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ABSTRACT

The increase of natural, industrial disasters and diverse crisis

has stimulated more research interest in the world. A cri-

sis can be industrial accident, train accident, earthquake, and

etc. However, the crisis management is currently an impor-

tant challenge for medical service and research, to develop

new technical of decision support system to guide the deci-

sion makers. Crisis management is a special type of collab-

oration, therefore several aspects must be considered. The

more important aspect or problem in a crisis management, is

the coordination (and communication) between different ac-

tors and groups involved in the management. In this paper

the focus is how to handle the coordination and interaction

between these different actors and groups involved in crisis

management by using a finite state automaton. The represen-

tation of the crisis management as a set of couple of states

and events allows to optimize the crisis management by hav-

ing real time the evolution of the situation and the prediction

of their evolution at their earliest.

1. INTRODUCTION

Nowadays, there has been a lot of interest in crisis manage-

ment. Because, in the last years, we assist to a growing num-

ber of disasters and diverse crisis, such as the Indian Ocean

tsunami 2004, the Japanese earthquake and tsunami 2011,

and ect (Reuter, Heger, & Pipek, 2013). Therefore, the re-

sponse to these disasters and crisis (natural or man-made)

have to be fast and effective. A fast and affective response in

a crisis situation allows to reduce the disaster consequences

on people and the damages in nearby areas. However, the re-

sponse to a crisis situation requires the collaboration between

different numerous people and groups, for example police,
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the personnel working in the site, first aid agents, Doctors,

government delegates, position of victims. The figure 1 de-

pict a given scenario for crisis management implying various

actors and groups. When a disaster occurs, the people on the

accident site send information to the communication center

and the latter sends rescuer teams to the accident site or af-

fected zone as shown in figure 1 (Benkhelifa, Moussaoui, &

N-Taboudjemat, 2013). In crisis management several aspects

must be considered. The more important aspect in crisis man-

agement, is the coordination between the actors and groups

involved in the management. The coordination between dif-

ferent actors involved in crisis management is fundamental to

reduce the disaster consequence on victims and nearest areas.

The new challenge of crisis situation is the representation of

the crisis management as a set of couple of states and events

to guide decision makers. In this paper, the coordination be-

tween different actors and groups involved in crisis manage-

ment is viewed as discrete model (event). Discrete Event

System (DES) are dynamic system whose the behavior is

governed by occurrence of physical events that cause abrupt

changes in the state of the system (Sayed-Mouchaweh & Bil-

laudel, 2012). Most of the last approaches of DES is rep-

resented by Automaton (Yunxia, 2003; Sampath, Sengupta,

Lafortune, Sinnamohideen, & Teneketzis, 1995; Kwong &

Yonge-Mallo, 2011) and Petri Net (Cabasino, Giua, & Seatzu,

2010). The figure 2 illustrates an example of modeling of

a crisis management as Finite State Automaton (FSA). The

purpose of modeling the crisis management as FSA is to opti-

mize the crisis management by having real time the evolution

of the situation and the prediction of their evolution at their

earliest. The FSA of the crisis management is used to gener-

ate languages (or sequence of events) for diagnosis purpose.

The diagnosis in crisis management is not to detect failures,

but to detect the critical situations. The critical situation in

figure 2 is going twice in the state “x5” during the crisis man-

agement. The state “x5” corresponds to the waste of time of
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the intervention team to access to the crisis site, and in crisis

management the waste time is unacceptable.

Recently, the prediction of DES based on the sequence of

events (or equivalently, a trajectory) has increasingly inter-

est of many researchers in the last years. The prediction, in

general, is the process of making a decision about a future

result or evolution of a situation. In literature, a lot of predic-

tion approaches of DES are presented. The authors in (Genc

& Lafortune, 2009) are presented a prediction method of a

possibly unobservable event in the system behavior, based on

the language containing the observable events. In (Takai &

Kumar, 2012), the local prognosers of DES exchange their

observations for the sake of arriving at the prognosis deci-

sion. The prediction problem in (Xi-Rien, 1989) is a special

type of projection between two languages. We present in this

paper, a new approach for the prediction of DES and adaptive

detector of supervision pattern using FSA, which is based on

the discrete model corresponding to the crisis management.

This paper is organize as follows. In section 2, we briefly

review same notation and definition of the Automaton model

of DES. In section 3, we describe the discrete model of crisis

management. The standard diagnoser for the dynamic model

is shown in section 5. A general definition of discrete event

dynamic system is presented in section 4. We present in sec-

tion 6, the prediction of DES. Finally, the learning diagnoser

and adaptive supervision pattern are presented in section 7.

