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ABSTRACT 

A reliability trend/growth analysis methodology for satellite 
systems is suggested.  A satellite system usually consists of 
many satellites successively launched over many years, and 
its satellites typically belong to different satellite 
generations. This paper suggests an approach to reliability 
trend/growth data analysis for the satellite systems based on 
grouped data and the Power Law (Crow-AMSAA) Non-
Homogeneous Poisson process model, for both one (time) 
and two (time and generation) variables.  Based on the data 
specifics, the maximum likelihood estimates for the Power 
Law model parameters are obtained.  In addition, the 
Cumulative Intensity Function (CIF) of a family of satellite 
systems was analyzed to assess its similarity to that of a 
repairable system.  The suggested approaches are illustrated 
by a case study based on Tracking and Data Relay Satellite 
System (TDRSS) and Geostationary Operational 
Environmental Satellite (GOES) data.  

1. INTRODUCTION 

The objective of this study is to develop a reliability growth 
analysis methodology applicable to satellite systems.  A 
satellite system usually consists of many satellites 
successively launched during many years, and its satellites 
can belong to different satellite generations.  For example, 
the United States National Environmental Satellite, Data, 
and Information Service (NESDIS) is now developing its 
fourth generation (gen.) of the GOES satellites. The GOES 
first satellite, GOES 1, was launched in 1975 and the latest, 
GOES 15, was launched in 2010 (see Table 2). 
 

During the system life, its satellites can be in different 
states, like active, in-orbit testing, failed, standby, retired, 
etc.  The satellite system reliability improvements are based 
on the analysis of anomalies (failures) observed on the in-
orbit satellites, and the respective corrective actions can  
 
 
 

usually be implemented only in the next and the following 
satellites to be launched.   In other words, the traditional 
reliability growth "Test-Analyze-Fix" concept is not 
applicable to the on-orbit satellite systems, which makes the 
data model and data analysis of the satellite systems rather 
different.   

2. DATA AND RELIABILITY GROWTH MODEL   

A satellite system (SS) is considered.  Let’s assume that the 
SS currently consists of k satellites S1, S2, …Sk , where S1 
is the first (oldest) successfully launched satellite, S2 is the 
second satellite, . . . , and Sk is the latest successfully 
launched launched satellite. Let T1, T2 ,  . . . Tk denote,   
respectively, the cumulative times during which the S1, S2, 
…Sk anomalies were recorded, and  let N1, N2 ,  . . . Nk  
denote the random numbers of corresponding failures 
(anomalies).  These data can be represented using Table 1. 
 
The Crow-AMSAA model is suggested to apply for the SS 
reliability trend analysis.  This model is the most popular 
reliability growth model. The model is used in Military 
Handbook 189 (MIL-HDBK -189 C, 2011). The model was 
applied in the following traditional form: 
 
𝜆(𝑡) = 𝜆0𝛽𝑡𝛽−1                                                                          (1) 

 
where λ(t) is the ROCOF for a given satellite, λ0 and β are 
positive parameters, and t is the satellite order number, so 
that the variable t takes on the following values: 1, 2, 3, 4, 5, 
. . . . Other choices of the independent variable t can be 
budget or other monetary or manpower resources spent to 
improve the satellite reliability. It should be noted that in the 
case of reliability growth, the parameter β should satisfy the 
following inequality:  0 < β < 1.  The model (1) is 
sometimes referred to as the Weibull process, because it 
coincides with the failure rate of the Weibull distribution.   
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Satellite Time Interval Number of 
Anomalies 

S1 T1 N1  

S2 T2 N2  

… … … 

Sk Tk Nk 

Table 1. Satellite System Anomaly Data 

3. DATA ANALYSIS 

For each satellite of the system considered, the ROCOF 
estimate is calculated as 
 

�̂�(𝑖) =
𝑁𝑖
𝑇𝑖

  𝑖 =  1, 2. . . , 𝑘                                                         (2) 

 
where the estimator (2) is known as the natural estimator  
of  ROCOF (Basu, A.P. &  Rigdon S.E., 2000; Crowder, M. 
J., Kimber A. C., Smith, R. L., & Sweeting, T. J., 1991) . 
 
