensive process. This is largely 

due to the fact that the design of advanced analytic solutions 

is largely manual, requiring involvement of one or more 

analysts. These analysts apply their specific knowledge and 

expertise within a given area of analytic problem-solving to 

create an acceptable solution. This process has resulted in a 

major bottleneck in the company’s ability to create 

advanced analytic solutions rapidly. Aiming at tackling this 

bottleneck, we at GE have been developing a cloud-enabled 

analytics framework (called iScale) [Yan et al (2011)]. 

 

iScale is primarily designed to be a distributed computing 

environment for creating, refining, deploying and 

maintaining analytic solutions. As shown in Figure 1, the 

core of the framework consists of several key components, 

including the job manager, the resource manager, the job 

scheduler, the executer, and the optimizer. These 

components serve as an “orchestrator” among users, 

compute machines and algorithms. Specifically it takes 

user’s inputs (data and performance requirements, etc.), 

picks a subset of algorithms in the library that are most 

relevant to the problem, intelligently distributes the search 

tasks to different computer resources, and outputs the best 

combination of models and associated model parameters 

that maximally meet user specified performance 

requirements. The framework provides a web-service that 

can be accessed from a laptop computer and other mobile 

devices as well. The framework also maximally leverages 

Figure 1: iScale Framework 
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heterogeneous compute machines (cloud machines and 

internal HPC/clusters) and is flexible in integrating different 

algorithms written in different languages, e.g., C/C++, Java, 

and R. More importantly, it is highly scalable, that is, it is 

capable of handling large size of data by leveraging 

distributed computing technology. 

A critical component of iScale involves automating a 

significant portion of the currently manual process involved 

in problem formulation, data preparation, model selection, 

model tuning, domain knowledge integration and ensemble 

creation. The larger aspiration of iScale is to move analytic 

development activity from a one-off, largely manual process 

to a one-click, largely automated process. This is expected 

to significantly increase the rate at, and the ease with, which 

a significantly larger employee population in the company 

will create analytic solutions. It will help to make the 

creation of analytics an increasingly pervasive activity 

across the entire company. iScale will be the ecosystem in 

which analytic modules are born, sustained and 

continuously improved. A by-product of having such an 

ecosystem is it can bring to bear a large number of diverse 

analytic approaches to a single problem, thereby increasing 

the likelihood of finding a solution of very high quality. As 

an ecosystem, it is also expected to release next generation 

innovation that is evident in other similar analogues in the 

market today, like the Apple AppStore. By harnessing the 

virtually infinite and elastic compute power of the cloud, 

iScale is able to conduct a comprehensive and iterative 

search for the optimal analytic solution to a problem from 

across a diverse array of applicable approaches. Thus iScale 

is well suited for rule tuning as well. 

3. OPTIMIZATION METHODS 

Rule tuning is considered as an optimization problem where 

design space is defined by the tunable variables and 

objective function is defined by the rule performance 

metrics, i.e., probability of detection (POD) and false alarm 

volume (FAV). The rule tuning optimization problem has an 

important feature, that is, its objective values are available, 

but the derivative of the objective function is not 

computable. Another feature associated with rule tuning 

optimization is that the objective function evaluation is 

computationally expensive. These two features call for 

derivative-free (also called zero-order based) optimization 

methods [Rao (2009)] for rule tuning. Also, since multiple 

objectives (performance metrics) are involved in rule 

tuning, rule tuning is characterized as a multi-objective 

optimization (MOO) problem [Marler & Arora (2004)]. 

In literature there are many different derivative-free 

optimization methods [Conn et al (1997)]. In this paper we 

employ two different optimization methods, grid search 

(GS) and differential evolution (DE), for rule tuning. While 

both GS and DE fall to the category of global optimization 

methods [Rao (2009)], GS is a deterministic optimization 

method and DE, on the other hand, is a stochastic (also 

called heuristic or meta-heuristic) optimization method. 

GS performs optimization as follows: dividing the n-

dimensional design space into a n-dimensional grid, 

evaluating the objective function at all of these grid points, 

and picking the grid point that gives the minimal (or 

maximum) objective function value. Grid search is a simple 

global optimization method and can be easily distributed to 

many computer nodes to speed up the search process. The 

main drawback is that it suffers from the curse of 

dimensionality, i.e., the number of objective function 

evaluations grows exponentially with the number of design 

parameters. 

Figure 2 – General procedure for differential evolution 

 

DE is a simple, but powerful at the same time, population-

based, stochastic optimization method [Storn & Price 

(1997)]. Like other population-based optimization methods 

(e.g., GA, PSO), DE optimization follows the general 

procedure as shown in Figure 2. Essentially, an initial 

population of solutions is randomly generated and 

evaluated; and those solutions are improved upon by 

applying mutation, crossover, and selection operators until a 

stopping criterion is met.  

Compared to other EA optimization methods, DE 

optimization has several advantages, including fast 

convergence, having fewer control parameters, and ease in 

programming. As a result, DE has been used to solve a wide 

range of real world optimization problems [Das & 

Suganthan (2011)]. 

