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ABSTRACT 

This paper introduces a stochastic modeling approach for a 
quantized system for the purpose of fault detection and 
isolation in an automotive alternator system.  Three 
common alternator faults including belt slip, diode failure, 
and incorrect reference voltage for the voltage controller are 
considered and analyzed.  A continuous nonlinear model of 
the alternator system is quantized into discrete states in 
order to simplify diagnostic efforts.  The paper describes a 
stochastic modeling approach that creates a time-varying 
probability transition matrix that can be computed in real-
time without the need for Monte Carlo simulation.  Fault 
detection and isolation occurs through comparison of the 
most probable state from the transition matrix and the 
quantized output state. 

1. INTRODUCTION 

Today’s vehicles require higher electrical demands than 
ever before due to more mandated safety technology and 
popular consumer technology integrated within the vehicle.  
The purpose of the vehicle’s electrical power generation 
storage (EPGS) system is to maintain the necessary 
electrical power needed to start the vehicle and keep it 
running smoothly.  A healthy EPGS system is crucial for 
proper operation of a vehicle. 

Faults within the EPGS system do occur with age.  Typical 
faults include belt slippage between the engine crankshaft 
and alternator pulley, failure of a diode in the bridge diode 
rectifier, and change in reference voltage of the voltage 
controller.  These faults however can be detected and 
isolated with a carefully chosen diagnostic algorithm. 

Diagnostics of the EPGS system is important for the vehicle 
owner and mechanic.  Early diagnostics of a faulty EPGS 
system can warn the owner that the vehicle needs repair 

before more costly damage to other components occur.  
Early detection saves the owner further loss of time and 
money for repair.  Furthermore, diagnostics stored in a 
vehicle’s electronic control unit can be accessed by a 
mechanic to quickly and effectively determine the problem 
and steps needed to solve it. 

Scacchioli, Rizzoni, and Pisu (2006) proposed a fault 
isolation approach for an EPGS system using two equivalent 
alternator models.  One equivalent model for a healthy 
alternator and one equivalent model for an alternator with 
one broken diode.  Parity equations and three residuals with 
constant thresholds were used for fault isolation.  The 
approach assumed a 3000 second Federal Urban Driving 
Schedule (FUDS) cycle.   

Zhang, Uliyar, Farfan-Ramos, Zhang, and Salman (2010) 
proposed a fault isolation approach for an EPGS system 
using parity relations trained by Principal Component 
Analysis (PCA).  Three residuals with constant thresholds 
were used for isolation.  The approach assumed a staircase 
profile for both load current and alternator speed input, 
which is not a realistic scenario.   

Hashemi and Pisu (2011) proposed a fault isolation 
approach for an EPGS system using two observers and three 
residuals.  The approach assumed a staircase profile for load 
current and a portion of the FUDS cycle for alternator 
speed.  Adaptive thresholds were used for isolation.  In 
other similar work, Hashemi and Pisu (2011) showed the 
same approach but created a reduced order adaptive 
threshold model using Gaussian fit of data.  The second 
approach was less computationally intensive.   

Scacchioli, Rizzoni, Salman, Onori, and Zhang (2013) 
proposed a fault isolation approach for an EPGS system 
using one equivalent EPGS model that used parity equations 
to produce three residuals for fault isolation.  The approach 
used a staircase profile for both load current and alternator 
speed input. 
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As stated, previous work for fault isolation in an EPGS 
system has included observers and parity relations.  The 
approaches with observers were built for linear systems that 
approximate the nonlinear behavior of the EPGS system.  
These approaches cannot be extended for direct use on the 
nonlinear system itself.  At least three residuals are required 
for all previous approaches.  It is also concerning that some 
approaches were not validated using real driving situations.  
Therefore these approaches have limited scopes.   

In this paper, the EPGS system is modeled as a quantized 
system.  The motivation for using a quantized system stems 
from the qualitative change in system behavior during 
EPGS faults and the need for a simpler real-time diagnostic 
algorithm.  The approach in this paper uses a time-varying 
probability transition matrix and only one residual to detect 
and isolate faults.  The approach requires much less real-
time computational effort than previous works, which 
required at least 3 residuals. EPGS system data was created 
using a portion of the FUDS cycle to emulate a real-world 
situation.  This approach is shown here in the context of an 
EPGS system but could be used for diagnostics in other 
systems as well including nonlinear systems. 

