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ABSTRACT

Diagnosis and prognosis are necessary tasks for system re-
configuration and fault-adaptive control in complex systems.
Diagnosis consists of detection, isolation and identification of
faults, while prognosis consists of prediction of the remain-
ing useful life of systems. This paper presents a novel inte-
grated framework for model-based distributed diagnosis and
prognosis, where system decomposition is used to enable the
diagnosis and prognosis tasks to be performed in a distributed
way. We show how different submodels can be automati-
cally constructed to solve the local diagnosis and prognosis
problems. We illustrate our approach using a simulated four-
wheeled rover for different fault scenarios. Our experiments
show that our approach correctly performs distributed fault
diagnosis and prognosis in an efficient and robust manner.

1. INTRODUCTION

Systems health monitoring is essential to guaranteeing the
safe, efficient, and reliable operation of engineering sys-
tems. Integrated systems health management methodologies
include fault diagnosis and prognosis mechanisms, where di-
agnosis involves detecting when a fault has occurred, isolat-
ing the true fault, and identifying the true damage to the sys-
tem; and prognosis involves predicting how much useful life
remains in the different components, subsystems, or systems
given the diagnosed fault conditions. The information on the
fault size and its expected impact on system life can be used
to initiate recovery and reconfiguration actions that mitigate
the fault or extend system life.

Anibal Bregon et al. This is an open-access article distributed under the terms
of the Creative Commons Attribution 3.0 United States License, which per-
mits unrestricted use, distribution, and reproduction in any medium, provided
the original author and source are credited.

A large body of research exists for both model-based di-
agnosis (Gertler, 1998; Blanke et al., 2006) and prognosis
methods (Luo et al., 2008; Saha & Goebel, 2009; Orchard
& Vachtsevanos, 2009). However, the integration of diag-
nosis and prognosis algorithms is seldom studied. In fact,
many diagnosis methodologies leave out the fault identifica-
tion step, which is necessary to perform a prediction from the
current system state. Recently, we presented an integrated
model-based framework for diagnosis and prognosis of com-
plex systems, in which we made use of a common modeling
framework for modeling both the nominal and faulty system
behavior (Roychoudhury & Daigle, 2011).

In (Roychoudhury & Daigle, 2011), the nominal system be-
havior is estimated using an observer built with the nominal
model. Faults are detected when a statistically significant de-
viation between the nominal estimates and the observed mea-
surements is observed (Biswas et al., 2003). Fault isolation
compares the observed measurement deviations against pre-
dictions of how the measurements would deviate for each
possible fault (Mosterman & Biswas, 1999). Fault identifi-
cation performs joint state-parameter estimation using multi-
ple observers, where, for each fault, the faulty system model
is constructed as the nominal model integrated with a hy-
pothesized fault model (Roychoudhury, 2009). The prog-
nosis module uses, for each fault hypothesis, a prediction
model based on its faulty system model and the identified
fault parameters, to predict the remaining useful life of the
system (Daigle, Saha, & Goebel, 2012). However, this inte-
grated solution performs the diagnosis and prognosis task in a
centralized fashion, which is prone to single points of failure,
and does not scale well as the size of the system increases.

To overcome such problems, in this work, we leverage re-
cent results for distributed diagnosis (Bregon et al., 2011)
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and distributed prognosis (Daigle, Bregon, & Roychoud-
hury, 2012), which make use of structural model decompo-
sition techniques, to provide a systematic approach to dis-
tributing the different diagnosis and prognosis steps presented
in (Roychoudhury & Daigle, 2011).

Distributed diagnosis is achieved by designing local dis-
tributed subsystems based on global diagnosability analysis
of the system, thus computing globally correct distributed
diagnosis results without the use of a centralized coordina-
tor (Bregon et al., 2011). These local distributed subsystems
are then used to construct local event-based distributed diag-
nosers for distributed fault isolation. Distributed fault iden-
tification is achieved by developing independent local state-
parameter estimators for each hypothesized fault. Regarding
distributed prediction, in (Daigle, Bregon, & Roychoudhury,
2012) we developed an architecture that enables a large prog-
nosis problem to be decomposed into several independent lo-
cal subproblems from which local results can be merged into
a global result.

The main contribution of this paper is an integrated frame-
work for distributed model-based diagnosis and prognosis of
single faults based on structural model decomposition. The
proposed framework scales well and the resulting subprob-
lems are typically small and easy to solve, resulting in an ef-
ficient and scalable distributed solution to the combined diag-
nosis and prognosis problem. We perform a number of exper-
iments on a simulated four-wheeled rover testbed (Balaban et
al., 2011) to demonstrate and evaluate our approach.

The rest of the paper is organized as follows. Section 2 pro-
vides the problem formulation for our diagnosis and progno-
sis framework. Section 3 describes the distributed architec-
ture and Section 4 briefly introduces its different components.
Section 5 presents the case study and experimental results.
Finally, Section 6 concludes the paper.