For multi-objective optimization problems, since there 

rarely exists a single solution that optimizes all objectives 

simultaneously, the optimum is given by a set of solutions 

known as the Pareto optimal set. The elements in this set are 

said to be non-dominated since none of them is better than 

the others in terms of all objectives. Using DE for MOO 

problems involves changes to its operators, mutation, 

crossover, and selection. Many different design strategies 

have been proposed. For details, refer to [Xue, et al (2003) 

and Reyes-Sierra & Coello (2006)]. 

Figure 3 illustrates the flow diagram of using DE for 

optimizing rules. In the optimization process shown in the 

- Initialization 

- Evaluation 

- Repeat the followings 

o Mutation 

o Crossover 

o Selection 

o Evaluation 

- Until stopping criteria are met 
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diagram, the step where rule engine execution based on a 

specified parameter set and the data is the most 

computational expensive one. That is where iScale helps by 

distributing the rule engine execution tasks to many 

compute nodes so that rule evaluation can be performed 

simultaneously. In the diagram, GS and DE differ in that GS 

is a one-pass operation while DE involves many iterative 

steps until convergence condition is met. Another difference 

between GS and DE is that the parameter set is pre-defined 

grid in GS while in DE the initial parameter set is randomly 

generated. 

 

4. RULE TUNING CASE STUDY 

In this section we provide a use case study about performing 

a specific rule tuning job using iScale.  

We will first give a brief introduction to the rule to be tuned. 

We then provide details of rule tuning process (the critical 

steps and data sets, etc.). At the end of the section, rule 

tuning results will be discussed.    

4.1. The Vibration Rule for Turbine Vibration 

Monitoring 

The rule concerned in this paper is the gas turbine vibration 

rule. Most gas turbines are equipped with proximity probes 

and seismic sensors located on the bearing housings. They 

provide key indicators of gas turbine hot section system 

integrity, including bearing damage, rotor imbalance, 

sudden mass loss, etc. Figure 4 shows an example of 

proximity sensor signals with step shift resulted after turbine 

blade migration due to lock wire failure. Event occurred 

shortly after unit was restarted and reaching high load, when 

multiple sensors had a step shift with increased vibration 

level.  

 

Figure 4 - Vibration Step Change Due to Turbine Blade 

Migration 

 

The vibration rule is developed to examine probe signals to 

detect trend or step change.  Once significant change is 

detected, statistical test is performed to assess confidence of 

the change. Both seismic and proximity probes will be 

analyzed and fused to improve alarm confidence. 

 

Vibration signal alone may not be sufficient to determine 

system condition. Variation caused by operating condition 

change such as load shift or turbine speed change may also 

cause similar vibration signal shift. To separate true HGP 

failure from operation status change, more logic is added in 

the vibration to establish enabling criteria and stability 

criteria. 

Figure 3: Flow diagram for rule optimization 
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4.2. Vibration Rule Tuning Process 

Within iScale platform, performing a rule tuning job is 

standardized into a straightforward process as shown in 

Figure 5. These can be carried out during the initial 

analytics design and development phase, or during the life 

cycle management for rule improvement. On the high level 

there are four steps from end to end. 

 

Figure 5 - iScale Rule Tuning Process 

   

4.2.1. Data Preparation 

As in any data driven modeling work, high quality data with 

representative feature set is a key for gaining predictive 

capability of the underlying analytics. Data preparation is 

certainly important for rule optimization. 

Three different types of data set are required for rule tuning. 

First is historical event ground truth data. Since we focus on 

anomaly detection rules, these include both abnormal units 

and normal units, which are referred as POD cases and FAR 

cases, respectively.  

Secondly, time series of rule input data of each historical 

case are extracted from the data historian, which will be 

used in rule evaluation. One minute resolution is used for all 

vibration case data. A week or so before and after POD 

events are prepared, and five months of FAR data is used in 

the vibration case study. 

Thirdly, tunable rule parameters are identified and their 

valid ranges are also specified. In the vibration rule tuning 

case, there are thirty or so parameters can be adjusted 

outside the rule. Some values are set based on unit 

configuration or material properties. Among which four 

high sensitivity parameters are selected as the tuning target. 

For intellectual property protection, we are not allowed to 

give details of the four parameters. Valid ranges of each 

tunable parameter are also specified in the template, which 

defines the optimization search space.   

4.2.2. Job Submission 

iScale rule tuning is provided as a web service. A user can 

login to the web interface to create and monitor a tuning job. 

To create a new job, the need to provide information of the 

rule platform, rule executable package, training and testing 

data set, and evaluation criteria. The main interface screen is 

shown in Figure 6. 

iScale itself is rule platform independent. However, 

platform specific rule wrapper and rule analysis engine will 

be required to execute a rule tuning within iScale to perform 

evaluation. The vibration rule is implemented based on 

CCAP platform, a GE in-house developed platform 

originally developed for US NAVY, specialized in plant 

equipment monitoring and diagnostics. 

Performance evaluation criteria are also defined during rule 

tuning job creation, which can be multiple objectives. For 

anomaly detection rules, it is typically to maximize 

probability of detection (POD) and minimize false alarm 

volume (FAV). For vibration rule, an additional criterion is 

added to maximize rule enabling coverage. A weighting 

mechanism can be established to merge different criteria 

into an overall objective function.  