The first section of this paper describes the EPGS model 
and an approximation of this model named the Equivalent 
EPGS model.  The second section discusses three common 
faults in the model and how each affects the model output.  
The third section introduces the general concept of a 
stochastic model of a quantized system for the purpose of 
fault detection.  The fourth section describes a new method 
to calculate the probability transition matrix for a quantized 
EPGS system.  The last section provides simulation 
assumptions and results for each of the three faults in the 
EPGS system. 

2. EPGS MODEL AND EQUIVALENT EPGS MODEL 

This paper analyzes the EPGS system shown in Figure 1 as 
modeled by Scacchioli et al. (2006).  It consists of a voltage 
controller, alternator, and battery.  The controller can be an 
electronic control unit or a voltage controller on the 
alternator itself.  In this paper, the controller is a part of the 
alternator to regulate field voltage.  The alternator model 
consists of an AC synchronous generator, three phase full 
bridge diode rectifier, voltage controller, and excitation 
field.   

The engine crankshaft mechanically spins the generator’s 
rotor by use of a belt and pulley.  The rotor is a ferrous 
metal wrapped with a single conductive winding.  When the 
controller applies a small field voltage to the winding, a 
small field current flows through the winding.  The flow of 
current through the winding produces a magnetic rotor with 
a north and south pole.  However, the stator is composed of 
three phase stationary windings.  As the magnetic rotor 
moves relative to the conductive stator windings, an 
electromotive force is induced in the stator windings.  If the 

stator windings are connected to an electrical load, then AC 
current will flow in each of the three stator windings.  The 
three currents are sent to a diode bridge rectifier to produce 
DC current for electrical loads or for recharging the battery.  
Therefore, the alternator takes mechanical energy of the 
engine and produces electrical energy for the battery or 
loads of the vehicle.  

 
Figure 1.  EPGS model 

 

The model for the EPGS system results in a complex 
nonlinear system but can be more easily modeled by an 
equivalent DC electric machine as described by Sacchioli et 
al. (2006).  The dashed line in Figure 1 encompasses the 
components represented by the DC model.  This 
approximation gives the equivalent EPGS model shown in 
Figure 2. 

 
Figure 2.  Equivalent EPGS model 

 

The DC electric machine is modeled by the state space 
system in Eq. (1) as shown by Hashemi (2011). 
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Equation (1) has two states z1 and z2 and inputs u1, u2, and 
u3.  The system inputs represent the alternator field voltage 
Vf, angular frequency of alternator ωe, and dc voltage of the 
battery Vdc also shown in Eq. (2).  The coefficients a12, a22 
and b11…b23 are functions of engine speed and were found 
using system identification by Hashemi (2011) using test 
data at different constant engine speeds. In this model, state 
z2 is the measurable quantity Idc which is the rectified output 
current of the alternator. 

 

y2 = Idc = z2
u1 =Vf

u2 =ω e

u3 =Vdc
 

(2) 

3. POSSIBLE FAULTS IN EPGS SYSTEM  

The EPGS system is important in every vehicle and faults in 
the system need to be detected and isolated as quickly as 
possible to prevent costlier damage.  This paper considers 
three common faults that occur in an EPGS system.  
Possible fault locations in EPGS system are bolded in 
Figure 3. 

1. Voltage controller fault:  This fault occurs when the 
reference voltage Vref is incorrectly raised or lowered 
by a percentage of the nominal Vref.  The fault can 
cause the alternator to overcharge or undercharge the 
battery. 

2. Open diode rectifier fault.  This fault occurs when a 
diode in the diode bridge rectifier breaks.  The fault 
results in a large ripple in battery voltage Vdc and 
alternator output current Idc thereby decreasing the 
efficiency of alternator output. 

3. Belt slip fault.  This input fault occurs when the belt 
between the engine crankshaft and alternator pulley 
slips due to insufficient tension.  The belt slip causes a 
decrease in alternator rotational speed ωe and a decrease 
in alternator output voltage.  To compensate, the 
voltage controller increases the field voltage and/or the 
battery must discharge more often to meet load 
demand.  This can age the battery prematurely.  Belt 
slip can signify the belt is worn and needs to be 
replaced. 

 
Figure 3.  Possible faults in EPGS model 

4. STOCHASTIC MODEL FOR QUANTIZED SYSTEM 

Equation 1 gives the continuous model of the DC electric 
machine.  A continuous system provides much more 
information than a discrete system for a diagnostic 
algorithm to sift through to find a fault.  If a continuous 
system could be simplified in a discrete manner without 
significant loss of information, the diagnostic algorithm will 
have a simpler task when searching for a fault.   