2. PROBLEM FORMULATION

The nominal system model is represented as follows:

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)),
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the
parameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv
is the process noise vector, f is the state equation, y(t) ∈ Rny
is the output vector, n(t) ∈ Rnn is the measurement noise
vector, and h is the output equation.1

Faults in the system are represented as changes in the above
nominal system model. In this work, we only consider sin-
gle faults occurring as changes in system parameters, θ(t).
We denote a fault, f ∈ F , as a tuple, (θ, gf ), where, θ ∈ θ

1Here, we use bold typeface to denote vectors, and use na to denote the
length of a vector a.

is the fault parameter, and gf denotes the fault progression
function, which models the way fault f is manifested in pa-
rameter θ, i.e.,

θ̇(t) = gf (t,xf (t),θf (t),u(t),mf (t)),

where xf (t) = [x(t), θ(t)]T , θf (t) = [θ(t)\{θ(t)},
φf (t)]T , φf (t) ∈ Rnφf is a vector of fault progression pa-
rameters, and mf (t) ∈ Rnmf is a process noise vector asso-
ciated with the fault progression function.

To develop our integrated diagnosis and prognosis frame-
work, the faulty system model for fault f = (θ, gf ) is con-
structed from the nominal system model by including the pa-
rameter as a state and augmenting the state equation by in-
cluding the fault progression function, i.e.,

ẋf (t) = ff (t,xf (t),θf (t),u(t),v(t)),
y(t) = h(t,x(t),θ(t),u(t),n(t)),

where,

ff (·) =
[

f(t,x(t),θ(t),u(t),v(t))
gf (t,xf (t),θf (t),u(t),m(t))

]
=
[

ẋ(t)
θ̇(t)

]
The goal of diagnosis is to: (i) detect a change in some θ ∈ θ;
(ii) isolate, under the single fault assumption, the true fault
f ∈ F , i.e., both the parameter θ that has changed, and its
fault progression function gf ; and (iii) identify (i.e. estimate)
the fault by computing p(xf (t),θf (t)|y(0 : t)), where y(0 : t)
denotes all measurements observed up to time t.

The goal of prognosis is to determine the end of (use-
ful) life (EOL) of a system, and/or its remaining useful
life (RUL). For a given fault, f , using the fault estimate,
p(xf (t),θf (t)|y(0 : t)), a probability distribution of EOL,
p(EOLf (tP )|y(0 : tP )), and/or RUL, p(RULf (tP )|y(0 : tP ))
is computed at a given time point tP (Daigle, Saha, &
Goebel, 2012). Since the prognosis problem is stochas-
tic, EOL/RUL are random variables and we represent them
by probability distributions. The acceptable behavior of
the system is expressed through a set of nc constraints,
CEOLf = {ci}nci=1, where ci : Rnxf × Rnθf × Rnu → B
maps a given point in the joint state-parameter space given
the current inputs, (xf (t),θf (t),u(t)), to the Boolean do-
main B , [0, 1], where ci(xf (t),θf (t),u(t)) = 1 if the
constraint is satisfied (Daigle, Saha, & Goebel, 2012). If
ci(xf (t),θf (t),u(t)) = 0, then the constraint is not satis-
fied, and the behavior of the system is deemed to be unac-
ceptable. These individual constraints are combined into a
single threshold function TEOLf : Rnxf × Rnθf × Rnu → B,
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defined as

TEOLf (xf (t),θf (t),u(t)) ={
1, 0 ∈ {ci(xf (t),θf (t),u(t))}nci=1

0, otherwise.
.

So, EOLf may be defined as

EOLf (tP ) ,

inf{t ∈ R : t ≥ tP and TEOLf (xf (t),θf (t),u(t)) = 1},
i.e., EOL is the earliest time point at which the threshold is
reached. RUL is expressed given EOL as

RULf (tP ) , EOLf (tP )− tP .

3. DISTRIBUTED ARCHITECTURE

For a large system, both the diagnosis and prognosis prob-
lems are correspondingly large. A centralized approach does
not scale well, can be computationally expensive, and prone
to single points of failure. Therefore, we propose to decom-
pose the global integrated diagnosis and prognosis problem
into independent local subproblems. In this work, we build
on the ideas from structural model decomposition (Blanke et
al., 2006; Pulido & Alonso-González, 2004) to compute lo-
cal independent subproblems, which may be solved in paral-
lel, thus providing scalability and efficiency. Model decom-
position is not a new concept, and several approaches have
been developed for purposes of system identification, estima-
tion, learning, and diagnosis (Staroswiecki & Declerck, 1989;
Pulido & Alonso-González, 2004; Williams & Millar, 1998).
Structural model decomposition allows decomposing a global
model into a set of local submodels for which local diagnosis
and prognosis problems can be directly defined. The global
model of the system, denoted asM, is defined as follows.

Definition 1 (Model). The model of a system,M, is a tuple
M = (X,Θ, U, Y, C), where X is the set of state variables
of x, Θ is the set of unknown parameters of θ, U is the set of
input variables of u, Y is the set of output variables of y, and
C is the set of model constraints of f , h, and EOL constraints
of CEOLf .