Assuming that ROCOF is constant (but different) for each 
satellite, it is clear that N i is distributed according to the 
Poisson distribution with the mean equal to λ(i)T i, where  
λ(i) is the unknown true value of ROCOF for ith satellite. If 
the number of the observed failures N i is great enough, the 
distribution can be approximated by the Normal 
Distribution, having the same mean and the variance equal 
to this mean. 
 

Based on the above considerations, the following regression 
model (3) is suggested for estimating the parameter of the 
Crow-AMSAA model (1) 
 

𝜆(𝑡𝑖) = 𝜆0𝛽𝑡𝑖
𝛽−1 + 𝛿 𝑖                                                        (3) 

                                                                      
where δi is a normally distributed error with zero mean and 
the variance is inversely  proportional to the number of the 
observed failures N i; t i is the satellite order number, taking 
on the following values: 1, 2, 3, . . . . The model (3) is non-
linear in the parameters regression model, where parameters 
λ0 and β should be estimated under the following 
restrictions: λ0 > 0 and 1 > β > 0. 
 

Another way to estimate the parameters of the reliability 
growth model (1) is to apply the Maximum Likelihood 
(ML) approach.  For the data discussed above, the 
likelihood function L(λ0, β) can be written as 
 
𝐿(𝜆0,𝛽 ) = ⋯                                                                             (4) 

= �
�∫ 𝜆0𝛽𝑡𝑖

𝛽−1𝑑𝜏𝑇𝑖
0 �

𝑁𝑖
𝑒𝑥𝑝 �−∫ 𝜆0𝛽𝑡𝑖

𝛽−1𝑑𝜏𝑇𝑖
0 �

𝑁𝑖!

𝑘

𝑖=1

          (4) 

= �
𝜆0
𝑁𝑖𝛽𝑁𝑖𝑡𝑖

𝑁𝑖(𝛽−1)𝑇𝑖𝑁𝑖exp �−𝜆0𝛽𝑡𝑖
𝛽−1𝑇𝑖�

𝑁𝑖!

𝑘

𝑖=1

                    (4) 

and its logarithm as 

𝑙𝑛�𝐿(𝜆0,𝛽)� = �𝑁𝑖𝑙𝑛(
k

i=1

λ0) + 𝑁𝑖 𝑙𝑛(𝛽) + ⋯                   (5) 

𝑁𝑖(𝛽 − 1) 𝑙𝑛(𝑡𝑖) + 𝑁𝑖 𝑙𝑛(𝑇𝑖) − 𝜆0𝛽𝑡𝑖
𝛽−1𝑇𝑖 − 𝑙𝑛(𝑁𝑖!)     (5) 

 
Writing the first derivatives of (5) with respect to λ0 and β 
and equating them to zero, we arrive at the following system 
of non-linear equations for λ0 and β: 
 

 
∂
∂𝜆0

�𝐿(𝜆0,𝛽)� =
1
𝜆0
�𝑁𝑖

k

i=1

−  𝛽�𝑡𝑖
𝛽−1𝑇𝑖

k

i=1

= 0               (6) 

𝜕
𝜕𝛽

�𝐿(𝜆0,𝛽)� =  
1
𝛽
�𝑁 𝑖

k

i=1

−  …                                          (7) 

𝜆0�𝑇𝑖�𝑡𝑖
𝛽−1 + 𝛽(𝛽 − 1)𝑡𝑖

𝛽−2� = 0 
k

i=1

                                  (7) 

 
which must be solved under the restrictions: λ0 > 0 and 1 > 
β > 0. 

