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ABSTRACT 

Detection of unexpected events (e.g. anomalies and faults) 

from monitoring data is very challenging in machine health 

assessment. Hence, abrupt or incipient fault detection from 

the monitoring data is very crucial to increase asset safety, 

availability and reliability. This paper presents a generic 

methodology for abrupt and incipient fault detection and 

feature fusion for health assessment of complex systems. 

Proposed methodology consists of feature extraction, feature 

fusion, segmentation and fault detection steps. First of all, 

different features are extracted using descriptive statistics. 

Secondly, based on linearly weighted data fusion algorithm, 

extracted features are combined to get the generic and 

representative feature. Afterward, combined feature is 

divided into homogeneous segments by sliding window 

segmentation algorithm. Finally, each segment is further 

evaluated by coefficient of variability which is used in 

inferential statistics, to evaluate health state changes that 

indicate asset faults. To illustrate its effectiveness, the 

methodology is implemented on point machine and Li-ion 

battery monitoring data to detect abrupt and incipient faults. 

The results show that proposed methodology can be 

effectively used in fault detection for asset monitoring. 

1. INTRODUCTION 

System performance degradation can be expressed as a 

combination of changes in health state transitions that can 

lead the system to complete failure. Diagnostics, which is one 

of the important tasks of Prognostics and Health Management 

(PHM) discipline, is defined as a determination of faults’ or 

failures’ nature by examining observed symptoms from the 

condition monitoring (CM) data (ISO 13372:2012 n.d.). 

Diagnostics enables to detect faults, isolate and identify 

failure modes from the CM data by means of classification 

and clustering tools. One of the challenging steps in asset 

diagnostics is how to detect faults by assessing a system 

health state transitions (e.g. from healthy to faulty) that can 

change while system degrades. Fault (e.g. incipient or abrupt) 

detection is known as anomaly detection in system behavior 

by analyzing the CM data.  

Wu et al. (2015) proposed a fault information residual 

estimation methodology to detect incipient faults in high-

speed train suspension system. Authors validated their fault 

detection methodology on simulated faulty signals. A bearing 

diagnostics was studied in (Pennacchi et al., 2013), to detect 

bearing faults based on spectral kurtosis algorithm using 

simulated vibration signals. In (Zhang, Tan, & Lin 2016), 

gearbox body crack fault detection was studied using 

vibration signals collected in different train speeds. A 

frequency features were extracted from vibration signals 

using low-pass filtering technique to detect faults. Zhao and 

Kinnaert  (2009) studied fault detection using well-known 

CUSUM (Taylor 2006) statistical change-point detection tool 

in fault detection scheme characterization. The main 

objective was to detect abrupt faults for DC motors using 

simulated time series and to present validated analytical 

results on fault detection scheme improvement.  Bin Shams, 

Budman, and Duever (2011) proposed fault diagnostics 

methodology for chemical plants based on CUSUM 

algorithm combined with principal component analysis 

(PCA) tool using simulated data. The proposed methodology 
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was successfully validated in fault detection, isolation, and 

diagnostics of chemical plants. D’Angelo et al. (2011) 

proposed a methodology for incipient fault detection problem 

based on fuzzy clustering and Bayesian change detection in 

induction machine stator-winding and was successfully 

validated on the simulated time series for fault detection.  

This paper presents a generic methodology that can detect 

abrupt and incipient faults including a feature fusion for asset 

monitoring, which was not applied in the literature. The term 

generic refers to the applicability aspect of the proposed 

approach for both abrupt and incipient fault types. In the first 

step, different statistical features are extracted using 

descriptive statistics tools. Secondly, based on linearly-

weighted data fusion algorithm, extracted features are 

combined to get the unique and representative feature, with 

an intention of enhancing information content about the 

system degradation. Finally, using combined feature, 

segmentation based subsequence time series analysis is 

performed to detect and extract health state transitions 

indicating anomalies. The fused feature is divided into 

different time windows using sliding-window time series 

segmentation tool (Keogh et al. 2003) and characteristics of 

each segment is analyzed separately by means of inferential 

statistics based on coefficient of variations (CV) (Bąkowski, 

Radziszewski, & Žmindak 2017) to detect faults. The results 

show that proposed methodology can be effectively used to 

detect faults from degradation signal after feature fusion for 

the purpose of asset diagnostics. The methodology is 

implemented on point machines to detect abrupt faults and on 

Li-ion batteries to detect incipient faults using extracted 

features.  