The basic idea of the model decomposition problem is to de-
compose the global system model into a set of submodels sat-
isfying given constraints, such that each submodel contains
sufficient analytical redundancy to generate fault hypotheses
from observed measurement deviations. A submodel in our
framework is defined as follows.

Definition 2 (Submodel). A submodelMi of a system model
M = (X,Θ, U, Y, C) is a tupleMi = (Xi,Θi, Ui, Yi, Ci),
where Xi ⊆ X , Θi ⊆ Θ, Ui ⊆ X ∪ U ∪ Y , and Yi ⊆ Y are
the state, parameter, input, and output variables, respectively,

and Ci ⊆ C are the submodel constraints.2

Next, we discuss the fundamental ideas of our model decom-
position approach and show the constraints needed to obtain
the different submodels for distributed diagnosis and progno-
sis. Then, we propose our integrated approach.

3.1. Model Decomposition for Distributed Diagnosis and
Prognosis

Model decomposition in our framework can be accomplished
by using some variables (either measured variables or vari-
ables for which the values are known) as local inputs,Ui, such
that each one of the submodels satisfies a set of constraints
and contains the minimum number of equations to compute
a given set of outputs, Yi. As a result, submodels computed
this way contain only a small subset of the equations of the
model that are decoupled from the rest of the system model
equations. In general, any set of variables in the system can
be chosen as the local inputs to the submodel, Ui. The choice
of Ui and the constraints to fulfill depends on the particular
problem to be solved through model decomposition.

The first model decomposition problem computes minimal
submodels from the nominal system model. For this model
decomposition problem, constraints are that submodels use
the global model inputs and some measured values as local
inputs, i.e., Ui ⊆ U ∪ (Y − Yi). An algorithm for comput-
ing the set of minimal submodels that satisfies these prop-
erties is given in (Daigle et al., 2011), which is based on
the model decomposition algorithms presented in (Pulido &
Alonso-González, 2004; Bregon et al., 2012).

The second model decomposition problem computes sub-
models for residual generation and fault isolation. For this
model decomposition problem, the constraints are that sub-
models are constructed by merging the minimal submodels,
to fulfill global diagnosability conditions as in (Bregon et
al., 2011).3 Once the globally diagnosable subsystems have
been designed, the merged submodels are used for distributed
residual generation and to compute event-based local diag-
nosers for fault isolation. These design and diagnoser com-
putation processes are detailed in (Bregon et al., 2011). Be-
cause the subsystems are designed to be globally diagnosable,
the resulting local diagnosers are independent, and can pro-
vide globally correct diagnosis results without a centralized
coordinator.

The third model decomposition problem computes submod-
els for distributed fault identification. For each consistent
fault hypothesis f , the joint state-parameter estimators are
computed from the minimal submodels of the faulty system
modelM(f) with the constraints thatUi ⊆ U∪(Y −Yi) with

2A faulty submodel for a fault f is denoted asMi(f).
3In this work, a subsystem is globally diagnosable if all faults in the subsys-
tem are distinguishable from every other fault in the system using only local
measurements.
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Figure 1. An instantiation of the integrated diagnosis and prognosis architecture.

Yi as a singleton. It will be shown later that the fault identi-
fication module is the central part of our diagnosis-prognosis
integration approach and provides the joint state-parameter
estimations for the prediction module.

Finally, for distributed prediction, the model decomposition
problem starts off from the faulty system model, and, as de-
tailed in (Daigle, Bregon, & Roychoudhury, 2012), it fulfills
the following constraints: (i) the submodels use Ui ⊆ UP ,
where UP ⊆ X ∪ U (here, UP is a set of variables whose
future values can be predicted a priori, which depends on the
hypothesized faults); and (ii) each computed submodel has
at least one c ∈ CEOLf belonging to Ci, and over all sub-
models, all constraints in CEOLf are covered. This ensures
that TEOLf may be computed for the system from the local
constraints.

3.2. Distributed Architecture

Figure 1 illustrates an example architecture for our distributed
diagnosis and prognosis scheme. At each discrete time step,
k, the system takes as input both uk and yk and splits them
into local inputs uik and local outputs yik for the local diag-
nosers. Within eachMi local diagnoser, nominal tracking is
performed, computing estimates of nominal measurements,
ŷik. The fault detector compares the estimated measurements
against the observed measurements, to determine statistically
significant deviations for the residual, rik = yik − ŷik. Qual-
itative values of the deviations in the residuals are used by
the event-based diagnoser to isolate faults. The set of iso-
lated fault candidates Fik together with the estimated nom-

inal states, x̂ik, parameters, θ̂
i

k, and the measurements, yik,
are used as input for the corresponding identification mod-
ule. Identification is performed for each hypothesized fault
in a distributed way, e.g., for the isolated faults f1 and f2 in
Figure 1, we run an instantiation of the identification sub-
model for each one the faults, i.e., M1(f1) and M1(f2).
Fault identification uses the minimal submodels from the
faulty system model, and computes local state-parameter es-

timates p(xif,k,θ
i
f,k|yi0:k). These local estimates are then

used as input to the prediction submodels. In some cases,
the local estimates have to be split or merged with other
estimates according to the prediction submodels. For ex-
ample, in the figure, estimates from M1(f1), are used by
both local prediction submodels M4(f1) and M5(f1), and
those submodels may also need estimates not included within
submodel M1(f1). These estimates are typically obtained
from the local diagnosers or other fault identification blocks.4

