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ABSTRACT 

The Electronic Return-less Fuel System (ERFS) manages the 

delivery of fuel from the fuel tank to the engine. The pressure 

in the fuel line is electronically controlled by the fuel system 

control module by speeding up or slowing down the fuel 

pump. This allows the system to efficiently control the 

amount of fuel provided to the engine when compared to 

vehicles equipped with a standard fuel system wherein the 

fuel pump continuously runs at full speed. A failure in the 

fuel system that impacts the ability to deliver fuel to the 

engine will have an immediate effect on system performance. 

Consequently, improved reliability and availability, and 

reduction in the number of walk-home situations require 

efficient fault detection, isolation and prognosis of the ERFS 

system. This paper develops and implements data-driven 

fault detection, isolation and severity estimation algorithms 

for the ERFS. The HIL Fuel System Rig and a Chevrolet 

Silverado truck were used to collect and analyze the fuel 

system behavior under different fault conditions. Several 

data-driven classifiers, such as support vector machines, K-

nearest Neighbor, Discriminant analysis, Bayes classifier, 

Partial- least squares, Quadratic and Linear classifiers, were 

implemented on a limited set of data for both training and 

testing. Regression techniques, such as Partial least squares 

regression and Principle component regression, are used to 

estimate the severity of faults. The resulting solution 

approach has the potential to be applicable to a wide variety 

of systems, ranging from automobiles to aerospace systems.  

1. INTRODUCTION 

Electronic Return-less Fuel Systems (ERFS) are fast 

replacing the traditional mechanical fuel delivery systems to 

transport fuel from the vehicle’s fuel tank to the fuel rails and 

fuel injectors. In the ERFS system, the Fuel System Control 

Module (FSCM) regulates the pressure on the fuel lines to a 

desired pressure command from the Engine Control Module 

(ECM) based on the required engine speed by varying the 

pulse-width-modulation (PWM) control of the fuel pump. A 

fuel filter and a pressure regulator may be positioned on the 

respective intake and outlet sides of the fuel pump. Filtered 

fuel is thus delivered to a fuel rail, where it is ultimately 

injected into the engine cylinders. An ERFS includes a sealed 

fuel tank and lacks a dedicated fuel return line. The regulation 

of the fuel rate to the injectors improves the fuel economy 

and eliminates liquid recirculation to the fuel tank. The fuel 

economy is improved by reducing the electrical load on the 

alternator and by reducing the rail pressure under most 

operating conditions. With return-less systems, there is no 

return line and no circulation of fuel back to the fuel tank 

from the engine. Consequently, there is no heating of the fuel 

in the tank and no increase in fuel vapor pressure from driving 

the vehicle. This reduces the risk of excessive pressure build 

up inside the fuel tank, vapor leaks, and potential 

improvements in air/fuel ratio control, and vehicle’s emission 

performance. 

Diagnostic and prognostic methods have mainly evolved 

upon three major paradigms, viz., model-based (Chiang, 

Russel, & Braatz, 2001), data-driven, and knowledge 

(experience)-based approaches. The model-based approach 

uses a mathematical representation of the system and thus 

incorporates a physical understanding of the system into the 

monitoring scheme. A major advantage of the physics-based 
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model is that the model bears certain behavioral resemblance 

to the actual system, which can be very useful in the design 

of a diagnostic procedure. However, models developed from 

first principles are seldom used for fault diagnosis in 

automotive industry mainly because of their complexity. In 

addition, automotive system dynamics are often nonlinear, 

Figure 2. GMT 900 based Hardware-in-the-loop rig 

Figure 1. Framework for real-time fault detection and diagnosis of fuel systems 
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which renders the design of fault diagnosis procedures 

difficult. However, with the advances in computing and an 

improved understanding of automotive systems, the design of 

model-based diagnosis schemes is expected to be integrated 

into the concurrent engineering design process. Model-based 

methods use statistical estimation techniques based on 

consistency checks (often termed residuals, “deltas”) 

generated using observers (e.g., Kalman filters, reduced-

order unknown input observers, interacting multiple models, 

particle filters) and parity relations (dynamic relations among 

measured variables) to track the component degradations. 

