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ABSTRACT 

The diagnosis of loss of coolant accidents (LOCA) in 

nuclear reactors has attracted a great deal of attention in 

condition monitoring of nuclear power plants (NPPs) 

because the health of cooling system is crucial to the 

stability of the nuclear reactor. Multi-layer perceptron 

(MLP) neural networks have commonly been applied to 

LOCA diagnosis. The data used for training these models 

consists of a number of time-series data sets, each for a 

different break size, with the transient behavior of different 

measurable variables in the coolant system of the reactor 

following a LOCA. It is important to select a suitable 

architecture for the neural network that delivers robust 

results, in that the predicted break size is deemed to be 

accurate even for a break size that is not included in the 

training data sets. The objective of this paper is to present a 

simple method for measuring the robustness of diagnostic 

models for predicting the break size during the loss of 

coolant accidents. A robustness metric is proposed based on 

the leave-one-out approach and the mean squared error 

resulting from a diagnostics model. Using this metric it 

becomes possible to compare the robustness of different 

diagnostic models. Given data obtained from a high fidelity 

simulation of the coolant system of a nuclear reactor, four 

different diagnostic models are obtained and their properties 

compared and discussed. These models include a fully 

connected multi-layer perceptron with one hidden layer, a 

fully connected multi-layer perceptron with two hidden 

layers, a multi-layer perceptron with one hidden layer that is 

pruned using the optimal brain surgeon algorithm, a group 

method of data handling (GMDH) neural network, and an 

adaptive network based fuzzy inference system (ANFIS).  

1. INTRODUCTION 

The reactor coolant system is the key part of NPPs. LOCA 

can result in severe consequences for the plant, 

environment, personnel, and the public in the area around 

the plant. Therefore, to detect and diagnose LOCA, a great 

deal of attention has been paid to the monitoring of coolant 

system. Depending on the severity of the LOCA, it could be 

necessary to take fast and effective actions to protect the 

surrounding environment and public around the site. The 

diagnosis of LOCA in NPPs is often considered as a 

transient identification problem. Artificial neural networks 

(ANNs) are employed in most NPP transient identification 

studies, such as MLP neural network (Moshkbar-

Bakhshayesh & Ghofrani, 2013), GMDH network (Lee, No, 

Na, Ahn, & Park, 2011), and neuro-fuzzy system (da Costa, 

Mol, de Carvalho, & Lapa, 2011). The classical MLP neural 

network has difficulty with generalization when the training 

data is limited (Hassibi, 1993 & Norgaard et al., 2000). 

GMDH is a kind of growing network which is able to 

optimize its structure. Neuro-fuzzy neural networks 

combine neural network type architectures with fuzzy logic. 

This type of network has been applied to condition 

monitoring systems because of its fast learning, on-line 

adaptability, and low computational requirements. It is 

important to select an optimal architecture from many 

choices for the neural network that delivers robust results. 

To achieve this objective, different attempts have been made 

to automate the architecture selection. One common strategy 

is to start with a fully connected network architecture which, 

in principle, is large enough to describe the system, then the 

weights are eliminated one at a time until the optimal 

architecture has been reached, e.g. optimal brain surgeon 

algorithm (OBS). Another strategy stars with a small 

Xiange Tian et al. This is an open-access article distributed under the 
terms of the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction in any 

medium, provided the original author and source are credited. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017 

2 

network architecture and then gradually increase it, e.g. 

GMDH network. 

To compare the robustness of diagnostic models for 

predicting the break size during LOCA, this paper presents a 

robustness metric inspired by the leave-one-out approach. 

2. METHODOLOGY 

This section introduces the working principles of the neural 

networks investigated in this paper.  

2.1. Multi-layer perceptron 

MLP is a kind of feed-forward artificial neural network 

where a large number of processing elements are 

interconnected in a directed graph to create a functional 

mapping from the input data space to the output target space 

after training. A basic MLP contains three layers (input 

layer, hidden layer, and output layer) as shown in Figure 1. 

