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ABSTRACT 

The deterioration of high-bypass turbofan aircraft engines is 
an area of study that has the potential to provide valuable 
information to both engine manufacturers and users. 
Differences in deterioration between engines corresponding 
to different airlines, climates or flight patterns offer insight 
into ideal maintenance patterns and fine-tuned estimates on 
engine lifetime for airlines that operate over a wide range of 
conditions. In this paper, a model of high-bypass turbofan 
aircraft engine deterioration – based on cycle frequency, air 
quality, relative passenger mass and climate – and its 
possible application as a predictor of engine health and 
lifetime is described. Because the quantity of interest was 
long-term changes in engine health, the data set was mid-
flight snapshot data, grouped as a set of time-series 
corresponding to different engines. Ultimately, a simple 
model was derived which can be used to predict how long a 
high-bypass turbofan engine will last under given 
conditions. Since all of the engines used in this study were 
the same configuration and model, the numeric results will 
be most valid when predicting health of engines of that 
variety. However, the approach outlined here could be used 
for any type of engine with enough available data. The 
results will allow manufacturers to provide better 
maintenance recommendations to owners of the assets. 

1. INTRODUCTION 

As profit-motivated organizations, manufacturers and users 
of high-bypass turbofan engines should strive to use and 
take care of their engines in the most cost and time-efficient 
way possible. However, with the variation in flight patterns, 
and environmental conditions across airlines, continents and 
even aircraft, it is clear that a one-size-fits-all maintenance 
program will not be the best solution for all airlines using 
the same type of engine. Because of this, there is a need for 
information that allows for tailoring maintenance programs 
to fit the usage profile of a given airline.  

Many studies of turbine engine deterioration have been 
performed in recent years.  Some, such as the damage 
propagation modeling study by Saxena, Goebel, Simon and 
Eklund (2008), use simulated models of turbine engines to 
predict how they will react to different conditions. These 
studies are immensely helpful in determining the general 
character of engine deterioration.  Others consider the 
effectiveness of different strategies for the detection of 
deterioration patterns or faults (Krok & Ashby, 2002; 
Changzheng & Yong, 2006, Weizhong & Feng, 2008). 

Some of the approaches used in past studies inspired the one 
used here. Like Saxena et al. (2008), we took into 
consideration the effects of maintenance events on the 
deterioration pattern. However, instead of incorporating 
maintenance events as process noise, we attempted to 
identify them and use their locations as starting and 
stopping points in analysis.  

The analysis performed here differs from these past studies 
in a few key ways.  In using real snapshot data from engines 
belonging to several different airlines, we are able to 
consider the average effect of certain environmental 
conditions on a group of engines 

The remainder of the paper is separated into three sections 
as follows. In Section 2, we outline the experimental 
strategy that was used to create a model of deterioration for 
one type of engine. This was based on the use of a trained 
neural network to predict Exhaust Gas Temperature (EGT), 
an indicator of engine health, and the analysis of changes in 
EGT over time for several different engines. We also 
comment on the assumptions made in the process of 
performing this analysis and the motivation behind them. In 
Section 3, we first describe the general trend that was 
observed in the data as a means of characterizing the 
deterioration of high-bypass turbofan engines. Then, we 
discuss the observed relationships between flight conditions 
– cycle frequency, environment, passenger load and air 
quality – and consider two different sets of airlines – 
grouped by climate – as case studies. Finally, we summarize 
the main results in Section 4 and outline several possible 
uses of this information for engine manufacturers and 
airlines along with the shortfalls of this experiment and 
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ways in which it could be improved with the addition of 
more data.  

2. EXPERIMENTAL SETUP 

2.1. Data Set 

For the purposes of this analysis, the data set of interest was 
snapshot flight data from one type and configuration of 
high-bypass turbofan engines recorded over three years. 
Before training or testing the neural network, the data was 
preprocessed in two different steps. First, data points with 
one or more missing values were removed from the set. 
Next, the distribution of each variable was considered 
separately and, as each resembled a normal distribution, the 
tails of these distributions (mostly extreme outliers) were 
discarded to reduce the variance of the entire data set. As an 
example, the distribution of ambient temperature from the 
primed data set is shown in Figure 1. Finally, the testing and 
training data sets were assembled in different ways from the 
primed data set. 