A data-driven approach to fault diagnosis and prognosis is 

preferred when system models are not available (e.g., when 

subsystem vendors do not share models for competitive 

reasons), but instead system monitoring data is available 

(Namburu, Azam, Luo, Choi, & Pattipati, 2007). Here, failure 

prognosis involves forecasting of system degradation and 

time-to-failure based on “state awareness” gleaned from 

monitored data. Neural network and statistical classification 

methods are illustrative of this approach. The fault scenarios 

must span the universe of system faults for data-driven 

approaches to be effective. Mathematical models may be 

derived (estimated or “identified”) from data as well. Data-

driven models include static models and dynamic models. 

Static models include linear and polynomial models, and 

look-up tables. Dynamic models include dynamic linear and 

nonlinear system models. 

Knowledge-based systems are based on the methods and 

techniques of artificial intelligence. The core components of 

these systems are the knowledge base and the inference 

mechanisms. Examples of knowledge-based systems are: 

rule-based systems, case-based reasoning systems, and 

graphical models (Luo, Tu, Pattipati, Qiao, & Chigusa, 

2005). Examples of graphical models include: signed 

directed graphs, multi-signal flow graphs, Petri nets, and 

Bayesian networks (Luo et. al., 2006). 

Conventional diagnostic techniques for a vehicle fuel system 

typically rely on knowledge of a prior failure condition.  For 

example, when servicing a vehicle, the maintenance 

technician may determine that the fuel pump requires repair 

or replacement by direct testing and/or review of a recorded 

diagnostic trouble (error) code. This reactive diagnosis may 

not occur until vehicle performance has already been 

compromised. A proactive approach which tracks 

degradations in a fuel system is more advantageous than a 

reactive approach, particularly when used with emerging 

vehicle designs utilizing an ERFS. 

In this paper, the fault detection and isolation problem of 

EFRS is characterized and some basic definitions are given. 

The main idea of fault diagnosis is to determine if there is any 

fault or abnormal behavior is present in the system, and to 

localize (isolate) the fault. In order to detect and localize the 

fault, a diagnosis system is needed. The diagnosis systems 

exploits the known signals, i.e. input signals such as control 

signals, and measured output signals from the system under 

diagnosis, to infer the fault. 

The problem of fault diagnosis can be divided into several 

sub-problems. Here, we focus on three: 

• Fault Detection: To determine if a fault is present in the 

system and usually the time when the fault has occurred. 

• Fault Isolation: Determination of the location of the fault, 

i.e. which component or components have failed. 

• Fault Severity (Estimation): Determination of the size and 

possibly time-varying behavior of a fault. 

The three sub-problems are closely nested, and many 

algorithms cover several of them. 

The focus of this paper is to develop data-driven fault 

isolation, and severity estimation algorithms based on neural 

network and statistical pattern recognition techniques 

exemplified by Support Vector Machines (SVM) (Vapnik, 

1995), (Ge, Du, Zhang, & Xu, 2004), (Smola, Bartlett, 

Scholkopf, & Schuurmans, 2000), k-Nearest Neighbor 

(KNN), Principal Component Analysis (PCA) (Jackson, 

1991), Partial Least Squares (PLS) (Bro, 1996), Gaussian 

Mixture Models (GMM), Discriminant Analysis, and so on 

(Bishop, 2006), (Duda, Hart, & Stork, 2001), and validate 

them based on fault injection in the HIL bench and the 

Chevrolet Silverado truck. We also estimate the severity of 

the isolated fault by PLS and principal component regression. 

The techniques chosen in the paper are based on popularity, 

range of complexity, robustness, data structure, and to assess 

the difficulty of the classification and regression problem. 

The paper is organized as follows. Section 2 presents the 

overall framework for real-time fault detection and diagnosis 

of fuel delivery systems. Section 3 presents the neural 

network and statistical pattern recognition techniques. 

Section 4 presents the results of these classification and 

regression techniques for fault isolation and severity 

estimation on real data collected from the Chevrolet 

Silverado truck and the HIL rig. In section 5, we present the 

implementation of these data-driven techniques, embedded 

software in Simulink®, which can be used for real-time fault 

isolation and severity estimation. Finally, section 6 concludes 

the paper with summary and future research directions. 