The paper is organized as follows: In Section 2, the proposed 

methodology steps are explained in detail. Section 3 presents 

data collection procedure and experimental rig setup for two 

case studies. The results of proposed methodology are 

presented in Section 4. Section 5 concludes the paper.  

2. METHODOLOGY 

In this section, feature extraction and normalization, fusion 

and fault detection by segmentation will be explained in 

detail.  

2.1. Feature extraction and normalization 

Feature extraction is known as extracting useful and 

important information from raw data that indicates health 

state transitions in system degradation. In this paper time-

domain based features such as, root-mean-square (rms), 

kurtosis, skewness and crest factor (crfactor) are extracted 

and used to analyze point machine and battery degradations 

for fault detection. Interested readers can find detailed 

information about data processing and feature extraction 

techniques in this (Jardine, Lin, & Banjevic 2006) review 

paper.  

Furthermore, since there are different statistical features with 

different degradation behavior (e.g. increasing or decreasing) 

in different scales, they should be properly normalized before 

fusion. It’s important to note that, all extracted features have 

a valuable information about the physical health state of the 

component under consideration. Figure 6 and Figure 7,  show 

extracted features from point machine and Li-ion battery 

degradation. An example for the features with different 

scaling and degradation behavior can be shown as kurtosis 

and skewness features for the both case studies. Therefore, 

before data fusion, features are put into standard scale and 

form by using the equations given below. Two different 

functions are used to normalize the features, equation (1) for 

the features with decreasing degradation and equation (2) for 

the features with increasing degradation. 

 𝑁𝑓𝑖,𝑡 =
𝑓𝑖,𝑡

max(𝑓𝑖,𝑡)
;   

 
 (1) 

 𝑁𝑓𝑖,𝑡 is normalized 𝑖th feature data point at time index 𝑡 (𝑡 =
1 … 𝑇, 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑙𝑒𝑛𝑔𝑡ℎ). 

 𝑁𝑓𝑖,𝑡 =
min (𝑓𝑖,𝑡)

𝑓𝑖,𝑡
;    (2) 

After normalization process, all features have the same 

standard degradation behavior. 

2.2. Feature fusion 

Feature fusion is the process of feature combination to 

construct generic feature to enhance information content 

about the system degradation. It is very difficult to say that a 

single feature can perfectly represent the system degradation.  

Thus, it is important to combine different features to 

construct generic feature that preserves useful information 

from all features for better system diagnostics purposes. 

Linearly weighted average (Williard et al. 2013) which is 

most widely used data fusion approach in literature, is used 

in this study. The linearly weighted feature fusion is given in 

equation (3). 

𝐹𝑡+1 =
∑ 𝑤𝑖,𝑡𝑓𝑖,𝑡+1

𝑁
𝑖=1

∑ 𝑤𝑖,𝑡+1
𝑁
𝑖=1

;  𝐹1 =
𝑓𝑖,1

𝑁
   (3) 

𝐹𝑡 is the fused feature at time instant 𝑡 (𝑡 = 1 … 𝑇), 𝑇 is the 

length of feature 𝑓𝑖 , where  ∀𝑖 = 1 … 𝑁 . 𝑁  represents the 

total number of features in each group. In the beginning, all 

features are initialized with the same weight value as shown 

in equation (4). 

𝑤𝑖,1 =
1

𝑁
, ∀𝑖 = 1, … 𝑁   (4) 

Where 𝑤𝑖,1  is the weight value for ∀𝑓  at time 𝑡 = 1. The 

weight values are updated in each iteration as shown in 

equation (5). As seen from the equation (5), the updating 

procedure is based on the estimation error (1 − |𝐹𝑡 − 𝑓𝑖,𝑡|). 

Doing so, features’ divergence is minimized into its 

minimum level in fusion process.  

𝑤𝑖,𝑡+1 = (𝑤𝑖,𝑡 + (1 − |𝐹𝑡 − 𝑓𝑖,𝑡|))   (5) 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017 

 

3 

After the data fusion step, combined generic feature is 

segmented to detect a fault(s).  