Communication center

Satellite

Accident area

Fire truck

Rescue

Rescue

team

Doctor

Hospital center

Volunteers

Police

helicopter

First aid agents

Figure 1. Emergency response scenario, (I. Benkhelifa et al).

2. FINITE STATE AUTOMATON

A Finite State Automaton can be defined as a six-tuple M =
(X ,Σ,Y,δ ,x0,F), where

- X is the set of states, Σ is the set of input events,

- Y is the nonempty finite set of outputs,

- δ : X×Σ−→ X is the transition function,

- x0 ∈ X is the start (initial) state,

- F ⊆X is the (possibly empty) set of accepting or terminal

states.

The finite set of events Σ can be partitioned in two subset,

such that Σ = Σo ∪ Σuo, where Σo is the observable events

and Σuo is the unobservable events. A string is a finite-length

sequence of events in Σ. The set of all strings formed by

events in Σ is denoted by Σ∗. The set Σ∗ is also called the

Kleene-closure of Σ.

Further, we extend the transition function δ to δ̂ to ac-

cept words over Σ as following δ̂ : X ×Σ∗ −→ X . A state

x′ ∈ X is reachable from the state x it there exists a sequence

TM ∈ Σ∗ such that x′ = δ̂ (x,TM) and we write x 7−→ x′, and

x′ = δ̂ (x,TM) is a path ξ in M if x = x0 ∈ X . The state x0 is

called beginning of ξ and xn is called the end of ξ . In the fol-

lowing, we call the strings TM = t1 · · · tn, with t1, · · · , tn ∈ Σ
a trajectory in the system M. Thus, the path ξ is defined as

ξ = x0
t1−→ x1 · · ·xn−1

tn−→ xn = x0
TM−→ xn.

Let TM be a trajectory in Σ. For each trajectory TM ∈ Σ∗, |TM|
denoted its length. We say, the trajectory TM ∈ Σ∗ is accepted

by M if and only if there exists a path ξ = x0
TM−→ xn, labeled

by TM , in the state diagram of M leading from start state x0 to

terminal state xn ∈ F .

Any subset of Σ∗ is called a language over Σ. The generated

language of M, denoted by L (M) is defined as

L (M) = {TM ∈ Σ∗ | δ̂ (x0,TM) ∈ X}.

The language accepted by the system M is the set of all and

only those trajectories over Σ that are accepted by M. The

marked language accepted by M is defined by

Lm(M) = {TM ∈ Σ∗ | δ̂ (x0,TM) ∈ F}.

The language accepted by a deterministic FSA Lm(M) is

called a regular language. A FSA of M is deterministic, if any

given path in M labeled by trajectory TM ∈ Σ∗ has a unique

run, otherwise, FSA of M is non-deterministic.

The projection of strings from L (M) −→ Σ∗o is denoted by

P : L (M)−→ Σ∗o. Given a strings TM ∈L (M), P is obtained

by removing all elements of Σuo in string TM .
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Figure 2. Interaction between different actors involved in the crisis management.
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3. DISCRETE MODEL OF CRISIS MANAGEMENT

In this paper, the interaction between different actors and

groups involved in crisis management is viewed as discrete

model. The discrete model corresponding to the crisis man-

agement is modeled as a FSA. This is represented as a quin-

tuple structure,

G = (X ,Σ,Y,ϕ,x0) ,

with ϕ is the transition relation, ϕ is the extension of δ of

the system M, the relation ϕ has type X ×Σ→ X ×Y . For

instance, z′ = (x′,y′) ∈ ϕ(x, ti), with x, x′ ∈ X , y′ ∈ Y and

ti ∈ Σ.

Example 1: The Figure 3 shows the FSA of the crisis man-

agement corresponding to the figure2, with x0 = x1. In this

example,

- X = {x1,x2,x3,x4,x5,x6,x7,x8},

- Σ = {t1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13, t14, t15},

- Y = {y1,y2,y3,y4,y5,y6,y7,y8},

The figure 3 shows a discrete event model and outputting yi

for all i ∈ {1, · · · ,8}, when the system is in state xi for i ∈
{1, · · · ,8}, respectively.

x1

x2

x3
x4

x5

x6

x7

x8
y1

y2

y3
y4

y5

y6

y7

y8

t1

t2

t3

t4

t5t6

t7

t8

t9

t10

t11

t12
t13

t14

t15

Figure 3. FSA model of the crisis management.