With the exception of the input layer, all nodes in other 

layers contain either linear or non-linear activation 

functions. 

Input Layer Hidden Layer Output Layer

x1

x2

x3

xn

y1

y2

ym

ŷ

Output

...

...
...

 

Figure 1. One hidden layer MLP 

MLP is normally trained through the widely used 

backpropagation algorithm. In the backpropagation 

algorithm, the network is provided with inputs and 

corresponding target outputs. All the synaptic weights of the 

network are initialized randomly and adjusted in order to 

minimize a certain objective function, which depends on 

estimation error in this case. The input-output equation of a 

neuron in the hidden layer is [37]: 

1

n

k k kj j k
j

y w x 


 
    

 

   (1) 

where k  is the activation function of the hidden neuron 

and is normally taken as a non-linear function, such as a 

sigmoid function, ky  is the output of the kth hidden neuron, 

k  is the bias value of the kth hidden neuron, and kjw  is the 

synaptic weight value from input jx  to the hidden neuron 

k . The output of the neural network is given by: 

1

m

o ok k o
k

y w y 


 
   

 
   (2) 

where o  is the activation function of the output neuron 

and is normally taken as a linear function, y  is the final 

output of the MLP network, o  is the bias value of the 

output neuron o , and okw  is the synaptic weight value 

from the hidden neuron k  to the output neuron o .  

In this paper, the Levenberg-Marquardt algorithm is used 

for training the neural network because it is the fastest 

method for training moderate-sized feed-forward neural 

networks (up to several hundred weights). The application 

of Levenberg-Marquardt to neural network training is 

described in (Hagan & Menhaj, 1994). According to the 

Levenberg-Marquardt algorithm, the neural network 

training weights are adjusted with: 

T 1 T( 1) ( ) ( ( ) ( ) ) ( ) ( )w n w n n n n e n    J J I J  (3) 

Here, J  is Jacobian matrix, which defined as Eq. (4), ( )e n  

is the error between the output and target, and   is the step 

size.  
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J   (4) 

2.2. Optimal brain surgeon algorithm 

In neural networks, the regularization problem is often cast 

as minimizing the number of connection weights. Without 

such weight elimination overfitting problems and thus poor 

generalization will result. Conversely, if there are too few 

weights, the network might not be able to learn the training 

data. For fully connected networks, the architecture 

selection problem is reduced to choosing a number of 

hidden units. The simplest procedure for determination of an 

adequate number of hidden units is to increase their number 

gradually while evaluating the test error. When a number of 

hidden units has been reached above which the gain in 

generalization is insignificant, the network is accepted. If 

the training set is very limited, it is important that the 

network architecture is chosen wisely in that it should 

contain only the most essential weights. The architecture 

selection is in this case much harder since it will also be 
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difficult to set aside a data set for test purposes. The optimal 

brain surgeon procedure proposed by Hassibi et al. (Hassibi, 

1993 & Norgaard et al., 2000) can be described by 

following steps: 

1. Train a reasonably large network to minimum error 

2. Compute the Hessian matrix and invert it, 1
H   

3. Find the q  that gives the smallest saliency

2 1/ (2[ ] )p q qqL w  H . If this candidate error increase is 

lower than the error function used in training process, then 

the q th weight should be deleted, and continue with step 4 

of this algorithm; otherwise go to step 5. 

4. Use the q  from step 3 to update all weights using

1 1/ [ ]q q qqw w e   H H . Go to step 2.  

5. No more weights can be deleted without large increase in 

the error function of training process. At this point it may be 

desirable to retrain the network. 

2.3. Group method of data handling neural network 

GMDH (Lu & Upadhyaya, 2005) takes advantage of the 

self-organized structure to generate a detailed system model 

in a systematic manner. This overcomes the tedious work of 

network construction, and allows focusing on the 

organization of effective model inputs based on physical 

and statistical considerations. 

