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ABSTRACT 

This study is concerned with the building of an appropriate 

model to estimate failure parameters of an Auxiliary Power 

Unit (APU). Linear and nonlinear models were used in 

order to evaluate which model is more suitable for this 

application. Data for model building and testing were 

obtained by simulating a nonlinear dynamic model of APU 

in Matlab/Simulink for various operating conditions to 

which it may be subjected to and with different levels of 

failure parameter degradation. Linear models were obtained 

by least-squares regression, whereas nonlinear models were 

obtained by training neural networks. The results obtained 

with these two models were compared. As a result, the 

neural network models were found to provide a better 

estimate of the APU failure parameters.  

1. INTRODUCTION 

The aviation business has grown rapidly in the last decade 

and the competition between operators becomes 

increasingly fierce. The development of new technologies to 

reduce costs and maximize operating profit has become the 

goal of the manufacturers in order to produce aircraft with 

competitive advantage. For this purpose, the increase in 

aircraft availability by means of improved maintenance 

techniques has become a key issue.  

Nowadays aircraft maintenance is no longer a procedure 

merely reactive (conducted after the occurrence of a fault). 

Instead, it includes preventive actions (taken to avoid the 

occurrence of faults and based on statistics of mean time to 

failure of components) and tends to include more and more 

predictive actions (Vieira, 2008). In this last case, 

parameters are used to indicate the condition or state in 

which a system is close to the end of its useful life. 

Hence concerns about systems Prognostics and Health 

Management (PHM) have increased among aircraft 

manufacturers. PHM covers the use of various techniques to 

evaluate the degradation state of a system through 

operational data analysis. Health data analysis enables 

optimization of maintenance activities, which reduces 

aircraft operational and maintenance costs and increases 

aircraft availability, therefore increases the operating profit 

of the airline. 

In order to implement PHM in a system it is useful to have 

reasonable and representative amount of measured 

parameters of this system or other systems that are affected 

by it. However, the addition of new sensors could result in 

increasing costs for the manufacturer and add aircraft 

weight. It could also increase maintenance costs, since the 

number of components that might fail and require 

replacement would be higher. 

As the aircraft operate under varying conditions of 

temperature, pressure and load, it is important that the PHM 

of an aviation system takes into account different operating 

conditions to which the system is subjected in order to avoid 

that the effects of variations in operating conditions are 

interpreted as system degradation. 

This paper aims to determine an appropriate method to 

estimate values of failure parameters introduced in a 

nonlinear dynamic model of APU. Due to the simplicity of 

implementation, the linear approach was tried first. Since 

the results obtained from the use of linear regression did not 

get an acceptable accuracy, neural networks implementation 

was chosen in an attempt to get better results. Several levels 

of degradation of failure parameters are considered, as well 

as various operating conditions to which an APU is 

subjected. 
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The remainder of the text is organized as follows. Section 2 

contains a brief description of an APU system, as well as the 

adopted model and the values of operating conditions and 

failure parameters that were used in this study. Section 3 

presents the methods used to estimate failure parameters and 

the methodology adopted. Section 4 discusses the estimation 

results. Concluding remarks are presented in Section 5. 

2. AUXILIARY POWER UNIT 

The aircraft APU is a gas turbine whose main function is to 

assist with starting of the engines. In addition it is capable to 

provide pneumatic power to other systems, as well as 

electrical power through the activation of an electrical 

generator. In principle the APU is intended to operate on the 

ground, but it can be used in an emergency to run the 

generators in flight. 

A typical APU is composed of three main elements which 

are compressor, combustor and turbine. It also has auxiliary 

components: fuel system, bleed system that controls the 

amount of extracted pneumatic power, gearbox and 

electrical generator. Control laws of the APU are performed 

by the Full Authority Digital Engine Control (FADEC) 

(Vianna et al., 2011). An APU schematic diagram is 

presented in Figure 1. 

 

Figure 1. APU schematic diagram. 