2.2. Neural Network Setup 

In this analysis, a trained neural network was used to predict 
EGT given five different inputs at the time that the snapshot 
was recorded – Bleed Ratio, Mach number (ratio of airplane 
speed to the speed of sound through air), ambient 
temperature, N1 (the percentage of maximum fan speed of 
the engine, directly related to throttle setting) and altitude. 
An artificial neural network like this one is modeled after a 
biological neural network: with several hidden elements 
(called nodes) and weights assigned to the connections 
between input, hidden and output nodes. Each hidden and 
output node has an activation function associated with it, 
through which an appropriately weighted sum is passed to 
determine the output of the node. Because of the complex 
interior structure of a neural network, it has the ability to be 
trained to accurately predict an output given a series of 
inputs for arbitrarily complex functions (Jain, Mao and 
Mohiuddin, 1996). This quality makes a neural network an 
ideal choice for approximating our unknown function of 
EGT based on several inputs.  

The training of the neural network takes place in two steps. 
The first step, feed-forward, involves sending the inputs for 
a given data point through the activation functions at the 
various levels. Then, in back-propagation, the different sets 
of weights are adjusted based on the derivative of the 
activation function, values of the weights and error in the 
output for the given data point (Jain et al., 1996). The neural 
network used here contained one hidden layer with five 
nodes. There was a sigmoid activation function from the 
input layer to the hidden layer and from the hidden to the 
output layer with adjustable weights at each step.  

 

The training data for the neural network was created by 
averaging subsets of points in the snapshot flight data. This 
was done to create a training data set that was completely 
separate from the testing set and to reduce the variance in 
the training data set. To do so, limits of between five and 
fourteen bins were set for each input variable such that each 
bin contained a non-negligible number of points. Then, the 
entire data set was divided into 5-dimensional hypercubes 
bounded on each side by a bin from one input parameter. 
All of the points contained in one such hypercube were 
averaged to create a single point in the training data set. 
Only points from hypercubes containing one hundred or 
more original data points were kept.  

In deciding how the neural network should be tested and 
how the output should be viewed, it was necessary to 
consider how the deterioration of high-bypass turbofan 
engines would appear. For these engines, EGT is considered 
to be an indicator of the engine’s health. The EGT margin is 
defined as the amount that the EGT is below the allowable 
limit for a given stage in the flight. When an engine is new, 
its EGT margin is at its highest. Over time, it shrinks until 
the engine must be retired.  

Because none of the five input variables used were time or 
health-dependent, it was inferred that the neural network 
would not be sensitive to changes in an engine’s health. 
Thus, residual EGT – the difference between the predicted 
and actual EGT – for a particular engine should change with 
time as the engine deteriorates or has maintenance 
performed on it. Based on this information, the network was 
tested for one engine at a time and residual EGT was 
recorded for each data point. Additionally, it was 

Figure 1: Histogram of ambient temperature (degrees C) of 
primed data set 
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determined that an increase in residual EGT would be 
equivalent to a decrease in EGT margin. Therefore, the 
speed at which residual EGT changes for a given engine 
should indicate how quickly the health of the engine 
deteriorates as a whole.  

2.3. Regression Analysis 

After collecting time-dependent residuals for a given 
engine, these residuals needed to be analyzed in order to 
pinpoint the differences between engines. The approach for 
such an analysis was determined by observing similarities 
between several graphs of residuals vs. time.  

As demonstrated in one such graph in Figure 2, residual 
EGT tends to increase with time, as expected, until there are 
sudden shifts in the graph. At these points, residual EGT 
decreases by a few degrees Celsius before continuing to 
follow the same upward trend as before. These jumps 
downward indicated maintenance had been performed on 
the engine.  

We decided that a regression analysis should stop at these 
points – not go through them – because they interrupt the 
trend. Once this decision was made, it remained to devise a 
method of finding these jumps. In the absence of 
maintenance data, two different strategies were used. First, 
groundings for an extended period of time – more than five 
days – were assumed to be maintenance events. Since each 
data point corresponds to one flight, this was a simple 
matter of finding all pairs of points separated by five days or 
more. This length of time allowed for planes to be grounded 
for weather or other non-maintenance reasons such as the 
temporary closure of an airport. Next, downward jumps in 
the data were detected using criteria similar to that used in 

visual identification. That is, we identified times when a 
local max was closely followed by a local min at both the 
top and bottom of the band of residual EGT, giving the 
appearance of a downward vertical shift like those shown in 
Figure 2. 

Figure 3 shows several examples of the algorithm’s success 
in identifying maintenance-like events. Without ground 
truth for maintenance event timing, the success of the jump-
finding algorithm could only be judged by evaluating how 
often it correctly identified maintenance events compared 
with identification with the naked eye. Testing this method 
on several different graphs of residuals vs. time, we found 
that this method correctly identified 80 to 90 percent of the 
vertical discrepancies that were perceived by the naked eye 
to probably indicate a maintenance event. In addition, very 
few false positive events were identified. 