GMDH algorithms consider various component subsets of 

the base function called partial models. Coefficients of these 

models are estimated by the least squares method. GMDH 

algorithms gradually increase the number of partial model 

components and find a model structure with optimal 

complexity. 

The algorithm is based on a multilayer structure using the 

general form, which is referred to as the Kolmogorov-Gabor 

polynomial (Volterra functional series). 

0
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1 1 1
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  

  

    

  

   (5) 

where the external input vector is represented by 

1 2( , , )X x x , y  is the corresponding output value, and 

a  is the vector of weights and coefficients. The polynomial 

equation represents a full mathematical description. The 

whole system of equations can be represented using a matrix 

form as shown below: 

( )y f X      (6) 

where 

11 12 1 1

21 22 2 2

1 2 1

,

M
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   
    
   
   
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 (7) 

It can be replaced by a system of partial polynomial for the 

sake of simplicity as shown below: 

2 2
0 1 2 3 4 5i j i j i jy a a x a x a x x a x a x       (8) 

where , 1,2, , ;i j M i j  . 

2.4. ANFIS neuro-fuzzy network 

A neuro-fuzzy network is a fuzzy inference system 

equipped with a training algorithm (Jang, 1993). Since the 

fuzzy inference system is constructed based on fuzzy if-then 

rules, linguistic information can be directly incorporated 

and, on the other hand, numerical information is 

incorporated by training the fuzzy inference system to 

match the input-output pairs. Therefore, the fuzzy neural 

network combines linguistic and numerical information 

(mainly input-output pairs). The main advantages of the 

fuzzy inference system are the possibility of implementing 

rule of thumb, experience, intuition, and heuristics.  

In this paper, a neuro-fuzzy network is designed using the 

ANFIS (adaptive neuro-fuzzy inference system) function in 

the Matlab Fuzzy Logic Toobox (MathWorks, 2016). It uses 

a given input/output data set to construct a fuzzy inference 

system (FIS), whose membership function parameters are 

tuned (adjusted) using either a backpropagation algorithm 

alone or in combination with a least squares method. 

ANFIS supports the Takagi–Sugeno based systems (Takagi 

& Sugeno, 1985). The structure of the adaptive network is 

composed of five network layers i.e. layer 1 to layer 5 (with 

nodes and connections) as shown in Fig. 2. 
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Figure 2. Architecture of a first order two rule Takagi–

Sugeno type ANFIS 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2017 

4 

Assuming that the system is defined to have two inputs 1x  

and 2x , one output z  and fuzzy set 1A , 2A , 1B , 2B ; then 

for a first order Takagi–Sugeno fuzzy model, having two IF-

THEN rules in the common rule set, can be written using 

the following Eqs. (9) and (10) (Celikyilmaz & Türksen, 

2009). 

1 1 2

1 1 1 1 2 1

1:

,

.

Rule

If x is A and x is B

then f p x q x r  

   (9) 

1 2 2

2 2 1 2 2 2

2 :

,

.

Rule

If x is A and x is B

then f p x q x r  

   (10) 

The neural network structure contains 5 layers excluding the 

input layer (Layer 0): 

(1) Layer 0: input layer, has n  nodes where n  is number of 

inputs to the system. 

(2) Layer 1: This layer is called as the fuzzification layer. 

Here the crisp input signal is fed to the node i  which is 

associated with a linguistic label iA  or 2iB  . Thus, the 

membership function 1, ( )iO X  determines the membership 

level (full, none or partial) of the given input. The output of 

each node is calculated using Eqs. (11) and (12). 1, ( )iO X  

is the generalized Gaussian shaped membership function 

used in our model development. 

1, 1( ) 1,2
ii AO x for i     (11) 

21, 2( ) 3,4
ii BO x for i


     (12) 

(3) Layer 2: The nodes in this layer are fixed and labeled as 

2, ( )iO X . The output of each node is the product of all the 

incoming signals as in the Eq. (13). 