The FSA model of the crisis management shown in figure 3,

allows one hand to monitor the communication and informa-

tion between various groups involved in crisis management,

and also to supervise same specific behaviors (or pattern) that

can be a critical situation in the management. The notion of

pattern means to define a language associated with a path of

system G that we are interested in for the purpose of diag-

nosis. Other word, the pattern is defined as the recognition

problem of the path whose intention is to answer the ques-

tion whether trajectories corresponding to observed path are

accepted or not by the model of the pattern. In (Ye & Dague,

2012), a pattern is define as a FSA. The language may be

associated with the occurrence of single or multiple critical

situation.

The transition function ϕ of G = (X ,Σ,Y,ϕ,x1) can be ex-

tended to take input sequence. For example in figure 3,

ϕ(x1, t3) = {x3,y3} and ϕ(x1, t3t9) = {x7,y3y7}.

The equation ϕ(x1, t3) = {x3,y3}, means when the system G

is in state x1 and the communication event t3 is emitted, the

system G moves in the state x3 and sends a communicate mes-

sage y3 (output).

Define two projections ϕ1 and ϕ2 of ϕ such that ϕ1 gives the

states reached from a state and an input given. The projection

ϕ2 defines the input/output pairs from state. These projections

are defined as
{

ϕ1(x, ti) = {x
′ ∈ X | ∃ y′ ∈ Y such that (x′,y′) ∈ ϕ(x, ti)},

ϕ2(x, ti) = {y
′ ∈ Y | ∃ x′ ∈ X such that (x′,y′) ∈ ϕ(x, ti)},

The projections ϕ1 and ϕ2 of ϕ may be extended as well to

take input sequences. By applying ϕ1 and ϕ2 on the diagram

represented in figure 3, we get

ϕ1(x1, t3t9) = {x7} and ϕ2(x1, t3t7) = {y3y7}.

Let L(G) be the language defined by the FSA G containing

the input sequence allowed by G. Formally

L(G) = {TG | TG ∈ Σ∗ and ∆G ∈ ϕ2(x1,TG)},

with x1 start state and ∆G output corresponding to the input

TG. The state x ∈ X of G has an associated language

LG(x) = {TG | TG ∈ Σ∗ and ∆G ∈ ϕ2(x,TG)},

with ∆G = y1 · · ·yk and TG = t1 · · · tk such that y1, · · · ,yk ∈ Y

and t1, · · · , tk ∈ Σ. The language LG(x) is the set of all trajec-

tory that originate from the state x of the system G. Clearly

in figure 3, L(G) = LG(x1).

Let K (LG(x1), ti) be the trajectory that ends with ti (Genc &

Lafortune, 2009). Formally

K (LG(x1), ti) = {TG = T0ti | T0 ∈ Σ∗ and ti ∈ Σ}.

We recall here, the FSA model of a dynamic system is de-

fined as G = (X ,Σ,Y,ϕ,x1), where ϕ : X×Σ−→ X×Y is the

transition function.

4. DISCRETE EVENT DYNAMIC SYSTEM

In the literature, the event set Σ may include failure events

Σ f = {Σ1, · · · ,Σp}. Indeed, a dynamic system can have p

failure modes of critical situations (F1, · · · ,Fp) that describe

the condition of the system. In addition to normal and failure
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modes the system may have a degraded mode, denoted Nd .

Therefore, the state set X can be partitioned according to the

condition of the system.

X = XN ∪XNd
∪XF1

∪·· ·∪XFp .

The condition of the system goes in XNd
, when the degrada-

tion event occurs and in XFi
when the failure event occurs.

To define the condition map of a dynamic system on a tra-

jectory TG of G, we introduce the label propagation function

LP : X ×Ω×Σ∗ → Ω. LP(x,λ ,TG) propagates the label λ
over TG ∈ Σ∗, starting from x∈ X and following the dynamics

of G, i.e. according LG(x), with x ∈ X , λ ∈Ω and LG(x) ∈ Σ∗

such that TG = K (LG(x),T ).

LP(x,λ ,TG)=





N, if ∃ x′ ∈ X | x′ ∈ ϕ1(x,TG) and x′ ∈ XN

Nd , if ∃ x′ ∈ X | x′ ∈ ϕ1(x,TG) and x′ ∈ Xd

Fi, if ∃ x′ ∈ X | x′ ∈ ϕ1(x,TG) and x′ ∈ XFi

The definition of the conditions map may be extended to sub-

sets of X .

for all z⊆ X , LP(z,λz,TG) =
⋃

x1

TG→xi∈z

{LP(x1,λi,TG)}.