Distributed prediction modules compute, for each hypothe-
sized fault, local EOL/RUL predictions, p(EOLif,kP |yi0:kP )
and p(RULif,kP |yi0:kP ), at given prediction time kP based
on the local EOL constraints. Finally, local predictions
are combined into global predictions p(EOLf,kP |y0:kP ) and
p(RULf,kP |y0:kP ) for each hypothesized fault. The next
section describes the details of the different modules of the
distributed integrated diagnosis and prognosis architecture.

4. DIAGNOSIS AND PROGNOSIS APPROACH

Figure 1 shows the basic modules of our distributed integrated
approach. In this section we give details on how each mod-
ule is implemented, and establish the integration between the
diagnosis and prognosis tasks.

4.1. Distributed Diagnosis

For distributed diagnosis, each local diagnoser first takes a
subset of the local inputs uik and local outputs yik, to compute
an estimate of its output measurements ŷik. Tracking is per-
formed in discrete time using a robust filtering scheme, e.g.,
the extended or unscented Kalman filter (Julier & Uhlmann,
2004), which provides accurate tracking in the presence of
sensor noise, process noise, and discretization error.

4Since prediction submodels are constructed by using any variable which
value can be hypothesized as input, in some cases, prediction submodels
cannot always be formed by just merging the minimal estimation submod-
els. To indicate this, we named our prediction submodels differently from
the estimation submodels, e.g.,M4(f1) andM5(f1) instead ofM1(f1).
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For fault detection, a statistical test is used to look for signif-
icant deviations in the residual signal rik, which is computed
as the difference between ŷik and the yik. In our approach, we
use a Z-test as described in (Biswas et al., 2003).

Fault isolation is performed using local event-based di-
agnosers, constructed as detailed in the previous sec-
tion (Bregon et al., 2011; Daigle et al., 2009). Fault isolation
is triggered when a fault is detected, and it works as follows.
Initially, all event-based local diagnosers start in their initial
state, and the set of faulty candidates is empty. Local residual
deviations cause the local diagnosers to move from one state
to another. These residual deviations are abstracted to a tu-
ple of qualitative symbols (σ1, σ2) for each residual signal,
where σ1 represents magnitude changes and σ2 represents
slope changes. A + (resp. −) value indicates a change above
(resp. below) normal for a measurement residual or a positive
(resp. negative) residual slope. A 0 implies no change in the
measurement value or a flat residual slope. The symbols are
generated using a sliding window technique as described in
detail in (Biswas et al., 2003). If there is a match between
an event from the current state and a tuple of qualitative sym-
bols generated by any residual, the local diagnoser moves to
the next state and remains active. If not, the local diagnoser
blocks. This process continues until a local diagnoser reaches
an accepting state, which corresponds to a unique isolation
result.

In our distributed diagnosis approach, identification submod-
els, Mi(f), are obtained, as explained in the previous sec-
tion, as minimal submodels from the faulty system model. A
local state-parameter estimator is constructed for each iden-
tification submodel Mi(f), and produces a local estimate
p(xif,k,θ

i
f,k|yi0:k) by using an appropriate algorithm. In this

paper, we use an unscented Kalman filter (UKF) (Julier &
Uhlmann, 2004) with a variance control algorithm (Daigle,
Saha, & Goebel, 2012).

4.2. Distributed Prognosis

The local state-parameter estimates for each local distributed
prediction module are constructed from the local estimates of
the distributed fault identification submodels. Each predic-
tion submodel is made up of a set of states Xi and parame-
ters Θi, and constructs a local distribution p(xif,k,θ

i
f,k|yi0:k),

by assuming that the local state-parameter estimates are suf-
ficiently represented by a mean µi and covariance Σi. For
each prediction submodelMi(f), we combine the estimates
of the local identification submodels that estimate states and
parameters in Xi∪Θi into µi and Σi. If two submodels esti-
mate the same state variable or parameter, then many different
techniques can be applied depending on the desired perfor-
mance of the prediction submodels, e.g., taking the estimate
with the smallest variance, or taking an average.