Once the boundaries of the jumps were found, it remained to 
determine how quickly residuals changed between those 
boundaries. The first step in this endeavor was to cluster the 
data using the built-in k-means clustering algorithm 
(MacQueen, 1967). K-means clustering partitions a set of 
observations into k clusters such that the sum of the errors 
(distance between the cluster center and points contained in 
the cluster) is minimized.  This is done by choosing k 
points, assigning each data point to the closest of those k 
points, and calculating the new average of each of the k sets 
of points. This is repeated until the centers of the clusters no 
longer move (MacQueen, 1967). There are many different 
methods that can be used to find an ideal number of clusters, 
k, although it has been noted that there is not necessarily a 
unique best value (Sugar & James, 2003) In light of this, we 
chose the number of clusters by performing k-means on 
several different time-series of residual EGT and noting 
how many centers would effectively cut down the noise in 
the data – likely due to differences in variables for which we 
did not account – while still demonstrating the moving 
trend. We found that, for this data set, approximately one 
center per 150 data points provides a good compromise.   

An example of the effects of the k-means clustering 
algorithm is shown in Figure 4, which contains a plot of the 
original residual EGT output for a single engine, alongside 
the points obtained by the clustering algorithm run over the 
output data set. In both plots, vertical lines mark 
maintenance. Figure 4 shows that the resulting set of 
clustered points does indeed serve as a good approximation 
of the original data set while making performing regressions 
simpler. Between each set of maintenances jumps, the EGT 
changes in a predominantly linear fashion and the net trend 
is similar to those in the original data.    

Next, the data was smoothed using an exponential 
smoothing algorithm with a small smoothing coefficient 
(Ostertagova & Ostertag, 2012). This technique was 
employed to bring potentially noisy data points just slightly 
closer to a perceived trend line, again to improve the  

Figure 2: Residual EGT vs. Time (days, in MATLAB 
format) for one engine 
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accuracy of regression. Finally, three fits were made of the 
data: exponential (ln(residual) vs. time), quadratic (square 
root of residual vs. time) and linear. All of the appropriate 
equation shifts and coefficients were recorded along with 
the correlation coefficients. Later, this information was used 
to determine the best type of model for deterioration as a 
function of time. 

3. RESULTS 

3.1. Characterizing Deterioration 

Bearing in mind the ultimate goal of quantifying 
deterioration and engine usable life as they differ based on 
environmental factors and flight characteristics, the type of 
deterioration must first be characterized. When the groups 
of clustered points were analyzed, the average Pearson’s r 

Figure 4: Residual EGT (degrees C) vs. time (days, in 
MATLAB format) for a single engine before (top) and 
after (bottom) clustering 
 

Figure 3: Samples of jumps found (marked with 
vertical lines) using identification criteria on graphs 
with slightly different shapes 
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values for the three types of regressions were nearly 
identical over the entire set of engines, likely due to the 
small number of clustered points and fairly slow rate of 
change between maintenances. Based on this criterion, no 
single equation type was clearly superior. Previous work 
demonstrates that EGT margin deterioration rates stabilize 
after a period of fast initial loss and remain fairly constant 
until the engine needs to be removed (Ackert, 2011), it was 
decided that the general form of deterioration between 
maintenances would be 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  𝐸𝐺𝑇 =   𝛼𝑡 +   𝛽                        (1) 

In Eq. (1), t is the number of days since the first flight in the 
recorded data set, and 𝛼 and 𝛽 are coefficients determined 
by a linear regression. We see from this equation that the 
speed of engine deterioration is determined by 𝛼, indicating 
that this will be the quantity of interest for this study. 
Further, 𝛽 is understood to be the initial deterioration of the 
engine at time t = 0 Going forward, 𝛼 will be referred to as 
the deterioration coefficient.  

When increase in EGT margin through maintenance events 
is taken into account, Eq. (1) is not a complete description 
of the progression of residual EGT as a function of time. If 
we consider several different types of maintenances, 
numbered {1, ... , k} ,which can be performed throughout 
the engine's lifetime, the fully general expression for 
residual EGT (or, equivalently, decrease in EGT margin) is 

𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙  𝐸𝐺𝑇 =   𝛼𝑡 +   𝛽 −    𝑛!𝛿!!
!!!               (2) 

In Eq. (2), 𝛿! is the increase in EGT margin attributed to 
maintenance type i and 𝑛! is the number of times that 
maintenance type i has been performed between the 
beginning of the engine's lifetime and time t. 