 

Figure 6 - iScale Rule Tuning Interface 

4.2.3. Tuning Execution 

Once a rule tuning job is submitted by user, iScale will 

create a unique job ID to trace a specific task. It will also 

manage job schedule, data file transfer, resource allocation, 

and configure rule execution and evaluation. Rule 

configuration search space will be traversed based on the 

optimization method selected by user. The execution of 

search is performed on a number of compute nodes 

simultaneously. 

Execution time varies depending on the data set size, search 

space size, and number of available nodes. A user may login 

to the iScale job status checking screen to monitor job 

execution progress, modify or abort submitted job. 

After search completed, iScale will aggregate results from 

different computing node to rank and summarize final 

result. Based on user configuration, optimization can be 

performed in either fleet level or unit level. Both summary 

result and detailed raw result are maintained for user review. 
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4.2.4. Rule Deployment 

The final result provided to user includes the optimized rule 

configuration parameters and the corresponding evaluation 

criteria metrics. iScale can be configured as a fully 

integrated component within analytics development system. 

The integration is fairly simple since only the optimized rule 

configuration parameters are required to be deployed. After 

user review, the validated rule configuration information 

can be directly deployed to production system.  

4.3. Rule Tuning Results 

The data: 6-month of historical data for 18 turbines of the 

7FA fleet were retrieved from our database and used for 

demonstrating iScale rule tuning. The data has a sample rate 

of once per minute, which leads to approximately 259k 

(6*30*24*60) data points per turbine unit. Out of the 18 

turbine units, eight of them are considered as POD cases, 

i.e., have valid events at some point of the 6-month period. 

The rest of the 10 turbines units have no valid events.  

The search grid for grid search: As discussed in Section 

4.2.1, four rule parameters were selected as the tunable 

parameters. Due to IP issue, we are not allowed to give 

details of the specific tunable parameters. Here we designate 

the four tunable parameters as v1, v2, v3, and v4. We use 3 

levels for each of the parameters and we arrive in grid with 

3
4
=81 grid points (or DOE experiments).  

The configuration for DE optimization: For DE 

optimization, we integrate the ECJ package 

(http://cs.gmu.edu/~eclab/projects/ecj/) into the iScale 

framework. The population size and number of generations 

are set to 50 and 20, respectively. Other DE parameters 

(e.g., mutation and crossover rates) are set to ECJ default 

values. 

 

Table 1: Rule tuning results 

  Original 

design 
After tuning 

design 

parameters 

[20,0.04, 

0.3,0.4] 

[10,0.04, 

0.5,0.4] 

POD 100% 100% 

FAV 255 12 

 

Rule tuning performance results: Table 1 shows rule 

tuning results using grid search. For comparison purpose, 

also shown in Table 1 are the performance metrics (POD 

and FAV) for the default setting. As seen from the table, 

rule tuning reduces the number of false alarms from 255 to 

12 for the 7FA fleet data concerned in the paper. The 

reduction of false alarms improves monitoring engineer’s 

productivity and prevents unnecessary inspection or 

troubleshooting. We have to point out that the DE 

optimization is still a work in progress, and we would like to 

share the results in a later time. 

5. CONCLUSIONS 

Gas turbine health monitoring is critical in preventing costly 

unplanned maintenance and in reducing life-cycle costs of 

power plant operations. Currently a great majority of 

anomaly detection engines are rule-based; and the rules and 

their associated thresholds/constants are initially designed 

based on domain and engineering knowledge and manually 

modified based on the rules’ performance in the field. To 

improve fault detection performance (accuracy and 

robustness), systematical and efficient approaches allowing 

for optimally determining rules (rule discovery) and their 

associated constants (rule tuning) are needed. This paper is 

our initial effort towards addressing the need. Specifically 

we propose a way to automatically find optimal rule 

constants based on historical data; that is, we attempt to 

address the rule tuning need.  Realizing that automated rule 

tuning can be computationally expensive and infeasible to 

complete in reasonable time, in this paper we leverage our 

recently-developed scalable learning framework - iScale 

that allows for automatically distributing rule tuning tasks to 

a large number of cloud computers. Such distribution not 

only dramatically speeds up tuning process, but also enables 

us to handle big size of historical data for tuning. In this 

paper we also explore different search methods to make rule 

tuning more efficient and effective.  

By tuning the vibration rule, a real-world gas turbine 

detection rule, we demonstrate that the proposed rule tuning 

can be effective and efficient. The iScale-enable rule 

optimization not only eliminates the needs for manual 

tweaking thus a productivity gain for rule development, but 

also enables fully automated rule deployment and future 

adaptation, reduces the overall rule life cycle maintenance 

cost.  

In future we would like to explore other optimization 

methods to further improve efficiency and effectiveness of 

rule tuning. It is also our great interest to extend our current 

automated rule tuning to automated rule discovery. 

 

NOMENCLATURE 

CSA contractual service agreement 

DE differential evolution 

EA evolutionary algorithm 

FAV false alarm volume 

POD probability of detection 

MOO     multi-objective optimization 
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