Several approaches can be used to perform prediction for each

Algorithm 1 EOL Prediction

Inputs: {(xi(j)
kP

,θ
i(j)
kP

), w
i(j)
kP
}Nj=1

Outputs: {EOLi(j)
kP

, w
i(j)
kP
}Nj=1

for j = 1 to N do
k ← kP

x
i(j)
k ← x

i(j)
kP

θ
i(j)
k ← θ

i(j)
kP

while T i
EOL(x

i(j)
k ,θ

i(j)
k , ûi

k) = 0 do
Predict ûi

k

θ
i(j)
k+1 ∼ p(θ

i
k+1|θ

i(j)
k )

x
i(j)
k+1 ∼ p(x

i
k+1|x

i(j)
k ,θ

i(j)
k , ûi

k)
k ← k + 1
x

i(j)
k ← x

i(j)
k+1

θ
i(j)
k ← θ

i(j)
k+1

end while
EOL

i(j)
kP
← k

end for

prediction submodel. In this work, given the mean and co-
variance information, we represent the distribution with a set
of sigma points derived using the unscented transform. Then,
each sigma point is simulated forward to EOL, and we re-
cover the statistics of the EOL distribution given by the sigma
points (Daigle & Goebel, 2010).

Algorithm 1 (Daigle, Saha, & Goebel, 2012), shows the
pseudocode for the prediction procedure. The algorithm
is executed for each submodel i, deriving local EOL pre-
dictions using its local threshold function based on the lo-
cal EOL constraints. For a given submodel, each sample
j is propagated forward until T iEOLf (xi(j)f,k ,θ

i(j)
f,k ) evaluates

to 1. The algorithm hypothesizes future inputs ûik. Then,
the global EOL/RUL is determined by the minimum of the
local EOL/RUL distributions for each prediction submodel,
i.e., p(EOLif,kP |yi0:kP ) and p(RULif,kP |yi0:kP ). To compute
this, we sample from each local EOL distribution and take
the minimum of the local samples. This is repeated many
times and the statistics of the global EOL distribution are
computed (Daigle, Bregon, & Roychoudhury, 2012).

5. CASE STUDY

In this section, we apply our distributed diagnosis and prog-
nosis approach to a four-wheeled rover testbed developed at
NASA Ames Research Center. We develop a model of the
rover, and demonstrate the approach using simulated scenar-
ios.

5.1. Nominal System Modeling

The rover model was originally presented in (Balaban et al.,
2011). In this section we summarize the main features and
include some extensions to the model.

The rover consists of a symmetric rigid frame with four

5
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independently-driven wheels. The wheel speeds are governed
by

ω̇FL =
1

JFL

`
τmFL − τfFL − τglFL + τgrFL

´
, (c1)

ω̇FR =
1

JFR

`
τmFR − τfFR − τglFR − τgrFR

´
, (c2)

ω̇BL =
1

JBL

`
τmBL − τfBL − τglBL + τgrBL

´
, (c3)

ω̇BR =
1

JBR

`
τmBR − τfBR − τglFR − τgrBR

´
. (c4)

The F , B, L, and R subscripts stand for front, left, back,
and right, respectively. Here, for wheel w, Jw denotes the
wheel inertia; τmw is the motor torque; τfw = µfwωw is
the wheel friction torque, where µfw is a friction coefficient;
τglw = rwµgl(vw − v) is the torque due to slippage, where
rw is the wheel radius, µgl is a friction coefficient, vw is the
translational wheel velocity, and v is the translation velocity
of the rover body; and τgrw = rwµgrwω cos γ is the torque
due to the rotational movement of the rover body, where µgrw
is a friction coefficient, ω is the rotational velocity of the rover
body, and γ = arctan l/b with l being the rover’s length and
b being its width.

The translational velocity v of the rover is described by

v̇ =
1

m

`
FglFL + FglFR + FglBL + FglBR

´
, (c5)

wherem is the rover mass, and for wheelw, Fglw = µgl(vw−
v) is the force due to slippage. The rotational velocity ω is
described by

ω̇ =
1

J
(d cos γFglFR + d cos γFglBR − d cos γFglFL

− d cos γFglBL − dFgrFL − dFgrFR − dFgrBL

− dFgrBR). (c6)

Here, J is the rotational inertia of the rover and d is the dis-
tance from the center of the rover to each wheel.

The wheels are driven by DC motors with PI control that sets
the voltages V applied to the motors. The motor currents i
are governed by

i̇FL =
1

L
(VFL − iFLRFL − kωωFL), (c7)

i̇FR =
1

L
(VFR − iFRRFR − kωωFR), (c8)

i̇BL =
1

L
(VBL − iBLRBL − kωωBL), (c9)

i̇BR =
1

L
(VBR − iBRRBR − kωωBR), (c10)

where L is the motor inductance, R is the motor resistance,
and kω is an energy transformation term. The motor torque
is τmw = kτ iw, where kτ is an energy transformation gain.
The voltages applied to the motors are determined by the con-
trollers, where for wheel w, Vw = P ∗ (uw − ωw) + I ∗ eiw,
where P is a proportional gain, uw is the commanded wheel
speed, I is an integral gain, and eiw is the integral error term.