3.2. Differences in Deterioration Coefficient 

Having determined the most likely function for EGT margin 
deterioration as a function of time, it remains to quantify 
how this depends on environmental factors and cycle 
frequency. It must be noted that the character of 
deterioration may be different and less linear towards the 
beginning or end of an engine's life. However, the data on 
initial installation dates is currently unavailable and the 
possible time-dependency will be ignored for the purposes 
of this analysis as we consider a strictly linear model of 
deterioration. 

In determining the appropriate equation for deterioration 
coefficient as a function of cycle frequency (f), the density 
of particles in the atmosphere near takeoff (PM10 in 
𝜇𝑔 𝑚!, denoted p, taken from a database of experimental 
PM10 values), and effective passenger mass (denoted m and 
calculated based on the number of first/business/economy 
class passengers on a flight), observed mathematical 
relationships and one physical constraint were taken into 
account. The limit we placed on our equation was that if 

f=0, 𝛼=0. That is, if an engine is never in flight, it will 
experience negligible or zero deterioration. As a 
consequence of this assumption and the observation that 
there was a very strong positive linear correlation between 
deterioration coefficient and cycle frequency, we concluded 
that the general form of the equation for deterioration 
coefficient would be 

𝛼 𝑓, 𝑝,𝑚 =   𝑔(𝑝,𝑚)(𝐴𝑓)                    (3) 

Where 𝑔  (𝑝,𝑚)  is an unknown function of p and m. 
Ultimately, we found that 𝑔(𝑝,𝑚) was well approximated 
by the general form 

𝑔 𝑝,𝑚 = (𝐵𝑝 + 𝐶)(𝐷𝑚 + 𝐹)                   (4) 

Therefore, the complete equation for 𝛼 will be  

𝛼 𝑓, 𝑝,𝑚 = (𝐵𝑝 + 𝐶)(𝐷𝑚 + 𝐹)(𝐴𝑓)             (5) 

In Eq. (5), the units of 𝛼 are degrees Celsius per day. So this 
equation can be used to predict the lifetime of an engine in 
days or years assuming a constant cycle frequency. If we 
wish to predict the lifetime of an engine simply in the 
number of cycles, we may define the quantity 𝛾 = !

! as the 
deterioration coefficient in units of degrees Celsius per 
cycle. Then, Eq. (5) can be equivalently written as  

𝛾 𝑝,𝑚 = 𝐴(𝐵𝑝 + 𝐶)(𝐷𝑚 + 𝐹)                (6) 

 

where  𝐵,𝐶,𝐷, and  𝐹 are constants which can be determined 
for airlines operating in different climates. 

We must note that the relevant data points here are airlines, 
not engines. The average deterioration coefficient and cycle 
frequency were found for all of the engines with a common 
central hub operating under the same airline. Values of p 
and m were taken from the PM10 data at the most common 
hub city and seating configuration for each airline, 
respectively. In determining airplane load, we only 
considered passenger mass because it was assumed that the 
cargo bay would be filled equally between planes and that 
the differences in overall load would come from varying 
numbers of passengers on the plane. This choice was 
motivated by the fact that there is a good deal of variance in 
the distributions of deterioration coefficients for an airline. 
However, as shown in Figure 5, these distributions have 
well defined peak values. Therefore, this information is the 
most meaningful as it applies to groups of engines with 
common characteristics. In this case, those belonging to a 
single airline.  

3.3. Deterioration Coefficients in Different Climates 

Having derived an appropriate equation for deterioration 
coefficient, it remains to show how the unknown constants 
vary with the climate of the main hub of these airlines. To 
begin, the main hub city for each airline was designated as 
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one of five climate types - Tropical/Equatorial, Dry 
(arid/semiarid), Mild temperate, Continental/Microthermal 
or Polar – based on the Köppen-Geiger climate 
classification system, the most frequently-used set of 
climate classification criteria (Kottek, Grieser, Beck, Rudolf 
and Rubel, 2006). The motivation for such a classification 
comes from the fact that several factors – air composition, 
average precipitation, seasonal humidity variations – that 
may effect engine performance but for which in-flight data 
is not available, differ greatly between different locations 
around the globe. In the Köppen-Geiger classification 
system, these are accounted for and geographic locations are 
grouped according to the typical ranges of values exhibited 
for these characteristics. Grouping airlines in this way 
allows us to potentially reduce some of the error due to 
conditions we cannot quantitatively account for. Kottek et 
al. (2006) provide a detailed description of the criteria 
considered for these classifications.  