2, 1 2( ) ( ) 1,2
i ii i A BO w x x for i      (13) 

The output of each node represents the firing strength of a 

rule. Also, known as the membership layer, it acts on the 

input variables from layer 1 as membership functions to 

represent them in their fuzzy sets. 

(4) Layer 3: Each node in this layer calculates the ratio of 

the individual rule’s firing strength to the sum of all rules 

firing strengths as in the Eq. (14). iw  represents the 

normalized firing strength. Hence, this layer is also known 

as the rule layer. 

3, 1 2/ ( ) 1,2i i iO w w w w for i      (14) 

Since each node in this layer calculates the normalized 

weights, the output signal can be thought of as the 

normalized firing strength of a given rule. 

(5) Layer 4: This layer known as the defuzzification layer. It 

calculates the individual output values y from the inferring 

of rules from the rule base. Individual nodes of this layer are 

connected to the respective normalization node in layer 3 

and also receive the input signal. Each node of this layer is 

adaptive in nature with the node function given by the Eq. 

(15) where ip , iq , ir  is a set of consequent parameters of 

rule i . 

4, 1 2( )i i i i i i iO w f w p x q x r      (15) 

(6) Layer 5: This layer is known as the output layer. It has 

only one node and it calculates the sum of all the outputs 

coming from the nodes of the defuzzification layer to 

produce the overall ANFIS output as in Eq. (16). 

Overall output: 5, /i i i i i i i iO w f w f w     (16) 

This architecture of this adaptive network is used to develop 

the ANFIS model for the prediction of the LOCA break 

size.  

3. DATA DESCRIPTION AND PROCESSING 

3.1. Parameters for training neural network 

The architectures of the different neural networks 

considered in this study are described in Table 1. 

 

Table 1. List of process parameters for LOCA analysis 

 

Architecture Parameters 

1 hidden layer MLP 15 neurons in the hidden layer 

Pruned 1 hidden layer 

MLP 

Minimum number of weights: 

50, 200, 400 

2 hidden layer MLP 

(Santhosh et al., 2011) 

19 neurons in the first hidden 

layer; 

26 neurons in the second 

hidden layer 

GMDH 

Maximum number of inputs 

for neurons: 3 

Degree of polynomials in 

neurons: 3 

Maximum number of neurons 

in a layer: 7 

ANFIS Number of clusters is “auto” 
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3.2. Data description 

The data for comparison of the models has been referred 

from the paper by Santosh et al, 2009 on simulation of the 

LOCA scenarios in NPPs.  

There are 35 analog and 2 digital variables for identification 

of LOCA scenarios. The analog variables have time-

dependent transient data whereas the digital variables 

indicate the status of certain process states. This type of 

problem is modeled as a regression problem where a set of 

input values is mapped to a particular break size. The data 

used to train the neural networks consists of multiple sets of 

time-series, each set corresponding to a break size, and each 

set containing the individual time-series of the different 

measured variables.  For this purpose, the time scale of the 

transient duration is divided into several intervals such that 

the transient can be identified as quickly and accurately as 

possible in the earlier phase of its development so that the 

negative consequences of the fault can be minimized. 

Moreover, the time scale is chosen such that the number of 

data points at a later period of the transient is limited to 

reduce the computational burden when training the neural 

network models. A 60s transient duration is chosen in this 

case under the assumption that this time duration is 

sufficient to identify the large break LOCA event. The time 

scale for a transient period of 60s has appropriately been 

used with respect to event progression. Break sizes ranging 

from 20% to 200% (including 20%, 60%, 100%, 120% and 

200%) have been modeled using five different network 

architectures. 

The thermal-hydraulic data has been generated for the 

LOCA event occurring in reactor inlet header (RIH) with 

the availability of the emergency core cooling system 

(ECCS). 

3.3. Data processing procedure 

The data processing procedure is presented in Figure 3. The 

procedure runs 50 times to reduce the randomness induced 

by the initialization of weights and the split of the data sets 

into training, validation and test data sets. The data is 

divided into three groups, 70% for training, 15% for 

validation and 15% for testing. Only the testing results are 

employed for performance analysis (this is unseen data in 

the training process). 