2.3. Fault detection  

Time series segmentation has been applied in many research 

fields maturely, such as in earth science (Verbesselt et al. 

2010), security (Albertetti et al. 2016) and machine fault 

detection (Liu et al. 2014) as well. The segmentation process 

is defined as decomposition of time series into homogeneous 

subsequences or groups based with similar characteristics. In 

this paper, sliding window time series segmentation 

technique is used due to its implementation simplicity and 

good performance dealing with noisy data. The sliding 

window (SW) technique analyzes the data points within the 

window by fitting a linear or polynomial model to group the 

subsequences. A model estimation error is compared with a 

predefined threshold to split the series. If the error value is 

smaller than the threshold, then the new data points are added 

to the current window for analysis. If estimation error is 

bigger than the threshold, then the current segmentation is 

stopped and the same process starts from the next data point 

searching for a new segment. A pseudocode for the sliding 

window algorithm is given in Table 1.  

Since time series segmentation decomposes the series into 

homogenous subsequences, the segments can be used to 

detect health state transitions indicating anomalies in asset 

monitoring. The SW segmentation can produce multiple or 

even single segment depending on the threshold (error) value. 

A coefficient of variation (CV) (Bąkowski, Radziszewski, & 

Žmindak 2017), which is inferential statistics tool, is used in 

this paper for segment evaluation to detect a fault(s). One of 

the advantages of CV is, it has no dimension and can be used 

to compare data sets with different measures and different 

means. The CV is used to infer statistical information by 

measuring the dispersion of data points within a segment 

around the mean and can be used to compare the level of 

variation between two segments, even if the mean values are 

different. The CV is the ratio of the standard deviation, 

(equation (6)) to the mean (equation (7)), as given in equation 

(8). 

 
𝜎 = √

1

𝑀−1
∑ |𝑆𝑘,𝑗 − 𝜇| ; ∀𝑗 = 1 … 𝑀𝑀

𝑗=1    (6) 

where 𝑀  is the number of data points in segment 𝑆𝑘  (𝑘 =
1 … 𝐾 ) . 𝐾  is the total number of segments after SW 

algorithm. 

 

𝜇 =
1

𝑀
∑ 𝑆𝑘,𝑗 , ∀𝑘 = 1 … 𝐾𝑀

𝑗=1    (7) 

 𝐶𝑉 = (𝜎
𝜇⁄ ) × 100   (8) 

By extracting the CV of decomposed features, one can 

determine an optimum number of segments by analyzing the 

CV results. If CV value for two adjacent segments is closer, 

then these segments can be mentioned as one segment having 

a similar degree of variation and different otherwise. The 

fault(s) or health state change(s), is then detected by 

extracting segment boundaries (data points) as a final step 

after segment evaluation. Flowchart for proposed 

methodology is given in Figure 1. 

Table 1. Sliding Window time series segmentation. 
segmentation (data, max_error): 

anchor=1; 

while not segmented data 

% w: window size 

w=2;  

% err: estimated model error 

 if err (data(anchor:anchor+w))<max_error 

   w=w+1;  

 else 

%convert into segment 

   data_segments <- data (anchor: 

anchor+(w-1)); 

%update anchor with new data point 

   anchor= anchor+w; 

 end 

end 

 

𝐹𝑡 =
∑ 𝑤𝑖,𝑡𝑓𝑖,𝑡

𝑁
𝑖=1

∑ 𝑤𝑖,𝑡
𝑁
𝑖=1

;  (3) 

Physical System 

Feature Fusion 

Feature Segmentation 

Fault Detection by 
Segment evaluation  

Feature Extraction &  
Normalization 

𝑁𝑓
𝑖,𝑡

=
𝑓𝑖,𝑡

max(𝑓𝑖,𝑡)
;  (1) 

𝑁𝑓
𝑖,𝑡

=
m𝑖𝑛(𝑓𝑖,𝑡)

𝑓𝑖,𝑡

;  (2) 

Table 1.  
Sliding Window Algorithm 

Pseudocode 

𝐶𝑉 = (𝜎
𝜇⁄ ) × 100; (8) 

Figure 1. Fault detection methodology 

flowchart. 