2. FRAMEWORK FOR REAL-TIME FAULT DETECTION, 

ISOLATION & SEVERITY ESTIMATION OF FUEL 

DELIVERY SYSTEMS 

The Fault Detection and Diagnosis (FDD) process consists of 

an offline training phase and an online testing phase. Figure 

1 depicts the block diagram of a real-time FDD scheme for 

the fuel delivery system.  

During the steady-state detection, a model-based detector 

based on residuals, parity equations, regression, and 

parameter estimation techniques is implemented on the ECU, 
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and detects the fault and estimates the state of health (SOH) 

during real-time operation of the vehicle. This model-based 

algorithm will be presented in a future paper. The nominal 

residuals for system operation are obtained during the offline 

phase via HIL rig experiments, and testing and validation is 

performed on the Chevrolet Silverado truck data collected at 

Milford Proving Grounds, and the faults detected in real-time 

conditions based on these nominal conditions. 

In the offline phase, steady-state sensor data from different 

fault classes is used to train two fault classifiers, the Support 

Vector Machines (SVM), and the k-Nearest Neighbor 

(KNN). Partial Least Squares (PLS), and Principal 

Component Regression (PCR) estimators were also trained to 

assess the fault severities after fault isolation. The trained 

classifiers and their corresponding parameters and/or weights 

are exported to the online module for real-time FDD. An 

optimal sensor selection block is used to select the significant 

sensor suite for maximum diagnosability.  

The online FDD phase consists of three steps: fault detection, 

fault isolation or classification, and fault identification or 

severity estimation. In the fault detection step, the steady-

state model based detector analyses the residuals generated 

from the steady-state measurements of faulty and nominal 

systems. Upon detection of a fault, trained classifiers (SVM 

and KNN) are used for the online categorization of faults. In 

the next step, the PLS and PCA estimators corresponding to 

the isolated fault are used to determine its severity. 

3. FAULT UNIVERSE 

The fuel pump is an electronically controlled closed-loop 

system that maintains a desired fuel system pressure (~ 400 

KPa for GMC 900 truck) and provides fuel flow on-demand 

to the engine under all operating conditions. The five critical 

fuel pump faults considered in this paper are listed in Tables 

1 and 2. The faults in Table I correspond to those in GMT 

900 truck and the faults in Table II are for the HIL Rig.  

Altogether, fault injection experiments were performed with 

a commonly occurring motor/fuel pump fault, 2 sensor faults 

(pressure and current sensors), a pump module fault, and a 

fuel line fault. The fuel pressure and current sensors are 

located anywhere between the fuel pump and fuel rail, and 

the pressure and current sensor bias faults are often difficult 

to isolate, especially between each other, as current bias 

shows up as pressure bias and vice-versa. As the fuel pump 

degrades with age, the motor winding resistance increases 

and consequently, the pump PWM increases to supply the 

same desired pressure. A positive and negative pressure 

sensor bias results in the pump drawing less and more current 

respectively to compensate for the sensor errors. The Filter 

plugged fault is a result of the pump filter being blocked or 

clogged, and the effect of a leakage in the fuel line is 

represented by the fuel leakage fault.  

The 2 faults in Table 1 were conducted at 2 different severity 

levels using a pressure and resistance box, respectively. 

However, since the HIL Rig allows for more flexibility, the 

winding fault was conducted at 10 different severity levels, 

and the pressure sensor bias fault, current sensor bias fault, 

filter plugged fault and fuel leakage faults were conducted at 

4 severity levels as summarized in Table 3. The severity 

levels experiments of the winding fault, pressure and current 

sensor bias faults were conducted by adding resistances 

(resistance box), adding (positive) and subtracting (negative) 

pressure (pressure box), and injecting current, to the pump 

resistance, pressure, and current correspondingly. The filter 

plugged and fuel leakage fault experiments were conducted 

by restricting the fuel flow using valves (flow restrictor in 

Figure 2). The severity levels were chosen to represent the 

degradation of a fuel pump from low (operating normally) to 

high (end-of-life).   