Suppose we diagnose a continuous system as a quantized 
system shown in Figure 4 (Blanke, Kinnaert, Lunze, and 
Staroswiecki, 2006).  Input u(t) is the continuous input at 
time t, f(t) is the amount of fault at time t, and y(t) is the 
output at time t.  The output y(t) passes through a quantizer 
and produces [y(t)].  The real valued signal y(t) is assigned a 
new name [y(t)] that corresponds to an interval of real 
valued signals given a set of real valued intervals.  For 
example, if y(t=10)=70 and the interval of real values 50 
through 75 is assigned the name [y(t=10)]=2, then y(t=10) 
will be assigned the quantized name of 2. 

 
Figure 4.  Diagnostics of quantized system 

 
Assuming output y(t) contains two observable outputs y1(t) 
and y2(t) that can be quantized, a plot of y2 vs y1 can be 
visualized as a set of rectangles as shown in Figure 5.  
Output y1(t) can be quantized into intervals a-e and output 
y2(t) can be quantized into intervals 1-5.  The grey section 
represents the system space.  As input u(t) continuously 
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changes over time, the discrete output [y(t)] will transition 
from one grey rectangle to another.  Some rectangles will be 
more favorable for a system to move into for a given input 
and a current rectangle.  The unfavorable rectangle 
transitions can be interpreted as having a low probability of 
occurrence.  Transition probabilities from one rectangle to 
another could be arranged in a probability transition matrix 
and could be very useful for diagnostics.  If a transition 
occurs that has very low probability, then a fault may be 
present. 

 
Figure 5. Example of quantizing two outputs 

 
A typical approach to obtain a static probability transition 
matrix entails using a healthy model of the plant and the use 
of Monte Carlo simulation as shown by Alam (1995).  In 
this paper, a new method for obtaining a time-varying 
probability transition matrix while monitoring the data for 
faults is introduced in the next section in application to the 
DC electric machine. 

5. NEW METHOD FOR PROBABILITY TRANSITION MATRIX 

Using Eq. (1) the DC electric machine system can be 
viewed as a 2D space with z1 and z2 axes.  The system 
output will be contained on this plane.  Since z2 is the only 
output, the user knows where the output is in relation to the 
z2 axis.  The user does not know where the output is in 
relation to the z1 axis except that it must exist between some 
minimum value z1

min and maximum value z1
max shown in 

Figure 6. 

 
Figure 6.  Graph of quantized DC electric machine system 

with flow definitions 

 
For the purpose of diagnostics, the system space is divided 
into quantized states across the z2 axis and assigned names 
such as 1, 2, 3, etc. as shown on right hand side in Figure 6. 
In this paper, the user assumes that with each event, in this 
case one time step, the current state z can only transition up 
or down to an adjacent state z’ or remain in the same state z.  
The state may not jump over other states to nonadjacent 
states. The state may not move left or right outside of the z1 
boundaries.  The selection of state boundaries will depend 
on the system being investigated to ensure only adjacent 
states are used by the system in healthy conditions. 

The objective is to calculate the probability of transitioning 
out of current state z and the probability of future state z’ = 
z.  The probabilities are calculated using a two-dimensional 
form of the divergence theorem.  The three-dimensional 
form of the divergence theorem is defined in Eq. (3).   We 
define V as a closed volume, A as the surface area of V, 𝑛 
as the outward pointing normal vector of the closed volume 
V, and 𝐹  as a continuously differentiable vector field in 
volume V.  A picture for a cubic volume is shown in Figure 
7. 

 ∇⋅F
( )dV

V
∫∫∫ = F


⋅n
( )dA

A
∫∫

 

(3) 

 
Figure 7.  Graph of 3D Divergence Theorem 

 
For the alternator problem, one can imagine multiple cubes 
stacked in the z direction and then collapsing the picture to 
only contain the x-z plane.  This yields the 2D space with 
desired upward and downward flow consistent with the 
alternator problem in Figure 6. 

