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ABSTRACT 

This paper presents a Matlab-based tutorial for model-based 
prognostics, which combines a physical model with 
observed data to identify model parameters, from which the 
remaining useful life (RUL) can be predicted. Among many 
model-based prognostics algorithms, the particle filter is 
used in this tutorial for parameter estimation of damage or a 
degradation model in model-based prognostics. The tutorial 
is presented using a Matlab script with 62 lines, including 
detailed explanations. As examples, a battery degradation 
model and a crack growth model are used to explain the 
updating process of model parameters, damage progression, 
and RUL prediction. In order to illustrate the results, the 
RUL at an arbitrary cycle are predicted in the form of 
distribution along with the median and 90% prediction 
interval. 

1. INTRODUCTION 

Although many prognostics methods have been presented in 
literature (Daigle & Goebel, 2011; DeCastro et al., 2009; 
Luo et al., 2008), it is still difficult for engineers to use them 
for their applications. The objective of this paper is to 
demonstrate how to use a prognostics method using a 
simple Matlab code as short as 62 lines. 

Among different prognostics methods, the model-based 
approach is considered, which assumes that a physical 
model describing the behavior of damage or degradation is 
available. In this approach, the model parameters are often 
unknown and need to be identified as a part of the 
prognostic process. The method combines the model with 
measured data to identify the model parameters and predict 

its behavior under future loading conditions. There are 
several methods to estimate model parameters, such as the 
Kalman filter (KF) (Kalman, 1960), Particle filter (PF) 
(Orchard & Vachtsevanos, 2007; Zio & Peloni, 2011; Li et 
al., 2003), and Bayesian method (BM) (An et al., 2011; An 
et al., 2012; Payne, 2005). In this paper, PF is employed 
because it can be used for a nonlinear model with non-
Gaussian noise and is the most widely used in the field of 
prognostics.  

The Matlab code is composed of 62 lines including detailed 
explanations, which is further divided into three parts: (1) 
problem definition, (2) prognostics using PF, and (3) post-
processing. Users are required to modify the first part 
according to their application. For demonstration purposes, 
examples of battery degradation and crack growth are 
presented.  

This paper is organized as follows: in Section 2, the overall 
process of model-based prognostics is explained with the 
Matlab code; in Section 3, the usage is explained with a 
battery degradation example; and in Section 4, various cases 
are described with a crack growth example, followed by 
conclusions in Section 5. 

2. MODEL-BASED PROGNOSTICS 

The process of model-based prognostics is illustrated in 
Figure 1, in which the degradation model is expressed as a 
function of usage conditions U , elapsed cycle or time t , 
and model parameters θ . The usage conditions and time are 
given, while the model parameters characterizing the 
damage behavior should be identified. Then, the remaining 
useful life (RUL) which represents the remaining time to 
failure is calculated based on the estimated model 
parameters. 

The model parameters are estimated using an algorithm 
such as PF by integrating the damage model with the 
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damage data that represent the system’s health state at the 
time the data are obtained. Since damage cannot be directly 
measured in most cases, a damage quantification process is 
required from sensor measurement data, which is called 
structural health monitoring (SHM). This tutorial assumes 
that data are available in terms of the level of damage at 
various times. 

2.1. Model Definition: Battery Degradation 

In the following explanation, ‘line’ or ‘lines’ in a 
parenthesis indicates the line number of the code in 
Appendix. In the degradation of a battery (line 2), it is well 
known that the capacity of a secondary cell such as a 
Lithium-ion battery degrades over cycles in use, and the 
failure threshold is defined when the capacity fades by 30% 
of the rated value (line 7). A simple form of the empirical 
degradation model is expressed by an exponential growth 
model as follows (Goebel et al., 2008): 

( )expa btλ = −                              (1) 

where ,a b  are model parameters, t  is the time or cycles, 
and λ  is internal battery performance, such as electrolyte 
resistance ER  or transfer resistance CTR . The internal 
battery performance is normally observed instead of 
capacity. Also, there is a relationship between E CTR R+  and 
C /1 capacity (capacity at nominally rated current of 1A); 

E CTR R+  is typically inversely proportional to the C/1 
capacity. Therefore, in this paper, the observed data are 
assumed to be given as a form of C/1 capacity for the 
purpose of demonstrating the prognostics algorithm. 