Then, the coefficients for Eq. (6) were determined for 
engines operating in both Arid/Semiarid and Equatorial 
climates. The lines of the equations derived for Arid and 
Equatorial climates are shown in Figure 6, graphed in the 
form ! !,!

!"!!
= 𝐴(𝐷𝑚 + 𝐹) along with the points for airlines 

corresponding to those climates. 

For Arid climates, it was found that the equation for 𝛾 
would be 

𝛾 𝑝,𝑚 = (1.31 ∙ 10!!𝑝 + 0.0033)(4.84 ∙ 10!!𝑚 − 4.44) 
(7) 

And similarly, in Equatorial climates,  

𝛾 𝑝,𝑚 = (−5.81 ∙ 10!!𝑝 + 0.0012)(1.25 ∙ 10!!𝑚 − .10) 
(8) 

Based on Eq. (7) and Eq. (8), we see that the dependency of 
𝛾 on the different input parameters varies based on climate. 
In arid climates, where flight conditions are generally 
harsher, we see that  

!"
!"
= (1.31 ∙ 10!!)(4.84 ∙ 10!!𝑚 − 4.44)           (9) 

!"
!"

= 1.31 ∙ 10!!𝑝 + 0.0033 4.84 ∙ 10!!         (10) 

With values for p on the order of 10! and m on the order of 
10!, the values of the partial derivatives of 𝛾 with respect to 
p and m, respectively, are on the order of 10!! and 10!!.  

On the other hand, in Equatorial climates 
!"
!"
= (−5.81 ∙ 10!!)(1.25 ∙ 10!!𝑚 − 0.10)        (11) 

!"
!"

= (−5.81 ∙ 10!!𝑝 + 0.0012)(1.25 ∙ 10!!)      (12) 

Figure 5: Distribution of deterioration coefficients for three 
airlines with different numbers of engines 
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Using the same estimates for p and m, we see that the values 
of the partial derivatives of 𝛾  with respect to p and m, 
respectively, are on the order of 10!!  and 10!! , almost 
negligible compared with those in Arid climates. So we see 
that in less harsh climates, deterioration coefficient is much 
less sensitive to changes in flight conditions.  

4. DISCUSSION AND CONCLUSION 

We see in Figure 5 that although this model of deterioration 
coefficient is fairly accurate, it is not perfect. Here, we 
ignored several possible parameters that could have affected 
deterioration coefficient, possibly bringing the points in 
Figure 5 closer to the trend line and creating a slightly better 
model. This was motivated both by a desire to keep the 
model from becoming too complicated to be useful and an 
absence of reliable data. A few such parameters would have 
been runway length or fuel efficiency - indicators of how 
the plane is flown differently between airlines. However, we 
also note that these factors may be difficult to define before 
the engine is put into service, making an accurate prediction 
of deterioration coefficient with a refined model difficult.  

Despite the possibility that this model is not a perfect 
description of deterioration coefficient, we are now 
equipped with a tool that can be used to help manufacturers 
and users of high-bypass turbofan engines with reasonable 
accuracy. 

First and foremost, our model allows us to make estimates 
on the relative lifetimes of engines under different 
conditions. Using the specific value of 𝛼 or, equivalently, 𝛾 
for a given airline, along with a pre-specified maintenance 
plan and initial EGT margin, we can use Eq. (2) to predict 
either the number of days or cycles that an engine will last 
on the wing of a plane. Both airlines and engine 
manufacturers can use this information to determine how 
often an engine needs to be maintained for it to reach a 
desired number of cycles or years of use.  

Once lifetime estimates and maintenance patterns are 
determined for a specific engine, this information can be 
used in financial considerations for producers and 
consumers. Companies that produce or maintenance 
engines, knowing what the maintenance frequency will 
likely be, can use this information to determine how much 
maintenance events should cost to appropriately offset the 
price of producing the engine. Airlines can use this model 
and the resulting recommended maintenance patterns in a 
similar way. Knowing how much an airline will need to 
spend on an engine (or a set of engines in a fleet) during its 
usable life will allow ticket prices to be adjusted 
accordingly. 

We see here that this model has the potential to help save 
both time and resources. The major shortfall of this study is 
that it only included a few airlines per climate type, some of 
which did not have data on very many engines, and that 

only two different climate types were considered. At the 
time of the study, all of the available data was used. 
However, with more flight data from a wider array of engine 
models, configurations, locations and airlines, the analysis 
performed here could be expanded, making it more accurate 
and robust.   
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