3.3.1. Leave-one-out method 

To validate the prediction performance of neural networks 

to untrained break sizes, a method inspired by leave-one-out 

validation method is performed by taking one break size out 

from the training data and then including it in the testing 

data. The different leave-one-out tests are listed in Table 2. 

Testing

Save results

Train the neural network

Organize the training data, 

validation data and testing data

50 times?

Robust measurement

Y

N

LOCA transient data

Initialize the neural network

 

Figure 3. Data processing flowchart 

 

Table 2. List of leave-one-out tests 

 

Test Training sets 

1 Normal 

2 Leave out 20% break 

3 Leave out 60% break 

4 Leave out 100% break 

5 Leave out 120% break 

6 Leave out 200% break 

 

3.3.2. Robustness measurement 

The prediction results of the different models studied are 

presented in terms of mean square error (MSE) of 

prediction, which is defined as follows: 

2
,

1

1 M

i i j
j

E e
M 

      (15) 

where e  is the error between the neural network output and 

target, i  and j  are the number of test and sample, 

respectively, M  is the total number of samples. 

The following robustness measure mR  is proposed: 
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[2,6]maxm i iR E    (16) 

where, iE  is the MSE for each leave-one-out case. The 

max function is selected to highlight the worst-case 

performance out of all the leave-one-out cases considered. 

As previously mentioned, considering the randomness of 

training due to the random initialisation of weights, each 

network architecture was trained and tested 50 times 

independently. Therefore, there are 50 slightly different 

robustness measure values for each architecture. The overall 

performance of each network architecture is therefore 

represented by the mean value and standard deviation value 

of the 50 robustness measure values. The mean value of the 

robustness measure is calculated by 

1

1
( ), 50

N

m m
k

R R k N
N 

    (17) 

and the standard deviation of the robustness measure is 

calculated by 

2

1

1
( )

1

N

m m
k

R k R
N




 


   (18) 

A lower value of mR  indicates better robustness of the 

network predictions, while a lower value of   means that 

the prediction performance is more consistent. 

4. RESULTS AND DISCUSSION 

Figures 4-8 presents the testing outputs and targets for the 6 

tests listed in Table 2 from the five kinds of networks, 

separately. The vertical axes in the figures denote the break 

sizes. The outputs for the different leave-one-out cases for 

one given architecture are presented in each Figure 4 to 8. 

Note that the results shown in Figures 4-8 correspond to one 

particular training instance out of the 50 that were 

performed for each architecture and the MSE value for each 

sub-plot corresponds to the average result of the 50 training 

instances for each leave-one-out case.  

Consider Figure 4 as an example, the subplot entitled “All 

cases” corresponds to the Test 1 in Table 2, which means 

the data for all break sizes are included in the training data. 

The subplot entitled “Without 20%” corresponds to Test 2 

in Table 2, which means the data for the 20% break size is 

excluded from the training data. In Figure 4 it can be seen 

that there are large peaks in the outputs compared to the 

targets. From the five leave-one-out tests, it can be seen that 

the difference between outputs and targets for the break 

sizes left out during training are larger than the differences 

between outputs and targets when a particular break size is 

present in the training set. 

 

Figure 4. Testing results for the 2 HL MLP 

Figure 5 and Figure 6 show the testing results for the fully 

connected 1 hidden layer MLP and pruned 1 hidden layer 

MLP, respectively. Similar with Figure 4, the average MSE 

value of 50 training instances for each test is shown in 

corresponding title. Comparing these two figures shows that 

the MSE values for pruned networks are smaller those of the 

corresponding fully connected networks, which means that 

the pruning method can improve the performance of neural 

network. 

 

Figure 5. Testing results for the fully connected 1 HL MLP 
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Figure 6. Testing results for the pruned 1 HL MLP 

 

Figure 7. Testing results for the GMDH network 

Figure 7 presents the testing results for the GMDH network. 