The C /1  capacity data (lines 5-6) measured at every 5 
weeks (lines 3-4) are given in Table 1. The data are 
generated by (a) assuming that the true model parameters 

true 1a =  and true 0.012b = ; (b) calculating the true C /1 
capacity according to Eq. (1) for the given time steps; and 
(c) adding Gaussian noise 2~ (0,0.05 )Nε  to the true C /1 
capacity data. The true values of parameters are only used to 
generate observed data. Then, the goal of prognosis is to 
estimate b  using the data (lines 16-39)∗. 

2.2. Estimation Algorithm: Particle Filter (PF) 

PF uses a statistical method called Bayesian inference, in 
which observations are used to estimate and update 
unknown parameters as a form of the probability density 
function (PDF). Bayesian inference is based on the 
following Bayes’ theorem (Bayes, 1763): 

( ) ( ) ( )| |p L p∝z zΘ Θ Θ                         (2) 

where Θ  is a vector of unknown parameters, z  is a vector 
of observed data, ( )|L z Θ  is the likelihood or the PDF 

value of z  conditional on the given Θ , ( )p Θ  is the prior 

PDF of Θ , and ( )|p zΘ  is the posterior PDF of Θ  
conditional on z . 

In PF, the Bayesian update is processed in a sequential way 
with particles (or samples) having probability information of 
unknown parameters; When a new measurement is available, 
the posterior at the previous step is used as the prior 
information at the current step, and the parameters are 
updated by multiplying it with the likelihood. Therefore, PF 
is also known as the sequential Monte Carlo method 
(Orchard & Vachtsevanos, 2007; Zio & Peloni, 2011). The 
general process of PF is based on the state transition 
function f  and the measurement function h  (Zio & Peloni, 
2011; Li et al., 2003): 

( )1, ,k k k kx f x ν−= θ                           (3) 

( ),k k kz h x ω=                             (4) 
where k  is the time step index, kx  is the damage state, kθ  
is a vector of model parameters, kz  is measurement data. 

kν  and kω  are, respectively, process and measurement 
noise. In this paper, the state transition function f  is 
referred to as a damage model. 

According to the damage model in Eq. (3), the battery 
degradation model in Eq. (1) can be rewritten in the 
following form (line 29): 

( ) 1expk k kx b t x −= − ∆                            (5) 
with 1k kt t t−= + ∆ . In this case, process noise kν  is ignored 
because it can be handled through the uncertainty in model 

                                                           
∗ For simplicity, it is assumed that a = 1 is given. 

 
Figure 1. Illustration of the model-based prognostics process 

time step, k  initial, 1 2 3 4 5 
weeks 0 5 10 15 20 

C /1 (Ahr) 1.0000 0.9351 0.8512 0.9028 0.7754 
time step, k  6 7 8 9 10 

weeks 25 30 35 40 45 
C /1 (Ahr) 0.7114 0.6830 0.6147 0.5628 0.7090 

Table 1. Measurement data for battery degradation problem 



Annual Conference of Prognostics and Health Management Society 2012 
 

3 

parameters. For the measurement function, it is assumed 
that kz  is the same as C /1 capacity including measurement 
noise kω . Gaussian noise, ( )~ 0,k Nω σ , is used with 
unknown standard deviation σ . Therefore, the unknown 

parameters become [ ]( ), ,
T

x b σ = = Θ θ , including the 

damage state kx  which is obtained based on the model 
parameter kb  (see Eq. (5)) (line 8). 