The integral error terms are governed by

ėiFL = uFL − ωFL, (c11)

ėiFR = uFR − ωFR, (c12)

ėiBL = uBL − ωBL, (c13)

ėiBR = uBR − ωBR. (c14)

The batteries, which are connected in series, are described
by a simple electrical circuit equivalent model that includes a
large capacitanceCb in parallel with a resistanceRp, together
in series with another resistanceRs.5 The battery charge vari-
ables qi are governed by

q̇1 = −V1/Rp1 − (iFL + iFR + iBR + iBL), (c15)

q̇2 = −V2/Rp2 − (iFL + iFR + iBR + iBL), (c16)

q̇3 = −V3/Rp3 − (iFL + iFR + iBR + iBL), (c17)

q̇4 = −V4/Rp4 − (iFL + iFR + iBR + iBL). (c18)

The available sensors measure the voltages of the batteries,

V ∗1 = q1/Cb1 −Rs1 ∗ (iFL + iFR + iBR + iBL), (c19)

V ∗2 = q2/Cb2 −Rs2 ∗ (iFL + iFR + iBR + iBL), (c20)

V ∗3 = q3/Cb3 −Rs3 ∗ (iFL + iFR + iBR + iBL), (c21)

V ∗4 = q4/Cb4 −Rs4 ∗ (iFL + iFR + iBR + iBL), (c22)

the motor currents,

i∗FL = iFL, (c23)

i∗FR = iFR, (c24)

i∗BL = iBL, (c25)

i∗BR = iBR, (c26)

and the wheel speeds,

ω∗FL = ωFL, (c27)

ω∗FR = ωFR, (c28)

ω∗BL = ωBL, (c29)

ω∗BR = ωBR. (c30)

Here, the ∗ superscript indicates a measured value.

5.2. Faulty System Modeling
In this work, we consider different faults in the motors and the
batteries. First, we consider friction-based damage progres-
sion in the motors, resulting in an increase in motor friction
over time. For wheel w, the fault progression function is de-
fined as:

µ̇fFL = νfFL µfFL ω2
FL, (c31)

µ̇fFR = νfFR µfFR ω2
FR, (c32)

µ̇fBL = νfBL µfBL ω2
BL, (c33)

µ̇fBR = νfBR µfBR ω2
BR, (c34)

5We use a simple model here only for demonstration purposes. More detailed
battery models for prognosis can be found in the literature, e.g., (Saha &
Goebel, 2009).
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Submodel Xi Θi Ui Yi Ci

M1 q1 Cb1 i∗FL, i
∗
FR, i

∗
BL, i

∗
BR V ∗

1 c15,c19,c23,c24,c25,c26
M2 q2 Cb2 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

2 c16,c20,c23,c24,c25,c26
M3 q3 Cb3 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

3 c17,c21,c23,c24,c25,c26
M4 q4 Cb4 i∗FL, i

∗
FR, i

∗
BL, i

∗
BR V ∗

4 c18,c22,c23,c24,c25,c26
M5 iFL, eiFL RFL uFL, ω

∗
FL i∗FL c7,c11,c23,c27

M6 iFR, eiFR RFR uFR, ω
∗
FR i∗FR c8,c12,c24,c28

M7 iBL, eiBL RBL uBL, ω
∗
BL i∗BL c9,c13,c25,c29

M8 iBR, eiBR RBR uBR, ω
∗
BR i∗BR c10,c14,c26,c30

M9 ωFL, v, ω, µfFL νfFL i∗FL, ω
∗
FR, ω

∗
BL, ω

∗
BR ω∗FL c1,c31,c5,c6,c23,c28,c29,c30

M10 ωFR, v, ω, µfFR νfFR i∗FR, ω
∗
FL, ω

∗
BL, ω

∗
BR ω∗FR c2,c32,c5,c6,c24,c27,c29,c30

M11 ωBL, v, ω, µfBL νfBL i∗BL, ω
∗
FL, ω

∗
FR, ω

∗
BR ω∗BL c3,c33,c5,c6,c25,c27,c28,c30

M12 ωBR, v, ω, µfBR νfBR i∗BR, ω
∗
FL, ω

∗
FR, ω

∗
BL ω∗BR c4,c34,c5,c6,c26,c27,c28,c29

Table 1. Set of minimal submodels for the rover testbed computed from the nominal system model.

Submodel Xi Θi Ui Yi Ci

M5,9 ωFL, v, ω, µfFL, iFL, eiFL νfFL, RFL uFL, ω
∗
FR, ω

∗
BL, ω

∗
BR ω∗FL, i

∗
FL C5 ∪ C9

M6,10 ωFR, v, ω, µfFR, iFR, eiFR νfFR, RFR uFR, ω
∗
FL, ω

∗
BL, ω

∗
BR ω∗FR, i

∗
FR C6 ∪ C10

M7,11 ωBL, v, ω, µfBL, iBL, eiBL νfBL, RBL uBL, ω
∗
FL, ω

∗
FR, ω

∗
BR ω∗BL, i

∗
BL C7 ∪ C11

M8,12 ωBR, v, ω, µfBR, iBR, eiBR νfBR, RBR uBR, ω
∗
FL, ω

∗
FR, ω

∗
BL ω∗BR, i

∗
BR C8 ∪ C12

M1,2,3,4 q1, q2, q3, q4 Cb1, Cb2, Cb3, Cb4 i∗FL, i
∗
FR, i

∗
BL, i

∗
BR V ∗

1 , V
∗
2 , V

∗
3 , V

∗
4 C1 ∪ C2 ∪ C3 ∪ C4

Table 2. Residual generation and fault isolation submodels.

where µfw is the fault parameter, and νfw is the fault pro-
gression parameter.