1 

2 

3 

4 
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3. ILLUSTRATIVE CASE STUDIES 

This section explains experimental rig setup and data 

collection procedures for point machine and Li-ion battery 

condition monitoring. 

3.1. Point machine monitoring 

Point machines are used to manage railway turnouts by 

changing train tracks at a distance. An electro-mechanical 

point machine which is investigated in this current work for 

abrupt fault detection is shown in Figure 2. 

The point machine diagnostics is a very challenging task due 

to its complex structure, working conditions and inaccessible 

failure modes that occur in a long period of time (Gebraeel, 

Elwany, & Pan 2009). Thus, sliding-chair failure, which is 

the most frequently seen failure mode, is artificially 

generated and collected from the real point machine system 

(see Figure 2). The sliding-chairs are the metal plates 

installed on the turnout system, that support to drive the rail 

blades from one side to another. Initially, there are totally 12 

sliding-chair plates in a healthy state (lubricated) on the 

turnout system. The farthest 10th, 11th and 12th plates from the 

point machine was contaminated manually to simulate the 

first faulty state. Contaminating the 9th farthest plate in the 

second step generates the second faulty state. Contamination 

process continued by following the same procedure until all 

plates were fully contaminated to generate the sliding-chair 

failure. Finally, we obtained 10 different health states (10 

data samples in each state) of sliding-chair degradation. DC 

motor current time series, which is depicted in Figure 3, were 

used in this paper due to its good failure representation 

property (Ardakani et al. 2012; Camci et al. 2016). In Figure 

3, ‘health state-1’ indicates the healthy state before 

contamination process and the rest of them indicate faulty 

states for sliding-chair degradation. The current curves are 

further used to extract statistical features to detect the abrupt 

fault(s) where the machine stepped into the faulty state. 

 

 
Figure 2. Electro-mechanical point machine. 

 

 
Figure 3. Sliding-chair degradation. 

3.2. Li-ion battery health monitoring 

Li-ion batteries have been used to store the energy in different 

applications today, being as one of the most critical 

components of the complex systems. Battery state-of-health 

(SoH) estimation (Camci et al. 2015), feature 

evaluation/selection (Atamuradov and Camci 2016; Williard 

et al. 2013) and prognostics (Wang, Miao, & Pecht 2013) 

have been widely studied in the literature for battery health 

management. The LiFePO4 type battery with the capacity 

0.6Ah and nominal voltage of 3.2V is used in this study. The 

battery was aged using the accelerated aging procedure in the 

climatic chamber under constant 45 °C in the laboratory. The 

accelerated aging procedure was stopped when the battery 

reached to SoH value of 80%. This value is accepted as the 

complete failure threshold for the Li-ion batteries (Wang, 

Miao, & Pecht 2013). In each 10 cycles, the battery SoH was 

checked to see if the battery reached its threshold value. One 

(1) cycle includes completely charging and discharging steps. 

Experimental rig for battery health monitoring is shown in 

Figure 4. The battery testing system logged different 

measurements during the aging process. Raw discharge 

voltage curves were further processed in feature extraction 

step to analyze and detect an incipient fault(s). As Li-ion 

battery ages, it causes the discharging process to accelerate. 

 
Figure 4. Battery aging experimental rig. 
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Figure 5. Li-ion discharge voltage curves indicating battery 

aging. 

The discharge acceleration process can be seen from the 

discharge voltage curve degradations (from right to left) 

which are shown in Figure 5 indicating the battery aging. As 

the battery degrades, discharge voltage curve length 

decreases by time. 

4. RESULTS AND DISCUSSIONS 

The point machine DC current curves and Li-ion discharge 

voltage measurements went through feature extraction step to 

extract the descriptive statistics as shown in Figure 6 and 

Figure 7. Since the ‘skewness’ has negative values, it was 

converted into positive values by taking the absolutes before 

normalization step for both case studies. The features rms, 

kurtosis, and skewness were normalized using equation (1) 

and crest factor was normalized by using the equation (2). 