The process of PF is based on the Bayes’ theorem illustrated 
in Figure 2 with one parameter estimation. At the first time 
step, i.e., 1k = , n  samples of the parameters are drawn 
from the initial (prior) distribution (lines 9, 16-21). Then, 
the following three steps are employed. In the first 
prediction step (lines 25-30), the posterior distributions of 
the model parameters at the previous ( 1k − th) step are used 
for the prior at the current ( k th) step in the form of samples 
(lines 26-27). Also, the damage state at the current time is 
transmitted from the samples of the damage model at the 
previous step based on the model parameters (lines 28-29). 
The samples in this step correspond to ( )kp Θ  in Figure 2. 
Next is the updating step (lines 31-33), which is related to 
the likelihood of measurement data ( )|k kL z Θ  in the figure. 
Assuming kω  is normally distributed, the likelihood of the 
measurement can be expressed as (line 33): 

( )
( ) 2

| , ,

1 1exp , 1, ,
22

i i i
k k k k

i i
k k k

ii
kk

L z x b

z x b
i n

σ

σπσ

  −  = − =
  

   



      (6) 

In Eq. (6), the PDF value of kz  at the given i th samples of 
the unknown parameters , ,x b σ=Θ  corresponds to the 
weight of the i th samples; the weight is proportional to the 
magnitude of the PDF value, which is expressed as the 
length of the vertical bar in Figure 2. Finally, the samples 
with high or low weight are duplicated or eliminated, 
respectively, at the resampling step (lines 34-39). Among 

several methods, the inverse CDF method (Zio & Peloni, 
2011) is used, which is illustrated in Figure 3. Firstly, a 
CDF is constructed from the likelihood function in Eq. (6) 
(line 35), which is illustrated as solid curve in the figure. 
Next, a random value is generated from ( )0,1U  (line 37), 
which becomes a CDF value (e.g., 0.45 in the figure). 
Finally, a sample of the parameter having the CDF value is 
found (line 38), which is marked by a rectangle in the figure. 
By repeating this process n  times, n  samples are obtained 
(line 36). Note that since samples exist in a discrete form, 
the sample having the closest value to the CDF value is 
selected. Consequently, the resampled results become the 
posterior distribution ( )1:|k kp zΘ  in Figure 2, which 
corresponds to the posterior distribution at the current step 
(line 38), and is also used as the prior distribution at the next 
( 1k + th) step (lines 25-30). 

2.3. Prognosis: Predicting the Damage State and RUL 

Once the estimated parameter is obtained (lines 25-39, line 
43), the future damage state and RUL can be predicted by 
progressing the damage state until it reaches the threshold as 
shown in Figure 4 (lines 24-30, 40-47). In the figure, the 
two dashed curves and the PDF shape, respectively, 

 
Figure 2. Illustration of the PF process 

 
Figure 3. Illustration of resampling method 

 
Figure 4. Illustration of RUL prediction 



Annual Conference of Prognostics and Health Management Society 2012 
 

4 

represent the prediction interval of the damage state and the 
distribution of time when the damage state reaches the 
threshold. The distribution of RUL can be obtained by 
subtracting this PDF from the threshold. In the prognosis 
step, only the damage state is transmitted (lines 25-30) 
without updating model parameters (lines 40-41). At this 
time, the measurement error with the updated standard 
deviation is added to the damage state (lines 44-46). 

3. MATLAB IMPLEMENTATION 

In this section, the usage of the 62-line Matlab code is 
explained. The code is divided into three parts: (1) problem 
definition for user-specific applications, (2) prognostics 
using PF, and (3) post-processing for displaying results. The 
block diagram of the code is illustrated in Figure 5. Only the 
problem definition part needs to be modified for different 
applications, which are further divided into two sections: 
parameter definition and model definition. In the parameter 
definition, all known parameters as well as the initial 
estimate of unknown parameters are defined, such as the 
name of parameters to be estimated, the probability 
parameters of initial distributions of the unknown 
parameters and measured data, etc. (lines 1-14). Next, the 
damage equation or state transition function is defined in 
model definition (line 29). Once these two are completed, 
users can obtain the RUL distribution at the current time and 
its percentiles, median and 90% prediction interval. Detailed 
explanations are given in the following subsections with an 
example of battery degradation, in which italicized bold 
letters represent the Matlab code in the Appendix. 