Table 1. Fault universe for GMT 900 truck 

Fault Fault Type 
Compo

nent 

F1.1 
Pressure Sensor Bias  

(Slew 9.3 on pressure box) 

Fuel 

Line 

F1.2 
Pressure Sensor Bias  

(Slew 9 on pressure box) 

Fuel 

Line 

F2.1 Winding Fault (1 Ω resistance added) 
Pump/

Motor 

F2.2 Winding Fault (0.66 Ω resistance added) 
Pump/

Motor 

 

Table 2. Fault universe for HIL rig 

Fault Fault Type Component 

F1 Winding/Commutator Fault Pump/Motor 

F2 Pressure Sensor Bias Fault Fuel Line 

F3 Current Sensor Bias Fault Fuel Line 

F4 Filter Plugged Pump Module Fault 

F5 Fuel Leakage Fault Fuel Line 

 

Table 3. Severity levels of each fault for HIL rig 

Winding 

Fault 

Pressure 

Sensor 

Bias 

Fault 

Current 

Sensor 

Bias 

Fault 

Filter 

Plugged 
Fuel Leakage Fault 
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0.3158 Ω 

0.4 Ω 

0.5 Ω 

0.66 Ω 

0.75 Ω 

1 Ω 

1.2 Ω 

1.5 Ω 

2 Ω 

3 Ω 

50 KPa 

100 KPa 

-50 KPa 

-100 KPa 

1 A 

1.5 A 

2 A 

3 A 

25% 

closed 

50% 

closed 

80% 

closed 

100% 

closed 

25% 

closed 

70% 

closed 

80% 

closed 

100% 

closed 

4. FUEL DELIVERY SYSTEM HARDWARE-IN-THE-LOOP 

RIG 

A HIL system was designed as a means for validating the 

diagnostic algorithms, analyze the fuel system behavior 

under different operating conditions, and compare the 

physics-based system models to the actual system. The HIL 

rig was controlled by a lab machine and its performance 

parameters were linked to a user-interface (display screen) 

via CAN, to warn customers of likely vehicle 

failure/breakdown. A schematic of the GMT 900 based HIL 

rig is shown in Figure 2.  

The fuel tank assembly houses two pumps, one for reference 

(for e.g. healthy pump) and the other (e.g. faulty pump) for 

applying different faults and subsequently, comparing the 

two pumps simultaneously under various diagnostic 

scenarios. Each pump has its own shut-off valve, when the 

other pump is in operation. The entire system has a control 

valve that enables fuel circulation in the loop, which comes 

in handy to study pump dynamics. Each pump is fitted with 

2 thermocouples which act as temperature sensors for 

monitoring the temperature and providing warning in case of 

overheating. 

Fault simulations were run on HIL Rig using a drive profile 

obtained from the GMT 900 test vehicle at Milford Proving 

Grounds. A Simulink®-dSpace model of the fuel system was 

used to extract the sensor and parameter identifier (PID) data 

(current, voltage, pressure, flow, and PWM) from the HIL 

Rig as shown in Figure 3. The desired engine speed and 

pressure profiles for the Milford Proving Ground (MPG) 

drive cycle are presented in Figures 4 and 5, respectively. 

 

Figure 4. Desired engine speed for MPG drive cycle 

Figure 3. Simulink®-dSpace ERFS model 
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Figure 5. Desired pressure for MPG drive cycle 

5. FAULT ISOLATION & SEVERITY ESTIMATION OF FUEL 

DELIVERY SYSTEM 

5.1 Fault Isolation on the GMT 900 Truck Data 

Parameter identifier (PID) data was collected from a GMT 

900 (Silverado) truck under idle and normal conditions by 

driving on Mound Road, Warren, Michigan. 

The PIDs collected are listed below. 

1. Current 

2. Pressure 

3. Flow 

4. PWM 

5. Current variance 

6. Desired Pressure 

7. Engine Speed 

8. Vehicle Speed 

9. Pump Pressure 

10. Pump Voltage 

11. Pump Efficiency 

12. Status 

The features used for fault isolation are presented in Table 4 

below. 

Table 4. Features for fault isolation 

Power Out 

(Pressure x 

Flow x 

Pump 

Efficiency) 

Power In 

(Voltage 

x Current 

x PWM) 

PWM Current Flow 
Pump 

Pressure 

The fault universe, listed in Table 1, was used to define the 

fault classes for the classification algorithms as follows: 

Class 1: No Fault 

Class 2: Pressure sensor bias (Slew9.3 on the pressure box) 

Class 3: Pressure sensor bias (Slew9 on the pressure box) 

Class 4: Winding Fault (1 ohm resistance added) 

Class 5: Winding Fault (0.66 ohm resistance added) 

The classification results under the two driving conditions of 

the truck are presented in Tables 5 and 6. 