4. CASE STUDY:  TRACKING AND DATA RELAY SATELLITE 
SYSTEM 

The Tracking and Data Relay Satellite System (TDRSS) is a 
network of  satellites (each called a Tracking and Data 
Relay Satellite or TDRS) and ground stations used for space 
communications. The TDRSS space segment currently 
consists of nine on-orbit TDRSs located in geosynchronous 
orbit, distributed to provide global coverage.  

The available data on the TDRSs are 327 NASA Spacecraft 
Orbital Anomaly Report System (SOARS) records related 
to the satellites of the first TDRS generation (A, C, D, E, F 
and G) and the second TDRS generation (H, I, J), listed in 
Table 2.  It should be noted that there is much less data on 
TDRS H, I and J (only about 25 cumulative mission years) 
compared to the first generation, i.e., TDRS A, C, D, E, F 
and G (about 101.4 cumulative mission years).   

The Crow-AMSAA model (1) and the data from Table 2 
were used for the reliability trend analysis. The parameters 
of the reliability growth model were estimated as: λ0 = 
3.156917 1/day and β = 0.006.  The ROCOF estimates and 
the fitted Crow-AMSAA model are shown in Figure 1 
below. The model provides a good fit to the data: the 
squared correlation coefficient R2 = 0.963.  Using the fitted 
model, the ROCOF for the future TDRS M was predicted as 
0.00151/day.  The predicted value indicates a 30% – 40% 
reliability growth for TDRS 13 (TDRS M) compared to 
TDRS 10 (TDRS J) in terms of ROCOF. 

http://en.wikipedia.org/wiki/Communications_satellite
http://en.wikipedia.org/wiki/TDRS
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Table 2.  Data and Estimated Rate of Occurrence of Failures 
 

 

 
Figure 1. Estimated ROCOF and fitted reliability growth 

model. The extreme right point is the projected ROCOF for 
TDRS M (13). 

5. RELIABILITY GROWTH MODEL WITH TWO VARIABLES 

Earlier, we applied the power law (Crow-AMSAA) 
relationship to model satellite ROCOF dependence on the 
satellite order (operational) number.  The relationship we 
are going to introduce below can be used to take into 
account a possible jump of ROCOF attributed to a new 
satellite generation, which is illustrated by the GOES 
ROCOF (see Figure 2 and Table 3). 

 
Figure 2. GOES ROCOF dependence on satellite 

operational number. The interval [4, 7] is the first generation 
of satellites; the interval [8, 12] is the second generation of 

GOES satellites. 
 

Figure 2 shows a significant jump in ROCOF between the 
first generation and the second generation of GOES.  This 
increase in ROCOF of the second generation can be 
explained by more complex satellite design and functions. 
The figure also reveals a minor ROCOF increase for each 
last satellite of the first generation and the second 
generation.  The GOES 7 increase in ROCOF compared to 
its predecessor GOES 6 can be attributed to the GOES 7 
new feature – it was the first GOES satellite capable of 
detecting 406 MHz distress signals from emergency beacons 
carried aboard aircraft and vessels and sending them to 
ground stations. In its turn, the GOES 12 increase in 
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Other 
Satellite 
Name 

Launch Date Last Record 
Date 

Time 
Interval, 

days 

Number of 
records 

ROCOF  
(λest) 1/day 

1 TDRS A TDRS 1 4-Apr-83 5/04/2006 8431 192 0.0228 
1 TDRS C TDRS 3 29-Sep-88 9/28/2004 5843 28 0.0048 
1 TDRS D TDRS 4 13-Mar-89 11/02/2010 7904 35 0.0044 
1 TDRS E TDRS 5 2-Aug-91 11/06/2004 4845 21 0.0043 
1 TDRS F TDRS 6 13-Jan-93 7/16/2006 4932 20 0.0041 
1 TDRS G TDRS 7 13-Jul-95 6/4/2009 5075 8 0.0016 
2 TDRS H TDRS 8 30-Jun-00 9/02/2010 3716 5 0.0013 
2 TDRS I TDRS 9 8-Mar-02 9/26/2010 3124 12 0.0038 
2 TDRS J TDRS 10 4-Dec-02 7/21/2009 2421 6 0.0025 



 

 
 

ROCOF (compared to GOES 11) can be attributed to the 
new instrument -- GOES 12 was the first satellite to carry a 
Solar X-Ray Imager (SXI) type instrument.   