A two-dimensional form of the divergence theorem is 
defined in Eq. (4).   We define C as a closed curve, A as the 
2D region in the plane enclosed by C, 𝑛 as the outward 
pointing normal vector of the closed curve C, and 𝐹 as a 
continuously differentiable vector field in region A.  A 
graph of the 2D divergence theorem for the alternator 
problem is shown in Figure 8.   
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 ∇⋅F
( )dA = F


⋅n
( )dr

C
∫

A
∫∫

 

(4) 

 
Figure 8.  Graph of 2D Divergence Theorem for state z in 

DC electric machine state space 
 
We consider that the vector field 𝐹 describes transition flow 
in and out of the current state along the state boundaries.  
For the DC electric machine model, 𝐹 is defined as Eq. (5) 
where 𝚤 and 𝚥 are coordinates of vector field F and functions 
f1 and f2 are defined by states z1 and z2 from the state space 
model in Eq. (1).  

 

F

= f1 î + f2 ĵ
z1 = f1(z1, z2,u1,u2,u3)
z2 = f2 (z1, z2,u1,u2,u3)

 

(5) 

The flow through the left and right sides of the area A in 
Figure 8 will be assumed zero for the alternator problem. 
The line integrals along the state boundaries shown in 
Figure 6 will determine flow in and out of the state.  Flow 
out of state z is defined as a positive value φ+ and flow into 
state z is a negative value φ-.  Since each side may have 
flow in and flow out sections, the flow transition point z** 
or z* is found if necessary and the appropriate limits of 
integration for flow in and flow out are integrated for each 
side.  Transition points are shown in Figure 6.  Without loss 
of generality assume f2 < 0 if z1 < z*,z** and f2 > 0 if  z1 > 
z*,z** such that Eq. (6) holds.  The upward and downward 
flow through each side of state z is given by Eq. (7). 

 
f2 (z

*, z2
(1),u1,u2,u3) = 0

f2 (z
**, z2

(2),u1,u2,u3) = 0

 

(6) 

 

ϕ1
+ = − f2 (z1, z2

(1),u1,u2,u3)dz1
z1
min

z1
∗

∫ > 0

ϕ1
− = − f2 (z1, z2

(1),u1,u2,u3)dz1
z1
∗

z1
max

∫ < 0

ϕ2
− = f2 (z1, z2

(2),u1,u2,u3)dz1
z1
min

z1
∗∗

∫ < 0

ϕ2
+ = f2 (z1, z2

(2),u1,u2,u3)dz1
z1
∗∗

z1
max

∫ > 0

 

(7) 

Next we define φin, φout, and φtotal in Eq. (8) in order to build 
probabilities.  The sum of the absolute value of all inward 
flow in defined as φin.  The sum of all outward flow is 
defined as φout. The total flow φtotal is the sum of φin and φout. 

 

ϕin = ϕ1
− +ϕ2

−

ϕout =ϕ1
+ +ϕ2

+

ϕtotal =ϕ1
+ + ϕ1

− + ϕ2
_ +ϕ2

+

 

(8) 

The value φnet is the sum of all flows along the boundaries 
of state z without the use of absolute values.  A positive 
value of φnet represents a net outward flow out of state z.  A 
negative value of φnet represents a net inward flow into state 
z.  The sum of the flows along the boundary of state z is 
given by Eq. (9). 

 ϕnet =ϕ1
− +ϕ1

+ +ϕ2
+ +ϕ2

−

 

(9) 

While the sign of φnet is important to determining if current 
state z will transition to a new state, it does not contain 
information about which state it transitions to.  Instead, 
careful manipulation of Eq. (8) builds transition 
probabilities through each side.   

The notion of probability can be interpreted as counting 
types of occurrences and then normalizing the count of each 
type by the total occurrences.  Suppose the occurrences of 
outward and inward flow defined in Eq. (7) are normalized 
by the total flow defined in Eq. (8).  For example, the 
probability to transition up will be defined as the outward 
flow through side 2, φ2

+, divided by the total flow φtotal. We 
can then define z+ as the state above current state z and 
define z− as the state below current state z.  Equation (10) 
gives the probability to stay within the current state and the 
probability to transition up or transition down to an adjacent 
state.  Uniform probability distribution is assumed along the 
borders of each state. 
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1= ϕin

ϕtotal

+ ϕout

ϕtotal

1=
ϕ1

− +ϕ2
−

ϕtotal

+ ϕ2
+

ϕtotal

+ ϕ1
+

ϕtotal

1= Pr(z ' = z | z)+ Pr(z ' = z+ | z)
+ Pr(z ' = z− | z)

 

(10) 

At each time step the probability to stay or transition up or 
transition down is calculated using the current state 
boundaries and the current input.  This information builds a 
time-varying probability transition matrix named L that can 
be constructed as shown in Table 1 for the example of 
current state z=2 at time t. 