Table 5. Classification/fault isolation accuracy (5x2 cross-

validation) under idle conditions 

Rank Classifier Accuracy 

1 SVM 100% 

2 QDA 100% 

3 

Fisher Discriminant Analysis 

1. Linear 

2. Quadratic 

 

99.9813% 

100% 

4 GMM 99.6747% 

5 PLS 92.3520% 

 

Table 6. Classification/fault isolation accuracy (5x2 cross-

validation) under normal driving conditions  

Rank Classifier Accuracy 

1 QDA 99.84% 

2 

Fisher Discriminant Analysis 

1. Linear 

2. Quadratic 

 

98.9711% 

99.8356% 

3 SVM 98.2556% 

4 GMM 95.1846% 

5 PLS 81.2649% 

The classification accuracies can be further improved using 

preprocessing techniques such as auto-scaling, mean-

centering, PCA and PLS. 

The classification task under idle conditions is much easier 

than the normal driving conditions. As seen in Table 5, both 

SVM and discriminant analysis (linear discriminant analysis 

and quadratic discriminant analysis) perform well while 

classifying faults under idling conditions (or steady-state 

operating conditions) of the truck. However, the 

classification is reasonably good even under normal 

operating conditions. SVM consistently performs well with 

no false alarms under both operating conditions of the truck 

and hence, was selected as one of the techniques for fault 

isolation in the data-driven software. 

5.2 Fault Isolation and Severity Estimation on the HIL 

Rig Data 
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The PIDs listed below were directly used as features for the 

data-driven fault isolation and severity estimation.  

1. Current 

2. Voltage 

3. Pressure 

4. Flow 

5. PWM  

The fault classes used for isolation are as follows. 

Class 1: No Fault 

Class 2: Current Bias Fault 

Class 3: Pressure Bias Fault 

Class 4: Winding Resistance Fault  

Class 5: Fuel Leak 

Class 6: Filter Plugged 

Table 7 presents the fault Isolation results for the HIL Rig. 

SVM, and KNN showed the highest accuracy of correct 

classification rate (> 99%). On the other hand, the Bayes and 

PLS classifiers showed the lowest accuracy. 

Table 7. Classification/fault isolation accuracy (5x2 cross-

validation) 

Rank Classifier 

Correct 

Classification 

Rate (%)* 

Overall False 

Alarm (%) 

1 SVM 99.7028% 0.2972% 

2 

k-Nearest Neighbor 

1. k=1 

2. k=2 

3. k=3 

 

1. 99.5218% 

2. 99.5218% 

3. 99.4565% 

 

1. 0.4782% 

2. 0.4782% 

3. 0.5435% 

3 

Discriminant Analysis 

1. Linear 

2. Diag Linear 

 

1. 85.2393% 

2. 81.3819% 

 

1. 14.761% 

2. 18.618% 

4 
Bayes Classifier with 

GMM Model 
82.0410% 17.959% 

5 PLS 81.2871% 18.713% 

After a fault is detected and isolated, the severity estimation 

of the fault is needed in some cases. We used partial least 

squares regression (PLSR) and principal component 

regression (PCR) to estimate the severity of the isolated fault.  

Simulations were run on the HIL Rig to collect data for each 

severity level. The Milford Proving Ground (MPG) drive 

cycle was run for each severity level of each failure model 

and PIDs were collected using the Simulink®-dSpace model 

of the ERFS system. Table 3 presented the different severity 

levels for each fault class.  

The average percent error for each severity level is computed 

as follows:

  
Actual severity level  Average estimated severity level

100
Actual severity level


  

(1) 

Figure 6. Data-driven fault isolation and severity estimation software 
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Tables 8 and 9 show the average percent error for each 

severity level for both PLSR and PCR. 