3.1. Problem Definition (Lines 1-14, 29) 

3.1.1. Parameter Definition (Lines 1-14) 

For the battery degradation example, ‘Battery’ is used for 
WorkName, which is the name of the result file. The 
capacity is measured at every 5 weeks, so ‘weeks’ and the 
number 5 are, respectively, typed in TimeUnit and dt. The 
C/1 capacity data in Table 1 are stored in measuData, which 

is a 1 1k ×  vector. According to the definition of failure 
threshold in Section 2.1, 0.3 (30% of C/1 capacity) is used 
for thres. ParamName is the name of the unknown 
parameters to be estimated; damage state ‘x’, model 
parameter ‘b’ and the standard deviation of measurement 
error ‘s’ are included. When determining the parameters’ 
name, there are four cautions: (1) the user can define 
anything for the parameter’s name, but the length of 
parameters’ name should be the same as each other; (2) 
when assigning a one letter name, be careful not to use i, j, k, 
n, p, u because they are already used in the code; (3) the 
parameter’s name representing the damage state and model 
parameters should be used as the model equation on line 29; 
and (4) the parameter’s name of the damage state and 
standard deviation, respectively, should be placed on the 
first and the last row. initDisPar is a p q×  matrix of 
probability parameters of initial distributions, where p  and 
q  are the number of unknown parameters and probability 
parameters, respectively. Since there are no available prior 
information, it is assumed that the initial distributions of the 
three (=p) unknown parameters are uniform whose 
probability parameters are two (=q), lower and upper 
bounds: 

( ) ( ) ( )0 0~ 0.9,1.1 , ~ 0,0.05 , ~ 0.01,0.1ox U b U s U     (7) 

Equation (7) can be typed as [0.9 1.1; 0 0.05; 0.01 0.1]; in 
initDisPar. The rest of the required parameters are the 
number of particles (or samples) n and significance level 
signiLevel for calculating the confidence interval (C.I.) and 
prediction interval (P.I.). Usually, 1,000~5,000 particles and 
a 5, 2.5 or 0.5 significance level for 90%, 95% or 99% 
intervals are used. In this example, 5000 and 5 are set for n 
and signiLevel, respectively. To consider the effect 
according to the number of samples, users can refer to Ref. 
(Pitt et al., 2012). 

3.1.2. Model Definition (Line 29) 

The damage model equation in Eq. (5) is used in line 29. In 
the equation, the time interval t∆  is expressed as dt in the 
script, which was defined in line 4. Also, the model 
parameter kb  and the damage state at the previous step 1kx − , 
respectively, are expressed as b and x, which were defined 
in line 8. The algebraic expressions should use component-
wise operations (i.e., using ‘.’) since damage state is a 
vector with n  samples. 

3.2. Prognostics using PF (Lines 15-47) 

The prognostics process is composed of three steps: (1) the 
initial distributions of the parameters (lines 16-21), (2) 
estimation process (lines 25-39, 43), and (2) prognosis (lines 
24-30, 40-47). In terms of the code usage, there are two 
issues that can be considered according to users’ intention: 
the initial distribution (line 18) and the likelihood function 

 
Figure 5. Block diagram of the code 
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(line 33). In the code, the default options for the initial 
distribution and the likelihood function, respectively, are 
uniform and normal distribution. The other probability 
distributions can also be employed, and this will be 
introduced in Section 4. 

3.3. Post-processing (Lines 48-62) 

Once problem definition is completed and the code is 
implemented, distribution and its percentiles of RUL at the 
current time can be displayed. Figure 6 shows RUL results 
at 45 weeks after the updating process is progressed up to 

9k =  (see Table 1; 9k =  corresponds to k1=10 in the 
script since the initial, 0k =  is stored in k1=1). Figure 6(b) 
shows 5, 50 (median), and 95 percentiles, which are caused 
by signiLevel=5 (line 13). Also, the solid box in the figure 
represents that the results are saved as a name of 
‘WorkName (line 2) at current time.mat’. 