In order to take into account a ROCOF dependence on the 
satellite generation, the following model is suggested: 

𝜆(𝑡𝑖 ,𝑇) = 𝜆0𝑡𝑖
𝛽1𝑇𝑗

𝛽2                                                                (8) 

The model has the following two independent variables-
operational number (ti = 4, 5, . . . , 12) and a dummy 
variable, T j, (j = 1, 2,..., J), which is the satellite generation 
order number. The dummy variable T value is e for the first 
generation, i.e., T1 = e, and T takes on the value eo ≡ 1 for 
the second satellite generation, i.e., T2 = 1.  The choice of 
these values becomes obvious if we take the natural 
logarithm of (8) in order to make the model linear: 

Table 4. Regression analysis summary of model (8.1) 

As it follows from Table 4, the parameter ln(𝜆0)  is 
statistically insignificant, so that our model (8) can be 
written as: 
 

𝜆(𝑡𝑖 ,𝑇) = 𝑡𝑖
𝛽1𝑇𝑗

𝛽2                                                             (8.2)

𝑙𝑛�𝜆(𝑡𝑖 ,𝑇)� = 𝑙𝑛(𝜆0) + 𝛽1 𝑙𝑛(𝑡𝑖)  +   𝛽2 𝑙𝑛�𝑇𝑗�          (8.1) 

It is clear that the transition from the first generation to the 
second generation changes the intercept of the above linear 
dependence by β2 because of a unit change in ln(T j), i.e., 
ln(T1) – ln(T2) = 1. The variable Tj can be called the 
generation code. The available GOES ROCOF data needed 
to fit the above model are given in Table 3.  

 

Table 3.  GOES History and Estimated Rate of Occurrence 
of Failures (ROCOF) 

 
Using the above data, the parameter estimates of model 
(8.1) are given in Table 4.  

 

The fitted model is shown in Figure 3. 

 

Figure 3.  The GOES ROCOF and fitted model (8.2) 

Based on the model and data, the jump in values of ROCOF 
𝜆(8,𝑇2)
𝜆(7,𝑇1)

 is about 8.   

In order to compare the reliability growth rate for GOES 
generations 1 and 2, the following ROCOF model was fitted 
for each generation: 

 𝜆(𝑡𝑖) = 𝜆0𝑡𝑖
𝛽                                                                         (8.3)  

The fitted models are shown in Figures 4 and 5.
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Parameter 
Estimate 

Std. 
Err. t(6) p-level 

𝑙𝑛(𝜆0) 
 0.4017 2.3920 0.1679 0.8722 

β2 -2.1074 0.7308 -2.8839 0.0279 

β1 -1.9407 1.0380 -1.8697 0.1107 

GOES 
Gen. 

Gen. 
Code (T) 

ln(T) GOES 
Oper. 

Number (t) 

ROCOF 
(λest,) 
1/day 

1 EXP(1) 1 4 0.00956 
1 EXP(1) 1 5 0.00667 
1 EXP(1) 1 6 0.00435 
1 EXP(1) 1 7 0.00828 
2 EXP(0) 0 8 0.04848 
2 EXP(0) 0 9 0.02940 
2 EXP(0) 0 10 0.01445 
2 EXP(0) 0 11 0.00638 
2 EXP(0) 0 12 0.01239 



 

 
 

 
Figure 4 

 
Figure 6. Cumulative Intensity Function of Idealized 

Repairable System 

Figures 7a through 7i display the real CIF for a variety of 
GOES missions.  These cumulative intensity functions have 
shapes similar to the idealized CIF.  