Table 8. Average errors for each severity level for PLSR 

Winding 

Fault 

Pressure 

Bias 

Current 

Bias 

Filter 

Plugged 

Fuel 

Leak 

8.9049% 

47.17% 

5.441% 

7.5665% 

5.224% 

27.978% 

6.645% 

16.962% 

6.55% 

15.5783% 

0.9262% 

4.2832% 

2.04771% 

0.12258% 

8.9693% 

3.3192% 

0.7428% 

3.5819% 

2.50146% 

8.25643% 

9.3655% 

11.4154% 

0.2821% 

0.4683% 

0.0952% 

0.1155% 

 

Table 9: Average errors for each severity level for PCR 

Winding 

Fault 

Pressure 

Bias 

Current 

Bias 

Filter 

Plugged 

Fuel 

Leak 

9.4538% 

47.4694% 

5.8208% 

7.6480% 

5.43909% 

28.0482% 

6.56998% 

16.864% 

6.573% 

15.5545% 

0.8987% 

4.117% 

2.338% 

0.4139% 

8.8356% 

3.2657% 

0.5541% 

3.3568% 

1.7446% 

8.7698% 

9.3293% 

11.6222% 

0.3537% 

0.4622% 

0.1133% 

0.1119% 

The R2 results are presented in Table 10. The fit accuracy 

doesn’t provide as good an insight into the problem of 

severity estimation as the average percentage errors due to 

the fact that it looks for strictly the same value as the truth 

and provides a comparison between the true (Y) and estimated 

values (Ŷ). 

2

2 2
2
2

ˆ

R (%) 1 100
( )

Y Y

Y mean Y

 
 

   
 

 

      (2) 

Table 10. R2 fit results for different regression methods 

Faults Regression Techniques 

PLSR PCR 

Current Bias 92.6863% 92.6285% 

Pressure Bias 98.1168% 98.1251% 

Winding Fault 91.9874% 91.99% 

Fuel Leak 99.9035% 99.9033% 

Filter Plugged 89.4918% 89.6038% 

The overall data-driven fault isolation and severity estimation 

software based on Figure 1 was implemented in 

Simulink®/MATLAB® environment using Embedded 

MATLAB® functions as shown in Figure 6. The Data 

Acquisition & Buffering Block simulates real-time data 

storage of the sensor and PID data (current, voltage, pressure, 

and flow). Once a preset number of samples (e.g. 1000) are 

stored in the database, the fault isolation block consisting of 

SVM and KNN is triggered. As soon as the fault is isolated, 

the severity estimation block consisting of regression 

techniques (PLS and PCA) are triggered, and the severity 

level of the fault is estimated. The parameters for SVM, 

KNN, PLS and PCA are obtained in the training phase 

offline. 

6. CONCLUSIONS & FUTURE WORK 

In this research, a data-driven fault detection and isolation 

(FDI) approach for automotive ERFS is presented based on 

data collected from a HIL fuel system rig and a GMT 900 

truck. In the Silverado truck, three fault classes (No fault, 

pressure bias, and resistance faults) were introduced for 

classification under idle and normal driving conditions. Both 

SVM and QDA perform with accuracies greater than 98% 

while classifying faults under idle and normal driving 

condition conditions.   

In the HIL rig, six fault classes (No fault, current bias, 

pressure bias, motor resistance, fuel leak, and fuel filter 

blocked faults) were introduced under a drive profile 

obtained from a GMT 900 test vehicle. SVM, and KNN 

showed the highest accuracy of correct classification rate (> 

99%). On the other hand the quadratic classifier and the linear 

classifier showed the lowest accuracy. 

Severity estimation levels for each fault using PLSR and PCR 

were performed using the data from the HIL with different 

severity levels. The results showed that fuel leak and pressure 

bias fault severity estimates have the highest accuracy, while 

the filter plugged fault severity estimate has the lowest 

accuracy. 

The future work will involve the following steps: 

1. Extensive real-time vehicle testing to validate the 

robustness of the data-driven fault isolation and severity 

estimation approach for the ERFS. 

2. Develop remaining useful life (RUL) prediction strategies 

for the ERFS. 
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3. Condition-based Maintenance (CBM) of fuel system 

comprising of early fault diagnosis, isolation, and RUL based 

on system state awareness to optimally plan and execute 

preventive maintenance decisions for individual and fleet of 

vehicles. 
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