The other results, such as the trace of parameters and 
prediction of the damage state, can be displayed by using 
sampling results during the updating process. Users can 
display the sampling results of any variable at each step by 
entering ParamResul into the Matlab command window; 
xResul, bResul and sResul are forms of adding 
ParamName (line 8) to Resul. Therefore, users can draw 
the percentiles of the damage state prediction by coding 
plot(repmat(time,1,3), prctile(xResul',perceValue)'), and 
for the other cases, xResul is replaced with bResul or 
sResul. If the true values of the model parameters are 

known, the results can be compared with the true values. In 
this problem, the true values of b=0.012 and s=0.05, and the 
true damage state are calculated using Eq. (1) or Eq. (5). 
The additional visual results are shown in Figure 7. 

4. PRACTICAL USE 

The code can be easily adapted by users for more practical 
use. As an example, the usage algorithm with a crack 
growth example is considered in the following subsections. 

4.1. Model Definition: Crack Growth 

It is assumed that a through-the-thickness center crack exists 
in an infinite plate under the mode I loading condition. The 
rate of damage growth can be expressed using the Paris 
model (Paris & Erdogan, 1963) as 

( )d ,
d

ma C K K a
N

σ π= ∆ ∆ = ∆                       (8) 

where a  is the crack size, N  is the number of cycles, m  
and C  are damage model parameters, K∆  is the range of 
the stress intensity factor, and σ∆  is the stress range. The 
model can be rewritten in the form of the state transition 
function: 

( )1 1
km

k k k ka C a dN aσ π − −= ∆ +                       (9) 

The model parameters km  and kC  as well as the damage 
state ka  are estimated using the measured crack size kz  at 
every 50 cycles under loading condition σ∆ =78MPa, 
which is listed in Table 2. First the true crack size data are 
generated using Eq. (9) with true 3.8m =  and 

10
true 1.5 10C −= × . The measured crack size data are then 

generated by multiplying noise, which is lognormally 
distributed with standard deviation of 0.001/ ka (m). For the 
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(a) RUL distribution 

 
(b) percentiles of RUL 

distribution 
Figure 6. Visual results obtained from the code:  battery 

degradation example 
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(a) trace of parameter update 
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(b) C/1 capacity prediction 

Figure 7. Visual results obtained from the additional code: 
battery degradation example 

time step, k  initial, 0 1 2 3 4 
time (cycles) 0 50 100 150 200 
crack size (m) 0.0119 0.0103 0.0118 0.0095 0.0085 
time step, k  5 6 7 8 9 
time (cycles) 250 300 350 400 450 
crack size (m) 0.0122 0.0110 0.0120 0.0113 0.0122 
time step, k  10 11 12 13 14 
time (cycles) 500 550 600 650 700 
crack size (m) 0.0110 0.0124 0.0117 0.0138 0.0127 
time step, k  15 16 17 18 19 
time (cycles) 750 800 850 900 950 
crack size (m) 0.0115 0.0135 0.0124 0.0141 0.0160 
time step, k  20 21 22 23 24 
time (cycles) 1000 1050 1100 1150 1200 
crack size (m) 0.0157 0.0149 0.0156 0.0153 0.0155 

Table 2. Measurement data for crack growth problem 
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RUL calculation, the critical crack size is determined as 
0.0463m. More specific information for crack growth 
problem is in the literature by An et al. (2012). 

It is assumed that the standard deviation of measurement, 
σ , is known as 0.001m. Also, the initial distribution of the 
parameters and the likelihood function are, respectively, 
normal and lognormal distributions, which are as follows: 

- initial distribution: 

 
( )( )

( ) ( )

24
0

2 2
0 0

~ 0.01, 5 10 ,

~ 4,0.2 , log ~ 22.33,1.12

a N

m N C N

−×

−
       (10) 

- likelihood function: 
( )

2

| , ,

ln1 1exp , 1, ,
22

i i i
k k k k

i
k k

ii
kk k

L z a m C

z
i n

z
λ

ζπζ

  −
 = − = 
   



      (11) 

where 
2

ln 1
( , )

i
k i i i

k k ka m C
σζ

  
 = +  
   

 and 

( )21ln ( , )
2

i i i i i
k k k k ka m Cλ ζ = −  . 