The normalized features are displayed in Figure 8. In battery 

health assessment, normalized feature should have the 

numbering scale between 1 (100% SoH) and 0.80 (80% SoH 

is battery failure threshold). But the features rms and a crest 

factor in Figure 8 (b), did not behave in this pattern with the 

scaling between 1 and 0.98, and these normalized features 

could lead to wrong SoH estimation in battery health 

assessment. Due to this inconsistency, rms and crest factor 

features were excluded from feature fusion process in 

incipient fault detection. Using linearly weighted feature 

fusion algorithm (equation (3)), point machine and Li-ion 

battery normalized features were combined to get a generic 

feature that preserves a global information about the 

component degradation. Smoothing was conducted to filter 

the noise from combined features. The feature fusion results 

are shown in Figure 9. Furthermore, feature segmentation 

was applied on smoothed fused feature, using SW 

segmentation technique to decompose the given feature into 

homogenous subsequences to extract the within health state 

changes. Since sliding-chair degradation was simulated in 10 

different health states, the combined feature was segmented 

 
Figure 6. Extracted features from point machine DC current. 

 
Figure 7. Extracted features from battery discharge voltage. 

 

into 10 different segments by optimizing the error threshold 

manually. As for the case of battery degradation, it’s hard to 

express segmentation process with any physical meaning 

during the accelerated aging procedure. Nevertheless, 

combined feature indicating battery health state was divided 

into 4 segments. The CV and the mean statistics were 

extracted for point machine and battery which is given in 

Figure 11 and Figure 12. The figures contain not only the CV 

values but the segment means to show the difference and the 

usefulness of dispersion statistics. As seen from the Figure 

11(b), within segment mean values do not reflect any abrupt 

health state changes while sliding-chair degrades. 

Interpreting the CV values depicted in Figure 11(b), show 

that dispersion within the segments displays an instant 

change after the 3rd segment, indicating an abrupt fault in 

sliding-chair failure propagation. Based on this inferences,  

Battery degradation 
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Figure 8. Normalized features. 

 

first three segments can be assumed as healthy and rest of 

them as faulty segments (or as system failure) for the case of 

sliding-chair degradation. The instant change in battery 

health state is seen perfectly in CV values (Figure 12(a)) 

rather than the mean values. A segment where the fault 

develops incipiently in battery degradation can be defined as 

the 3rd segment (Figure 12(a)). Numerical differences 

between two adjacent segments and their mean value for the 

point machine and battery CV statistics are depicted in Figure 

13. The reason for not plotting the mean differences for point 

machine and battery, was that they did not show any 

significant changes. As seen from the given figures, the 

health state changes can be easily detected from the CV 

differences. The mean values (dashed line in Figure 13) of 

CV differences can be also used as the threshold indicating 

the fault in the system. Consequently, an inferential CV 

statistic can thus be used for fault detection and segment 

evaluation for point machine and battery health state 

monitoring effectively. 

 

 

 

 

 

 

 

 
Figure 9. Fusion results for point machine and battery. 

 

 

 
Figure 10. SW segmentation results. 
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Figure 11. Within segment (a) CV and (b) mean values for 

point machine feature. 

 
Figure 12. Within segment (a) CV and (b) mean values for 

battery feature. 

 

 
Figure 13. (a) point machine CV differences, (b) battery CV 

differences. 

5. CONCLUSION 

In this paper, a generic methodology for detecting incipient 

and abrupt faults was developed and its effectiveness was 

shown on two real case studies. The main achievements of 

this methodology can be concluded as follows: 

 The information content of asset degradation was 

enhanced by means of feature fusion. 

 Time series segmentation was used to decompose 

degradation feature into homogenous groups to be 

analyzed in fault detection. 

 Inferential statistics, which is the coefficient of variation 

(CV), was used to detect faults by analyzing the 

degradation segments. In addition to fault detection, CV 

values can be also used in segment evaluation to get an 

optimum segment number in time series analysis. 

 Proposed fault detection methodology can be used for 

abrupt and incipient fault types. 

Calculation of CV is impossible if the mean value is zero, 

which is accepted as a disadvantage. The CV can give 

reasonable results if the all variables are positive. For the 

future work, this methodology will be extended by 

developing robust feature fusion algorithm next to employing 

frequency-domain, time-frequency domain feature extraction 

and segment evaluation techniques in fault detection for 

machine failure prognostics.  
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