Let x1, · · · ,xm ∈ X and m ∈ N such that z =
{(x1,λ1), · · · ,(xm,λm)}. The system’s condition λi is

normal if λi = N for all 1 ≤ i ≤ m, certain if λi = Fi for all

1 ≤ i≤ m and uncertain if there exist λ j = N and λi = Fi for

same 1≤ i, j ≤m. Further detail about notions of certain and

uncertain system’s condition may be found in (Zad, Kwong,

& Wonham, 2003) and (Genc & Lafortune, 2009).

Example 2: Figure 3 shows a FSA model of a crisis man-

agement. We use the input of the system G to supervise the

behavior corresponding to the critical situation. The critical

situation that we want to detect is outputting twice y5 during

the crisis management. The first appearance of the output y5

in the output sequence ∆G brings the system into the set XNd

corresponding to the degraded mode Nd . The second appear-

ance of the output y5 in the output sequence ∆G during the

crisis management brings the system into the set XF corre-

sponding to the critical mode. In this example

X = {x1, x2, x3, x4, x5, x6, x7, x8}

Ω = {N, Nd , F}

Y = {y1, y2, y3, y4, y5, y6, y7, y8}

The necessary and sufficient condition for the pattern of a

DES is based on the learning diagnoser and prediction of

DES. The learning diagnoser is obtained from the standard

diagnoser.

5. STANDARD DIAGNOSER

A standard diagnoser denoted DG must be able to detect and

isolates faults and failures (Sampath et al., 1995), or to de-

tect critical situations in crisis management. A fault implies

a certain level of degradation of performance and a failure

on the other hand denotes a complete operational breakdown

of equipment or the process (Yunxia, 2003). A standard di-

agnoser is a FSA built for to detect and isolates faults and

failures of G. Let G = (X ,Σ,Y,ϕ,x0) be the discrete event

model for the dynamic system that we want supervise. The

set Y is the output of system G. The standard diagnoser that

we use for discrete event dynamic systems is a FSA that takes

the output sequence ∆G = y1y2 · · · of system G as its input as

shown in figure 4, with λi the condition functioning of the

system.

Plant +
Controller

(DES)
(DES)

Diagnosery1y2 · · ·yk

output

sequence

λ1λ2 · · ·λk

Estimates of the
system’s condition

Figure 4. System and Supervision pattern

The standard diagnoser DG of G is defined as DG =
(Z,Y,Ω,ζ ,z0), with Z is the set of standard diagnoser state, Y

is the set of standard diagnoser input, Ω is the set of standard

diagnoser output, ζ is the standard diagnoser state transition

function, the relation ζ has type Z×Y → Z, z0 ∈ Z is the start

state of the standard diagnoser.

The diagnoser state space Z is the resulting subset of 2X×Ω

composed of the state of the diagnoser that are reachable from

z0 under ζ . The initial state z0 of the diagnoser is defined by

z0 = (x0,λ0). Assume the system G is normal to start, then

λ0 = N. State z ∈ Z is given by

z = {(x1,λ1),(x2,λ2), · · · ,(xn−1,λn−1),(xn,λn)},

where xi ∈ X and λi ∈Ω, for all i ∈ {1, · · · ,n}. In the follow-

ing, |z|= 1.

Basing on the output sequence ∆G = y1y2 · · ·yk of the sys-

tem G, a state zk = (xk,λk) ∈ Z is determined to which xk

may belong at the time that yk was generated. For the di-

agnoser, the estimate of the system’s condition from x1 will

be LP(x1,λk,∆G) such that (x1,λ1) ∈ ζ (xk,λk), with z1 =
(x1,λ1) and zk = (xk,λk).

The diagnoser state transition is defined by

zk+1 = ζ (xk,yk+1) with zk = (xk,λk) and yk+1 ∈ Y . In the

following, we write the diagnoser state zk = (xk,λk) as zk =
(xz,k,λk). The standard diagnoser presented further above is

shown in figure 5. Here, the pattern that has to supervise

is having twice y5 in the output sequence during the crisis

management. We remind that y1,y2 · · · ∈ Y are outputs of the

system G and inputs for the diagnoser DG.

5
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Output
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Figure 5. Standard diagnoser of the critical behavior in crisis
management.