4.2. Modifying the Code for the Crack Growth Problem 

4.2.1. Problem Definition 

Based on the above given information, the code in the 
Appendix is changed as follows: 

- line 2: WorkName='Crack'; 

- line 3: TimeUnit='cycles'; 

- line 4: dt=50; (or dN=50, but should be matched with 
line 29) 

- lines 5-6: measuData=[0.0119  0.0103  0.0118  0.0095  
0.0085  0.0122  0.0110  0.0120  0.0113  0.0122  0.0110  
0.0124  0.0117  0.0138  0.0127  0.0115  0.0135  0.0124  
0.0141  0.0160  0.0157  0.0149  0.0156  0.0153  
0.0155]'; 

- line 7: thres=0.0463;  

- line 8: ParamName=['a';'m'; 'C'; 's']; 

- line 9: initDisPar=[0.01 5e-4; 4 0.2; -22.33 1.12; 0.001 
0]; This is corresponds to Eq. (10) except the last two 
values, 0.001 and 0 for σ (='s'). Even if σ  is a 
deterministic value, it should be included in lines 8-9. 
Therefore, users should make σ  become a deterministic 
value (0.001m) by using 0.001 and 0, which stand for 
mean and standard deviation, respectively. In other 

words, the probability parameters should be set to make 
the n  samples become the same as a deterministic value. 

- line 13: signiLevel=2.5; 95% intervals are calculated. 

- insert it next line 13: delSigma=78;  

- line 29: exp(C).*(delSigma.*sqrt(pi*a)).^m.*dt+a; This 
corresponds to Eq. (9), but note that ( )log C  is used 
instead of C  due to a numerical problem ( C  is a very 
small value). 

4.2.2. Prognostics using PF  

The initial distribution of the parameters and the likelihood 
function are different from those of battery degradation. 
Therefore, the lines 18, 33 and 45 should be modified as 
follows: 

- line 18: param(j,:)=normrnd(initDisPar(j,1),initDisPar 
(j,2),1,n); 

- line 33: sigl=sqrt(log(1+(paramPredi(end,:)./ 
paramPredi(1,:)).^2)); mul=log(paramPredi(1,:))-0.5* 
sigl.^2; likel=lognpdf(measuData(k),mul,sigl); 

- line 45: sigl=sqrt(log(1+(param(end,:)./param 
(1,:)).^2));mul=log(param(1,:))-0.5*sigl.^2; 
eval([ParamResul(1,:)'(k,:)=lognrnd (mul,sigl,1,n);']); 

If the prior information and the distribution type of 
measurement error are not given, the initial distribution and 
the likelihood function should be assumed. It would be a 
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(b) percentiles of RUL 
distribution 

Figure 8. Visual results obtained from the code: crack growth 
example 
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(b) crack growth prediction 

Figure 9. Visual results obtained from the additional code: 
crack growth example 
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good exercise to study different distribution types based on 
the above revision. 

4.2.3. Post-Processing  

The results obtained from the code are shown in Figure 8. 
Also, users can obtain Figure 9 using the stored results of 
the parameters; aResul, mResul, CResul which can be 
known by typing ParamResul in the command window. 