In order to provide information to FADEC, the APU has 

several sensors that measure shaft speed, exhaust gas 

temperature (EGT), bleed pressure and fuel flow.  

2.1. APU Model description 

The thermodynamic model of APU used in this work was 

developed in MATLAB/Simulink. The model consists of 

blocks that model the behavior of each physical component 

of a real APU. A schematic representation of this model 

incorporating blocks of three major components, 

compressor, combustor and turbine, plus two others that 

model the dynamic of the shaft and the control system is 

shown in Figure 2. The APU model used in this work is 

owned by Embraer and content rights are owned by the 

supplier. Then details about equations and methods related 

to model construction and faults modeling cannot be shown 

in this paper. 

The three model outputs (EGT, bleed pressure and fuel 

flow) correspond to sensed values of a real system. The 

model has inputs for environmental conditions, temperature 

and pressure, which influence the system behavior. It also 

has an input for bleed flow and, internally to compressor 

block, there is an input for shaft power representing the 

power extracted by the electrical generator. 

 

Figure 2. APU model block diagram. 

In a real APU, the compressor is the unit that provides 

compressed air to the combustor. Its performance is defined 

by parameters such as pressure ratio (ratio between the 

output pressure and inlet pressure), air flow rate and total 

adiabatic efficiency, which represents the degree of 

deviation of the actual compression process in the 

compressor from a reversible adiabatic compression 

process. 

The compressor block of APU model has functions 

implemented using maps obtained from charts similar to 

those shown in Figure 3. These functions take input 

parameters such as ambient pressure, ambient temperature 

and shaft speed to provide torque for the compressor, air 

flow, pressure and temperature at the compressor outlet as 

outputs. 

The functions implemented in the burner block receive the 

values of pressure, temperature and flow rate of the input air 

from the compressor block and the fuel flow rate from the 

controller, and calculate the combustor outlet pressure, 

temperature and flow rate. The fuel-air ratio (FAR) is also 

an output of this block. 

The turbine block has functions based on maps obtained 

from charts similar to those shown in Figure 4. These 

functions take as inputs shaft speed and the corrected value 

of the air flow, and provide as outputs the pressure ratio, the 

torque of the turbine and the exhaust gas temperature. 
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The block that models the control system consists of a PID 

(proportional-integral-derivative) controller which controls 

the shaft speed by measuring the APU fuel flow. The block 

modeling shaft dynamic calculates the resulting shaft 

acceleration. The value of this acceleration, which depends 

on the value of inertia of the shaft, is integrated over time to 

obtain the shaft speed that is the output of this block. 

 

Figure 3. Notional Pressure Ratio Compressor Map (Jones, 

2003). 

 

Figure 4. Notional Pressure Ratio Turbine Map (Jones, 

2003). 

2.2. APU failure parameters 

Since an APU is a complex machine made up of several 

components, various failure modes can occur throughout its 

life cycle. This work intends to estimate the following three 

APU failure parameters: 

1. Excessive bleed; 

2. Compressor efficiency loss; 

3. Turbine efficiency loss. 

The choice of these failure parameters was based on the fact 

that their occurrences are commonplace in real APU 

systems. 

2.3. APU Model data acquisition 

Operating conditions have a direct influence on the outputs 

of the APU model. So they must be taken into account in 

the identification of fault conditions for a satisfactory APU 

health monitoring. Thus, data for implementing the methods 

to estimate the failure parameters were obtained through 

model simulations considering variations in operating 

conditions and in the degradation of failure parameters with 

the values specified in Table 1 and Table 2. These values 

are based on authors’ field experience and they cover typical 

ranges. 

  

To acquire data for estimation model building and testing, 

three situations were considered. In all situations the 

operating conditions assume all the possible values from 

Table 1. These are the situations: 

1. The only introduced failure parameter is compressor 

efficiency loss, which assumes all the possible values of 

Table 2. Other failure parameters are zero; 

Table 2. Values of failure parameters degradation. 