We also consider abrupt resistance increases in the motors,
represented as an abrupt change in parameter Rw for wheel
w, with ∆Rw as the fault progression parameter.

For the batteries, we consider abrupt capacitance decreases,
represented as an abrupt change in parameter Cbi for capacity
i. ∆Cbi is the fault progression parameter.

We are interested in predicting when any of the rover batteries
are at their charge threshold, beyond which the batteries will
be damaged. These faults can cause the charge thresholds to
be reached earlier since they will affect current draw. The
constraints are given as

q1 > q−, (c35)

q2 > q−, (c36)

q3 > q−, (c37)

q4 > q−, (c38)

where the charge threshold is given by q− = 2× 104 C. The
rover cannot be operated when any of the constraints c35–c38
are violated.

5.3. Results

To demonstrate the validity of the approach, we describe two
different faulty scenarios of the rover. In the first, friction
damage is progressing on one motor, and in the second, a
capacitance decrease occurs in one battery. In all cases, the
rover travels between various waypoints, moving at an aver-
age speed of 0.5 m/s. Table 1 shows the minimal submodels
for the rover derived by using measured values as local in-
puts. Table 2 shows the submodels for residual generation

Submodel Xi Θi Ui Yi Ci

M17(Cb1) q1, Cb1 ∆Cb1 iFL, iFR, iBL, iBR ∅ c15,c19,c35
M18(Cb2) q2, Cb2 ∆Cb2 iFL, iFR, iBL, iBR ∅ c16,c20,c36
M19(Cb3) q3, Cb3 ∆Cb3 iFL, iFR, iBL, iBR ∅ c17,c21,c37
M20(Cb4) q4, Cb4 ∆Cb4 iFL, iFR, iBL, iBR ∅ c18,c22,c38

Table 4. Prediction submodels for capacitance faults.

and fault isolation. These submodels have been designed to
obtain globally diagnosable subsystems by using the design
algorithm in (Bregon et al., 2011). In this work, we have con-
sidered five subsystems, one for each wheel components and
another one for the batteries. For example, the subsystem for
the front left wheel components is not globally diagnosable if
we only consider submodelM9 (which includes the front left
wheel friction wear parameter, νfFL). The design algorithm
in (Bregon et al., 2011) determines that we need to merge
submodelsM5 andM9 to make the front left wheel subsys-
tem globally diagnosable. The process is similar for the rest
of the subsystems.

Minimal submodels for identification can be computed from
the minimal submodels in Table 1 by defining the fault pro-
gression function (if necessary), and by making the fault pa-
rameter to become a state and the corresponding fault pro-
gression parameter to become the parameter. Regarding pre-
diction, the correct prediction submodels to use depend on the
scenario, as will be shown later.

5.3.1. Friction Damage Progression

We first consider a scenario in which, for the front-left mo-
tor, the friction begins to increase. The friction damage pro-
gression begins at t = 50 s with friction wear parameter
νfFL = 1 × 10−3 s. A fault is detected by the local di-
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Submodel Xi Θi Ui Yi Ci

M13(µfFL) q1, iFL, eiFL, ωFL, µfFL Cb1, νfFL, RFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c31,c7,c11,c15,c35
M14(µfFL) q2, iFL, eiFL, ωFL, µfFL Cb2, νfFL, RFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c31,c7,c11,c16,c36
M15(µfFL) q3, iFL, eiFL, ωFL, µfFL Cb3, νfFL, RFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c31,c7,c11,c17,c37
M16(µfFL) q4, iFL, eiFL, ωFL, µfFL Cb4, νfFL, RFL uFL, v, ω, iFR, iBL, iBR ∅ c1,c31,c7,c11,c18,c38

Table 3. Prediction submodels using commanded wheel speeds and rover velocities as local inputs.
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Figure 2. Estimated νfFL values.
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Figure 3. Current i∗FL increase through time.

agnoser computed from submodel M5,9 at 119.25 s, via an
increase in the motor current iFL. The initial candidate list is
immediately reduced to one candidate, {νfFL}, based on the
signatures and orderings (other faults in the front left wheel,
like RFL, produce different fault signatures). Thus the true
fault is isolated.

Fault identification is initiated once the candidate is isolated.
For the friction damage progression fault, the wear rate νfFL
estimate averages to νfFL = 1 × 10−3 s with very small
output error. Figure 2 shows the wear parameter estimate for
friction damage.