Table 1. Example of probability transition matrix L for 
current state z=2 at a time t 

 

6. SIMULATION RESULTS 

Previous work by Scacchioli et al. (2006) yielded a 
complete nonlinear EPGS model.  This nonlinear model 
uses ωe, Iload, and Vref as inputs and yields Vf, Vdc, and 
battery dc current Idc as output as shown in Figure 9. 

 
Figure 9.  Schematic of EPGS model 

 
Diagnostics for the belt fault case, diode fault case, and 
voltage controller fault case are accomplished by using the 
EPGS model and the new method for the probability 
transition matrix L.  The EPGS output Idc is quantized and 
sent to the flow calculator.  The flow calculator uses the 
outputs of EPGS model and the f2 equation from the DC 
electric machine model to calculate the flow φ through each 
side of the current quantized state.   The flow and current 
quantized state are used to construct the probability 
transition matrix L.  The quantized state and probability 

transition matrix L are used in diagnostics for fault detection 
and isolation.  The procedure is illustrated in Figure 10.  

 
Figure 10.  EPGS model with diagnostics 

 
The following parameters were used to craft the inputs for a 
nonlinear EPGS Simulink model. 

1. Simulate vehicle driving 289 seconds of FUDS cycle 
compressed to 72 seconds during simulation. 

2. Simulation time step is 1e-4 seconds. 
3. Tire radius of vehicle is 0.391 meters. 
4. Final drive gear ratio is 4.72:1. 
5. Belt ratio of 2.92 between engine crankshaft and 

alternator pulley. 
6. Reference battery voltage Vref is a constant 14.46 volts. 
7. Current load profile is a square wave shown in Figure 

11. 

 
Figure 11.  Current load profile 

 
Using the aforementioned assumptions, ωe can be easily 
calculated and is shown in Figure 12.  The Vdc and Vf 
outputs of the EPGS model are given in Figure 13 and 14 
respectively.  The Vdc and Vf data will be used as inputs for 
the DC electric machine model but were downsampled to 
time step of 0.1 seconds. 

  Future State z’ 
  1 2 3 4 

C
ur

re
nt

 S
ta

te
 z

 1 0 0 0 0 

2    0 

3 0 0 0 0 

4 0 0 0 0 
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Figure 12.  Alternator rotational speed input 

 

 
Figure 13.  Battery DC voltage input 

 
Figure 14.  Alternator field voltage input 

 
Figures 12, 13, and 14 represent the nominal inputs to the 
DC electric machine model to which faults will be injected.  

Table 2 details the selected injection time and magnitude of 
fault relative to nominal that were injected during 
simulation.  In other words, the nominal inputs were 
modified to simulate a fault. 

Table 2.  Fault injection time and magnitude 

 
Output z2 range for nominal and faulty cases must be 
quantized into rectangles to find the probability transition 
matrix over time.  Output z2 is quantized into 12 states with 
names 1-12.  The same boundaries and names will be used 
for faulty cases as well. 

The z1 range for this simulation is z1
min is -2.210e+06 and 

z1
max is 6.683e+06.  Given the z1 range, the quantized states, 

and u1, u2, and u3, the probability transition matrix can now 
be calculated using the f2 function from Eq. (1).   

The probability transition matrix L contains the prediction 
of the most likely quantized state z’ = zL and its probability 
P(z’ = zL) at the next time step.  The most likely probability 
and most likely predicted state can be compared with the 
quantized output state [Idc] that actually occurs.    If there is 
a relatively high probability of a particular state transition 
occurring and that state transition does not occur, then a 
fault may be present.  An example of the most likely 
transition probabilities, most likely states, and output states 
over time for belt fault case is shown in Figure 15. 