 

Failure Parameter Values 

Excessive Bleed (kg/s) 
0, 0.189, 0.378 and 

0.605 

Compressor efficiency 

loss (%) 

0, 1.4, 2.8, 4.2, 5.6, 

7, 8.4, 9.8, 11.2, 

12.6 and 14 

Turbine efficiency loss 

(%) 

0, 0.6, 1.2, 1.8, 2.4, 

3, 3.6, 4.2, 4.8, 5.4 

and 6 

 

Table 1. Values of operating conditions. 

 

Operating Condition Values 

Ambient temperature (ºC) 0, 20 and 40 

Ambient pressure (kPa) at 

sea level, 5000ft and 

10000ft 

101.35, 85.81 

and 70.26 

Shaft power required (kJ/s) 
0, 22.37, 44.74 

and 67.11 

Bleed flow extracted (kg/s) 
0, 0.189, 0.378 

and 0.605 
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2. The only introduced failure parameter is turbine 

efficiency loss, which assumes all the possible values of 

Table 2. Other failure parameters are zero; 

3. The only introduced failure parameter is excessive 

bleed, which assumes all the possible values of Table 2. 

Other failure parameters are zero. 

In order to validate the methods, the operating condition 

values were chosen randomly and limited by their minimum 

and maximum values on Table 1. Failure parameters were 

also chosen randomly inside the range described above. For 

example, in situation 1, compressor efficiency loss values 

were chosen randomly between 0 and 14%, and the other 

failure parameters were zero. 

3. METHODOLOGY OF FAILURE PARAMETERS ESTIMATION 

Sections 3.1 and 3.2 describe the methods employed in this 

work to build linear and nonlinear models, respectively. 

Section 3.3 summarizes the methodology for failure 

parameter estimation. 

3.1. Multivariable Linear Regression 

Let   be the total number of observations,   the number of 

explanatory variables (ambient temperature, ambient 

pressure, shaft power required, bleed flow extracted, EGT, 

bleed pressure and fuel flow in this work) and   the number 

of dependent variables (compressor efficiency loss, turbine 

efficiency loss and excessive bleed in this work) in the 

regression procedure. The matrix of explanatory variables  

    (         ,          ; with an extra column of 

unit values to account for the offset term in the regression) 

is denoted by   , the matrix of dependent variables     

(         ,          ) is denoted by  , the matrix of 

linear regression parameters to be estimated    (   
       ,          )  is denoted by   and the matrix of 

values estimated by the method  ̂   (          ,   
       ) is denoted by  ̂. These matrices can be arranged 

in the following format for use in multivariable linear 

regression: 

  [

 ̂   ̂    ̂  

 ̂   ̂    ̂  

    
 ̂   ̂    ̂  

]  [

          

          

    
          

]  

  [

        

        

    
        

]  ̂  [

 ̂   ̂    ̂  

 ̂   ̂    ̂  

    
 ̂   ̂    ̂  

] 

(1) 

By using least-squares, the matrix of linear regression 

parameters to be estimated,  , and the matrix of values 

estimated by the method,  ̂, are obtained from 

             (2) 

 ̂     (3) 

In this work one set of the data simulated by the model as 

described on section 2.3 will be used to obtain     (training 

set) and the other set will be used to estimate failure 

parameters  ̂  (test set). As a measure of estimation 

performance, the mean square error (MSE) between 

estimated and true values will be calculated for the  th 

failure parameter as 

       
∑ (             )

  
   

 
         (4) 

3.2. Neural Networks 

Artificial neural networks (ANNs) have been widely 

investigated for use in fault diagnosis. ANNs are trained to 

map inputs to outputs via nonlinear relationships in an 

architecture which resembles the process performed in the 

brain. Generally, the neural network operates in two phases: 

one learning phase and one operation phase. The purpose of 

the learning phase is to adjust the parameters of the neural 

network which will allow the neural network to function 

properly during the operation phase (Marinai, 2004). 