We address the problem of supervision pattern of a Discrete

Event Dynamic System (DEDS). Let H be a bounded set

of finite-length strings over Σ. The pattern can be define as a

bounded H. The definition of the language that should be rec-

ognized by the supervision pattern depend the problem stud-

ied. In this paper, the critical situation (behavior) during the

crisis management is detected if and only if.





LDG
(xz,1) = {TDG

| TDG
∈ Y ∗ and ∆DG

∈ ζ2(xz,1,TDG
)},

such that, it exists a language L ∈ Σ∗ defined by

L = {TG ∈ Σ∗ | TDG
∈ ϕ2(x1,TG} and f (L) = true,

f (L) is a condition to define.

In this paper, the condition is given as





f (L) = |Po(L)| ≥ C,

Po : Σ∗ −→ H∗, H ⊆ Σ,

C = Criteria,here C is a positive number,

with Po is the projection of strings, TDG
= y1y1 · · · , and ϕ2

is the extension of ϕ of G. For the behavior that we want

to supervise here, we have H = {t6} and the Criteria C = 2.

Until now, only the occurrence of t6 brings G in the state x5

as shown in figure 3.

The supervision pattern shown in figure 6 recognizes the lan-

guage LDG
(xz,1) if and only if the condition |Po(L)| ≥ 2 is

verified.

The trajectory LDG
(xz,k) is used to predict the evolution of

the situation during the crisis management. The prediction,

|Po(L)|= 0

|Po(L)|= 1

|Po(L)|= 1 |Po(L)| ≥ 2

|Po(L)|= 2
XN XNd

XF

Figure 6. New supervision pattern for the critical situation in
crisis management.

in general, is the process of making a decision about a fu-

ture result or evolution of a situation. In the next section, we

introduce the problem of prediction of discrete event system.

6. THE PREDICTION OF DEDS

The prediction of a trajectory (or equivalently, sequence) of a

dynamic system behavior is defined in the context of formal

language.

Let LDG
(xz,1) denote the set of all trajectory that orig-

inate from the start state diagnoser z1 = (xz,1,λ1), and

K (LDG
(xz,1,yα)) the trajectory ends with yα ∈ Y .

K (LDG
(xz,1,yα)) = {β ∈ Y ∗ such that β = y1 · · ·ynyα}.

Let ζ1 and ζ2 be the two projections of ζ of diagnoser DG,

with ζ1 is given by

ζ1(xz,k−1,yk) = {xz,k | ∃ λ such that (xz,k,λ )∈ ζ (xz,k−1,yk)},

with λ = LP(xz,1,λk,β ) ∈ Ω if yα = yk and the state zk =
(xz,k,λ )⊆ Z is the state estimate of DG at time k,

and ζ2 is defined by

ζ2(xz,k−1,yk) = {λ | ∃ xz,k ∈ zk such that zk ∈ ζ (xz,k−1,yk)}.

Let ψ(x) be the function giving the state immediately after

the state x. This function is defined as

ψ(x) = {x′ | ∃ y ∈ Y such that x′ ∈ ζ1(x,y)}.

Roughly speaking, a diagnoser state is predictable if it is al-

ways possible to detect the future diagnoser state, strictly be-

fore to arrive in this state. In this paper, we base only on the

output sequence of DEDS model of system G to predict the

future state or evolution. The prediction of the future diag-

noser state at time k, when xz,k is generated, is given by

x̂z,k+1 = ψ(xz,k)∩ζ1(xz,k,yk+1),

with yk+1 ∈ Y and yk+1 is the input of DG.

The predicted state of the diagnoser DG is :

ẑk+1 = (x̂z,k+1,yk+1).

Thus, the prediction of the trajectory K̂ (LDG
(xz,1,yk+1)) is

the form: K̂ (LDG
(xz,1,yk+1)) = {β̂ = y1 · · ·ykyk+1}.

The prediction of the system’s condition is the propagation of

the label λk+1 over β̂ , defined by LP(xz,1,λk+1, β̂ ). Finally

the diagnosis state predicted from xz,1 is the form

6
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ẑk+1 = (x̂k+1,LP(xz,1,λk+1, β̂ ), xk 7−→ x̂k+1.

For instance, suppose at time k the output sequence ∆G =
y1y3 is observed, then the diagnoser state is xz,k = xz,3 and the

system’s condition from xz,1 is LP(xz,1,λ3,y1y3) = N.

When the system is in the state x3 in figure 3, and if the next

output symbol yk+1 is anything other than y4, y5, y7, we get

ψ(xz,3)∩ζ1(xz,3,yk+1) = /0,

that means the observation generated after y3 is inconsis-

tent with the model dynamic and the diagnoser cannot pro-

ceed. The currant diagnoser state xz,k+1 is different to diag-

noser state x̂z,k+1 predicted before. Basing in the language

LG(x1) = TG, in particular the output sequence ∆G, we deter-

mine the state candidate.