Comparing with the results of Figures 4-6, the MSE value 

of “All case” is larger, which means the prediction accuracy 

of GMDH is worse than the other three MLP neural 

networks. However, the MSE for “Without 200%” break 

size lower compared to the corresponding values shown in 

Figure 5 and 6. 

 

Figure 8. Testing results for the ANFIS network 

Figure 8 shows the results from the ANFIS network. 

Comparing the MSE values with those shown in Figures 5-

7, the performance of “Without 20%” and “Without 60%” 

are significantly worse while the performance of other tests 

are similar.  

 

Figure 9. Comparison of models based on the average MSE 

A comparison of the five different architectures based on the 

average MSE value for each leave-one-out case is shown in 

Figure 9. Note that the MSE values given for each case 

correspond to the average value of the 50 training instances 

that were performed for each architecture. From Figure 9 it 

can be seen that the pruned 1 hidden layer MLP has smaller 

MSE values than the fully connected 1 hidden layer MLP. 

For leaving out small break sizes, 1 hidden layer MLP 

architecture has better performance. For larger break sizes, 2 
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hidden layer architecture outperforms the other 

architectures. 

The robustness measures obtained from the different 

architectures investigated in this paper are shown in Table 3. 

The GMDH approach has the smallest mR  value, which 

means this architecture has the best robustness for the 

untrained break size. However, its   value is slightly larger 

than fully connected 1 hidden layer MLP and pruned 1 

hidden layer MLP. Both mR  and   values for the pruned 1 

hidden layer MLP are smaller than the corresponding fully 

connected network, which means the OBS pruning 

algorithm was able to improve the robustness and 

consistency of neural network.  

The mR and   values of the fully connected 2 hidden layer 

MLP and ANFIS are higher than mR  and  values of the 

other three network architectures. This indicates that these 

two architectures have worse robustness and consistency 

than the other architectures considered here. 

Table 3. Robustness comparison of different architectures 

 

Archite

cture 

MLP 

1 HL 

Pruned 

MLP 

1 HL 

MLP 

2 HL 
GMDH ANFIS 

mR  0.0285 0.0252 0.0306 0.0238 0.3180 

  0.0102 0.0091 0.0142 0.0109 0.2862 

HL-hidden layer 

Table 4 shows the robustness of 1-hidden layer MLP 

network while the minimum number of weights after 

pruning was set to several different values. Both mR  and 

values are the lowest when the minimum number of weights 

is 400. The comparison result indicates that the minimum 

number of weights has an influence on the resulting 

robustness and should be set to an appropriate value to 

obtain a better performance. The best value found for the 

minimum number of is 400. 

Table 4. Robustness of MLP (1HL) with OBS pruning 

 

Minimun 

number 

of weights 

50 200 400 

586 

(fully 

connected) 

mR  0.0323 0.0288 0.0252 0.0285 

  0.0279 0.0158 0.0091 0.0102 

 

Table 5. Actual number of weights after OBS pruning. Note 

that each reported value is an average and hence it is not an 

integer number  

 

Minimun 

number 

of weights 

50 200 400 

Actual 

number 

of weights 

49.89 223.27 413.63 

 

The actual number of weights after OBS pruning are listed 

in Table 5. It is the average number of weights for all the 

trials. 

5. CONCLUSIONS 

In this paper, a robustness measure based on a kind of leave-

one-out approach has been proposed to compare the 

robustness and consistency of different neural network 

architectures used for the prediction of LOCA break size in 

nuclear power plants. Five different architectures with 

different learning algorithms were investigated to determine 

the most robust and efficient network for transient 

identification. From the results, it can be concluded that the 

GMDH network is the most robust architecture amongst the 

investigated approaches. It is also evident from the results 

that the OBS pruning method is able to improve the 

robustness of fully connected single-layer MLP neural 

network. 
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