Figure 5 

6. FAILURE TIME OCCURRENCES DURING EACH MISSION 

Based on its cumulative intensity function (CIF), each 
satellite in a system of satellites, such as GOES, can be 
considered as a repairable system.  The cumulative intensity 
function of an idealized repairable system is depicted in 
Figure 6.  At the beginning of mission, the CIF is concave 
down (has a decreasing derivative (ROCOF)).  This part of 
system mission lifetime corresponds to the reliability 
growth. Then CIF becomes approximately linear, which 
corresponds to constant in time ROCOF and normal (from 
reliability standpoint) system operation.  At the end of 
system life, the CIF becomes concave up, corresponding to 
increasing ROCOF, and this part of the system mission 
lifetime corresponds to the reliability deterioration (aging). 

 

 

 
Figure 7a          Figure 7b 

 
Figure 7c     Figure7d 
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 Figure7e            Figure 7f 
 

 Figure 7g            Figure 7h 
 

 
 Figure 7i 

7. CONCLUSION 

In this study we set out to suggest a reliability trend/growth 
analysis methodology for satellite systems.  We used the 
number of recorded anomalies for a given satellite mission 
over a given time period of operation as the data to measure 
this growth.   Using this data, we modeled reliability growth 
as both a function of time and as a function of both time and 
satellite generation.  Finally, we observed trends in ROCOF 
over a single satellite’s operational lifetime and discussed 
the implications of all the observed trends on the evolution 

of satellite systems.  In order to do this, we assumed that an 
anomaly entry in the SOARS database corresponded to a 
failure of the given satellite, since anomalies are positively 
correlated with failures.  Such an assumption is reasonable 
as long as the model used to fit the data is not expected to 
predict/measure the number of actual failures of a given 
satellite system.   

We can model reliability growth across multiple satellite 
generations in a satellite system with a Crow-AMSAA 
model.  This model is a good fit, having a squared 
correlation coefficient that is close to one (R2 = 0.963).  The 
fitted model indicates that there is 30% – 40% reliability 
growth for the TDRS 13 (TDRS M) satellite compared to 
TDRS 10 (TDRS J), in terms of ROCOF.  The overall trend 
of ROCOF decrease with time implies an improving level of 
reliability over time and thus reliability growth in the TDRS 
family of spacecraft.  These results are intuitive, since each 
satellite generation is relatively similar in design to the 
previous one, allowing for consecutive generation designs to 
be more refined.   

We can model reliability growth across multiple satellite 
generations in a satellite system with greater accuracy after 
a slight modification to the Crow-AMSAA model.  This 
modification involves introducing a dummy variable, Tj, (j 
= 1, 2,..,J), which represents the satellite generation order 
number.  This modification allows the model to capture any 
major generational changes in satellite system ROCOF data 
due to new technologies.  The reliability growth of the 
model fitted to GOES satellite data is greater/more 
pronounced among the newer generation of GOES satellites 
and is able to capture and explain the radical change in 
ROCOF data corresponding to a significant change in 
technology introduced by the second generation of GOES 
satellites, beginning with GOES 8.  This model provides a 
better fit than would have been possible with the single 
variable Crow-AMSAA model due to its ability to capture 
the inflection introduced by GOES 8.  

We considered the plausibility of considering satellite 
systems, such as GOES, as repairable systems.  Such 
systems experience a rapid increase in the reported number 
of failures over an initial period of operation, and maintain a 
fixed, less sharply increasing rate of failures for an extended 
period of operation, until finally the rate of failures 
increases again towards the end of system life (i.e. the 
bathtub curve effect).  This turned-out to be a plausible 
consideration, since the observed CIF of each of the GOES 
family systems displayed some, if not all, of these repairable 
system characteristics.   

We can improve the current models by introducing a 
Bayesian prior distribution over its parameters (i.e. λ0, β), 
considering them as random variables, and employing 
Bayesian inference, as opposed to  classical Maximum 
Likelihood Estimation.  All of these considerations should 
be made in future studies of these data. 
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