In this work, Multi Layer Perceptron (MLP) networks with 

sigmoidal activation function are employed (Marinai, 2004). 

The adopted MLP architecture comprises three layers: input 

layer, hidden layer and output layer. Training is 

accomplished by using the well-known backpropagation 

algorithm, as implemented in the Neural Network Toolbox 

of MATLAB (version R2010a). The network inputs and 

outputs were defined as in the linear regression case. 

3.3. Methodology for failure parameters estimation 

The flowchart in Figure 5 summarizes the methodology 

employed in this study. It is worth noting that the data 

resulting from the APU simulations were divided into two 

separate sets for model building and validation purposes. 

 

Figure 5. Methodology for evaluating the performance of 

the estimation methods. 



Annual Conference of the Prognostics and Health Management Society 2013 
 

5 

4. RESULTS 

4.1. Linear Regression 

4.1.1. Situation 1 

The MSE between the values of compressor efficiency loss 

estimated by linear regression and the values that were 

indeed used on simulation was 2.910
4

. The estimation 

results are depicted in the plot of estimated versus true 

values presented in Figure 6. The line in the plot represents 

the optimal result that would be obtained if estimated value 

was equal to true value. 

 

Figure 6. Compressor efficiency loss values from simulation 

versus values estimated by the linear regression model. 

4.1.2. Situation 2 

The MSE for estimation of turbine efficiency loss by the 

Least Squares Method was 6.910
5

. Figure 7 shows the 

plot of the values of simulation against the estimated values. 

 

Figure 7. Turbine efficiency loss values from simulation 

versus values estimated by the linear regression model. 

4.1.3. Situation 3 

The MSE for estimation of excessive bleed by the Least 

Squares Method was 136. Figure 8 shows the plot of the 

values of simulation against the estimated values. 

 

Figure 8. Excessive bleed values from simulation versus 

values estimated by the linear regression model. 

4.2. Neural Networks 

4.2.1. Situation 1 

The MSE calculated for estimation of compressor efficiency 

loss by the neural network was 1.610
5

. Figure 9 shows the 

plot of the values of simulation against the estimated values. 

By comparing Figure 6 with Figure 9 and the MSE values 

obtained by linear regression and the neural network, it is 

possible to notice that the neural network presented better 

performance on estimating compressor efficiency loss 

values. 

 

Figure 9. Compressor efficiency loss values from simulation 

versus values estimated by the neural network model. 
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4.2.2. Situation 2 

The MSE for estimation of turbine efficiency loss by the 

Neural Network is 1.010
7

. Figure 10 shows the plot of the 

values of simulation against the estimated values. 

By comparing Figure 7 with Figure 10 and the MSE values 

obtained by linear regression and the neural network, it is 

possible to notice that the neural network also presented 

better performance on estimating turbine efficiency loss 

values. 

 

Figure 10. Turbine efficiency loss values from simulation 

versus values estimated by the neural network model. 

4.2.3. Situation 3 

The MSE for estimation of excessive bleed by the Neural 

Network was 1.4. Figure 11 shows the plot of the values of 

simulation against the estimated values. 

 

Figure 11. Excessive bleed values from simulation versus 

values estimated by the neural network model. 

 

By comparing Figure 8 with Figure 11 and the MSE values 

obtained by linear regression and the neural network, it is 

possible to notice that the neural network presented better 

performance on estimating excessive bleed values.  

4.3. Results Summary 

The MSE for both methods are summarized on the table 

below: 

 

5. CONCLUSION 

This paper presented the results of an investigation 

involving the use of linear regression and neural networks 

for the estimation of APU failure parameters from operating 

conditions and measurements of EGT, bleed pressure and 

fuel flow. In all cases, the neural network models provided 

considerably better estimation results which indicates that 

there are nonlinearities in the relation among the monitored 

variables that cannot be neglected. 

Future works could be concerned with extensions of this 

investigation to encompass the use of field data. 
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