As a result of the continuously increasing friction, the current
drawn by the motor increases as well in order for the motor
controller to maintain the same desired wheel speed (Figure
3 shows this increase in the current through time). Hence, the
total current drawn from the batteries is increased, and EOL
occurs around half an hour. Because iFL is constantly chang-
ing, and in a way that is dependent on the motor state, it is

incorrect to use it as a local input for prediction and to de-
compose the prediction problem into independent local pre-
diction problems for the batteries and motors, i.e., it is not
known a priori. Therefore, we compute submodels using as
local inputs average values for the remaining motor currents,
average commanded wheel speeds, and average rover trans-
lational velocity v and rotational velocity ω. The prediction
submodels for this case are shown in Table 3. EOL for this
fault is computed by merging the local EOL from those sub-
models in the table. Note that the prediction submodels used
in this case do not correspond directly to those used for es-
timation. So, when constructing the estimate for M13, for
example, it takes the estimates fromM1 andM9.

The prediction results are shown in Figure 4. The increased
friction causes the batteries to discharge faster, and EOL oc-
curs around 1650 s. Here, we used the relative accuracy (RA)
as a measure of prediction accuracy, and the relative standard
deviation (RSD) as a measure of spread. Each prediction met-
ric is averaged over multiple prediction points (one every 100
s of usage) (see (Saxena et al., 2010; Daigle, Saha, & Goebel,
2012) for the mathematical definitions of these metrics). For
this experiment, RA averages to 91.63% and RSD averages
to 16.26%.

For the sake of comparison, we also ran this experiment us-
ing the centralized approach. Figure 5 shows the prediction
results obtained. Looking at the prediction metrics, we see
that the centralized approach behaved very similar to the dis-
tributed approach but a little bit worse, with RA averaging
90.90% and RSD averaging 17.72%. However, this is just
a particular example, but, in general, both approaches obtain
equivalent results.

5.3.2. Capacitance Decrease

As a second scenario, we consider a capacitance decrease
fault in battery 3 of the rover, Cb3. The fault begins at t = 50
s with an abrupt decrease from 2000 to 1800 in the capacity
of the battery. The fault is detected immediately by the local
diagnoser computed from submodelM1,2,3,4 at 50.0 s, via an
increase in the voltage V3. The fault candidate is immediately
isolated, {Cb3}, based on the signatures and orderings, thus
starting the fault identification. For the capacitance fault, the
estimated value of the capacitance averaged Cb3 = 1798.6
C with very small output error. As a result of the decrease
in capacitance, the battery discharges at a faster rate, and so
reaches end of discharge more quickly. The prediction sub-
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Figure 4. Predicted RUL of the rover for the distributed ap-
proach. The mean is indicated with a dot and confidence in-
tervals for 5% and 95% by lines. The gray cone depicts an
accuracy requirement of 15%.
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Figure 5. Predicted RUL of the rover for the centralized ap-
proach. The mean is indicated with a dot and confidence in-
tervals for 5% and 95% by lines. The gray cone depicts an
accuracy requirement of 15%.

models for faults in the capacity of the batteries are shown
in Table 4. For this scenario, with a fault in Cb3, we used
submodel M19, obtaining RA average to 98.25% and RSD
average to 10.12%.

6. CONCLUSIONS

This paper presented a distributed integrated model-based
diagnosis and prognosis framework. Our approach starts
off with a common modeling paradigm to model both the
nominal behavior and fault progression, and then proposes
a framework where the global system model is decomposed
into smaller independent submodels. These submodels are
then used to distribute the different diagnosis and prognosis
tasks. Model decompostion is carried out based on the re-
quirements and constraints of each task. We demonstrated
our approach on a four-wheeled rover testbed, where we di-
agnosed faults and prognosed the EOL/RUL accurately. We
compared results obtained by using our distributed approach
against those obtained using a centralized approach, showing
that both approaches obtain the same results.

Most approaches in the literature focus in either the diagnosis
or the prognosis task. Some works have proposed the inte-
gration of both tasks within a common framework (Patrick
et al., 2007; Orchard & Vachtsevanos, 2009; Roychoudhury
& Daigle, 2011), however, unlike our approach, these ap-
proaches perform the diagnosis and prognosis tasks in a cen-
tralized way, thus suffering from scalability issues due to the
large number of states and parameters in real-world systems.
To the best of our knowledge, there is no approach in the lit-
erature which combines, in a distributed way, the diagnosis
and prognosis tasks. Our approach is limited by the number
and location of the sensors in the system. Since our decom-
position algorithm is guided by the set of available sensors,
the distribution capabilities of the approach is determined by
them.

In future, we will apply this approach to larger systems, to
study the scalability of our diagnosis and prognosis scheme,
and will perform a more detailed comparison against the re-
sults obtained by using a centralized approach. We will also
extend the capability of this approach to hybrid systems, as
well as diagnosis and prognosis of multiple faults.
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