Fault 
Injection 

time 
(s) 

Modified 
Input 

Resulting % drop 
with respect to 

nominal 
Belt Slip 10 ωe 0.8 

Open Diode 10 Vdc one broken diode 
Voltage 

Controller 10 Vref 0.3 
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Figure 15.  Belt fault outputs 

 
Disagreement between predicted and output states are clear 
after calculating the difference of quantized output state [Idc] 
and the predicted state from probability transition matrix L.  
This difference is defined as the residual r in Eq. (11).  The 
residual results for each fault case are shown in Figures 16, 
17, and 18.  

 r = [Idc ]− zL

 

(11) 

 
Figure 16.  Belt fault residual 

 
Figure 17.  Diode fault residual 

 
Figure 18.  Voltage controller fault residual 

 
All three fault cases show a short-term disagreement r ≠ 0 
between predicted and output states at time t=0.2 seconds 
but returns to agreement r = 0 immediately at t=0.3 seconds.  
The disagreement occurs before a fault is injected at time 
t=10 seconds.  This disagreement at t=0.2 could trigger a 
false alarm during fault detection.  Similar rapid switching 
behavior also occurs in the diode fault residual in Figure 17.  
To distinguish between the similar switching behavior of 
false alarms with real faults and to build confidence in the 
diagnostic algorithm, a fault will only be detected if the 
residual shows disagreement for at least 0.2 seconds.  The 
belt fault will be detected at t=38.4 seconds.  The diode fault 
will be detected at t=10.7 seconds.  The controller fault will 
be detected at 10.2 seconds. 

Isolation of a detected fault will be achieved by monitoring 
the switching behavior during a finite time window 
following detection.  The belt fault appears in the residual 
when the load current increases or decreases.  Due to the 
quick duration of load current change, the belt fault is also 
present for a short time in the residual lasting between two 
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to four seconds.  The diode fault causes a large ripple in the 
alternator output current.  This ripple causes frequent and 
rapid switching behavior from agreement to disagreement in 
the residual.  The controller fault is the only fault case 
where there is residual disagreement for the entire duration 
of the fault.   Therefore, the mean 𝑟 of the absolute value of 
the residuals during a finite time window can be used to 
isolate each fault as defined in Eq. (12).  The time window 
is chosen based on data behavior.  For the data in this paper, 
a six second window was used.  Table 3 shows the mean 
value calculations for each fault using the six second 
window immediately after fault detection.  

 
r =

ri
i=1

n

∑
n

 

(12) 

 
Table 3.  Mean 𝑟 for six second window 

 
Appropriate constant thresholds for 𝑟 can isolate the fault.  
For this paper, if 𝑟 is between 0.5 and 1 the fault is due to 
belt slip.  If 𝑟  is 1 the fault is due to the controller.  
Otherwise, the fault is due to an open diode. 

Based on this approach, the belt fault will be isolated at 
t=44.4 seconds; the diode fault will be isolated at t=16.7 
seconds; the controller fault will be isolated at time t=16.3 
seconds. 

Different fault magnitudes might require different isolation 
thresholds.  This paper only considers three discrete fault 
modes. 

7. CONCLUSION 

This paper presents a novel method for calculating a time-
varying probability transition matrix L for a quantized 
nonlinear system with the purpose of fault detection and 
isolation.  Matrix L exploits the linear state space system 
that approximates the nonlinear system thereby reducing 
computational effort.  Simple comparison of most probable 
state transitions from L and the quantized output states over 
time leads to fault detection and isolation.  The merit of 
using matrix L for diagnostics is shown through the 
successful application of fault isolation in a 2D quantized 
alternator system.   
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NOMENCLATURE 

ωm engine rotational speed 
ωe alternator rotational speed 
Vdc battery DC voltage 
Vf field voltage 
Vref voltage controller reference 
Idc alternator output current 
Iload vehicle load current 
IB battery charging current 
z1 first state space state 
z2 second state space state and output 
u state space input 
a(ωe) state space parameter dependent on alternator 

rotational speed 
b(ωe) state space parameter dependent on alternator 

rotational speed 
z current state 
z’ possible future state 
z1

min minimum z1 value 
z1

max maximum z1 value 
z* flow transition point on z1 axis on side 1 of state z 
z** flow transition point on z1 axis on side 2 of state z 
z2

(1) upper boundary of state z 
z2

(2) lower boundary of state z 
φ+ flow up 
φ- flow down 
f general function 
𝐹 Field vector 
𝑛 normal vector 
C general closed curve 
A area within curve C 
r line integral direction along curve C 
φin total flow into state z 
φout total flow out of state z 
φnet net flow for given state z 
z+  state above state z 
z− state below state z 
L time varying probability transition matrix 
[Idc] quantized alternator output current 
zL predicted future state using L 
r residual 
𝑟 mean of absolute value of residual 
n number of data points 
 

Fault Mean �̅� 
Belt Slip 0.75 

Open Diode 0.08 
Voltage Controller 1 
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