5. CONCLUSION 

This paper presents a tutorial for model-based prognostics 
with a Matlab code. The code is simply constructed with 62 
lines using an example of battery degradation, and users can 
easily modify the code for their specific applications. Also, 
more practical cases are considered with a crack growth 
example. This will be helpful for the beginners in 
prognostics to use the prognostics method for their 
applications. 
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APPENDIX: MATLAB CODE

%===== PROBLEM DEFINITION: PARAMETER DEFINITION ============================= 1 
WorkName='Battery';                           % work results are saved by WorkName 2 
TimeUnit='weeks';                                                   % time unit name 3 
dt=5;                                                   % time interval (five weeks) 4 
measuData=[1.0000  0.9351  0.8512  0.9028  0.7754  0.7114  0.6830  0.6147 ... 5 
             0.5628  0.7090]';      % measured data at every time intervals (k1 x 1) 6 
thres=0.3;                                              % threshold - critical value 7 
ParamName=['x'; 'b'; 's'];              % model parameters' name to be estimated 8 
initDisPar=[0.9 1.1; 0 0.05; 0.01 0.1];                9 

% probability parameters of initial distribution, p x q 10 
                    % (p: num. of unknown param, q: num. of probability param) 11 

n=5e3;                                                         % number of particles 12 
signiLevel=5;                                  % significance level for C.I. and P.I. 13 
%============================================================================ 14 
% % % PROGNOSTICS using PARTICLE FILTER 15 
p=size(ParamName,1); 16 
for j=1:p;                                                   %% Initial Distribution 17 

param(j,:)=unifrnd(initDisPar(j,1),initDisPar(j,2),1,n);  18 
ParamResul(j,:)=[ParamName(j,:) 'Resul'];  19 
eval([ParamResul(j,:) '=param(j,:);']);  20 

end;                                                                                 21 
k1=length(measuData); k=1;                          %% Update Process or Prognosis 22 
if measuData(end)-measuData(1)<0; cofec=-1; else cofec =1; end 23 
while min(eval([ParamResul(1,:) '(k,:)'])*cofec)<thres*cofec;  k=k+1;                                                 24 

% step1. prediction (prior)                                                  25 
paramPredi=param;                                                              26 
for j=1:p; eval([ParamName(j,:) '=paramPredi(j,:);']); end 27 
paramPredi(1,:)=...%===== PROBLEM DEFINITION: MODEL DEFINITION ======  28 

exp(-b.*dt).*x;                                                              29 
  %====================================================================  30 

if k<=k1                                                     % (Update Process)  31 
% step2. update (likelihood) 32 
likel=normpdf(measuData(k),paramPredi(1,:),paramPredi(end,:));     33 
% step3. resampling 34 
for i=1:n; cdf(i)=sum(likel(1:i)); end; cdf=cdf./max(cdf); 35 
for i=1:n; 36 

               u=rand; 37 
loca=find(cdf >= u); param(:,i)=paramPredi(:,loca(1)); 38 

end;     39 
else                                                              % (Prognosis)  40 

param=paramPredi; 41 
end   42 

for j=1:p; eval([ParamResul(j,:) '(k,:)=param(j,:);']); end;    43 
if k>k1; 44 

eval([ParamResul(1,:) '(k,:)=normrnd(param(1,:),param(end,:));']); 45 
end 46 

end 47 
% % % POST-PROCESSING 48 
time=[0:dt:dt*(k-1)]';                                            %% RUL Calculation 49 
perceValue=[50 signiLevel 100-signiLevel]; 50 
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for i=1:n; 51 
loca=find(eval([ParamResul(1,:) '(:,i)'])*cofec>=thres*cofec); 52 
RUL(i)=time(loca(1))-time(k1); 53 

end; 54 
RULPerce=prctile(RUL',perceValue); 55 
figure; set(gca,'fontsize',14); hist(RUL,30);             %% RUL Results Display 56 
xlim([min(RUL) max(RUL)]); xlabel(['RUL' ' (' TimeUnit ')']); 57 
titleName=['at ' num2str(time(k1)) ' ' TimeUnit]; title(titleName) 58 
fprintf( '\n  # Percentiles of RUL at %g cycles \n', time(k1)) 59 
fprintf('\n   %gprct: %g,  median: %g,  %gprct: %g \n' , perceValue(2), ... 60 
         RULPerce(2), RULPerce(1), perceValue(3), RULPerce(3)) 61 
Name=[WorkName ' at ' num2str(time(k1)) '.mat']; save(Name);            %% Work Save 62 
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