When the output sequence is inconsistent with the model of

the system G, then we have to revise the model of G by adding

to its new transition that we believe are missing in the nominal

model. This situation is not interpreted as a faulty situation,

because we did not add new states. All the normal and fault

modes are known and we add only the messing transitions.

Adding new transitions in Σ of G is called learning diagnoser.

In the next section we detail the construction of a learning

diagnoser.

7. LEARNING DIAGNOSER

A learning diagnoser is a standard diagnosis that tolerant of

missing transitions (information) about the system to be diag-

nosed. The learning diagnosis must be able to learn the true

model of the system G, when missing information about the

system are presented.

Let tnew be a new event detected and not found in Σ of system

G. The new set of input events of G is given by Σnew = Σ∪

{tnew}. A transition xd
tnew−→ xa is ordered pair of state denoting

a transition from the state xd to the state xa. Let ϕ ′ be the

extend function transition of ϕ of the system G such that

ϕ ′1(x, t j) =

{
xa if x = xd and t j = tnew

ϕ1(x, t j) otherwise

Let be a dynamic model G′ of G defines as G′ =
extend(G,Π) = (X ,Σ∪Π,Y,ϕ ′,x0). And G′ is called the ex-

tension of G by Π, with Π is the set containing all the new

transitions founded. The set transition Π is empty, if the

model G of the system is consistent with the output sequence.

For instance in figure 2, when an accident happen, the infor-

mation center is going to send data and actions to the emer-

gency department. All the information are sent in 5 minutes,

but with a wrong weather condition. For example, if the in-

formation center sends a temperature of 30◦C in winter (Eu-

ropa). Then the system is going to detect the temperature

30◦C in winter in Europa is wrong. That mean the first team

can not go before the correct temperature. During this wait,

the first team loses time (waste of time) that mean in the di-

agram 3, the system is in the state x5. The transition from

the state x4 to the state x5 is a new transition for the system

G. The resulting diagnoser, including the new transition, is

shown in figure 7, then ψ(xz,4) = {xz,6,xz,5}.

When the model of G is inconsistent with the output se-

quence, the subset H for the supervision pattern may be up-

dated. In this paper, the critical situation that we want super-

vise is going twice in the state x5, then with the new tran-

sition tnew, we can go to the x5 (event t6 or tnew occurs).

Then the new subset for the supervision pattern is define by

H = Hupdate = {t6, tnew}. The critical pattern of behavior in

crisis management is detected if and only if





LDG
(xz,1) = {TDG

| TDG
∈ Y ∗ & ∆DG

∈ ζ2(xz,1,TDG
)}

such that it exist a language L defined by

L = {TG ∈ Σ∗ such that TDG
∈ ϕ2(x1,TG} and |Po(L)| ≥ C

Pnew
o : Σ∗new −→ H∗update, Π⊇ Hupdate = H ∪{tnew}

C = Criteria and in figure 6 Po = Pnew
o .

Pnew
o : Σ∗new −→ H∗update is the new definition of Po and

Criteria=2. The fact to update the bounded set H ⊆ Σ, we

obtain a learning supervision pattern (see figure 6).

y1

y2 y3

y4y5

y6

y7

y8

xz,1

xz,2 xz,3

xz,4xz,5

xz,6

xz,7

xz,8

D1

Nd ,F N N

NN

N

NN

Output

zk

yk

xz,k

λk

tnew

Figure 7. Learning diagnoser of the critical behavior in crisis
management.

The diagnoser, as a Finite State Automaton, can be automat-

ically translated into computer code. For example, the algo-

rithm for a part of diagnoser 7, is given by

7
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Algorithm 1 D1

Require: D1 : z = (xz,k,N) and y
while y == y1 do

read y
z1← (xz,k,N)

end while
if y==y2 then

go to D2

else if y == y3 then
go to D3

else if y == y6 then
go to D6

else if y == y8 then
go to D8

else
go to inconsistency

end if

8. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a representation of the crisis man-

agement as a set of couple of states and events. A learning di-

agnoser and prediction approaches are proposed and applied

onto crisis management. Also, a method of adaptive supervi-

sion pattern is proposed in this paper.

Future work will also focus to introduction of the notion of

the probability and to integrate time information onto the new

transitions detected.
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