
 A Tutorial for Model-based Prognostics Algorithms based on Matlab
Code

Dawn An1, Joo-Ho Choi2, and Nam Ho Kim3

1,2Korea Aerospace University, Goyang-City, Gyeonggi-do, 412-791, Korea
skal34@nate.com
jhchoi@kau.ac.kr

3 University of Florida, Gainesville, FL, 32611, USA
nkim@ufl.edu

ABSTRACT

This paper presents a Matlab-based tutorial for model-based
prognostics, which combines a physical model with
observed data to identify model parameters, from which the
remaining useful life (RUL) can be predicted. Among many
model-based prognostics algorithms, the particle filter is
used in this tutorial for parameter estimation of damage or a
degradation model in model-based prognostics. The tutorial
is presented using a Matlab script with 62 lines, including
detailed explanations. As examples, a battery degradation
model and a crack growth model are used to explain the
updating process of model parameters, damage progression,
and RUL prediction. In order to illustrate the results, the
RUL at an arbitrary cycle are predicted in the form of
distribution along with the median and 90% prediction
interval.

1. INTRODUCTION

Although many prognostics methods have been presented in
literature (Daigle & Goebel, 2011; DeCastro et al., 2009;
Luo et al., 2008), it is still difficult for engineers to use them
for their applications. The objective of this paper is to
demonstrate how to use a prognostics method using a
simple Matlab code as short as 62 lines.

Among different prognostics methods, the model-based
approach is considered, which assumes that a physical
model describing the behavior of damage or degradation is
available. In this approach, the model parameters are often
unknown and need to be identified as a part of the
prognostic process. The method combines the model with
measured data to identify the model parameters and predict

its behavior under future loading conditions. There are
several methods to estimate model parameters, such as the
Kalman filter (KF) (Kalman, 1960), Particle filter (PF)
(Orchard & Vachtsevanos, 2007; Zio & Peloni, 2011; Li et
al., 2003), and Bayesian method (BM) (An et al., 2011; An
et al., 2012; Payne, 2005). In this paper, PF is employed
because it can be used for a nonlinear model with non-
Gaussian noise and is the most widely used in the field of
prognostics.

The Matlab code is composed of 62 lines including detailed
explanations, which is further divided into three parts: (1)
problem definition, (2) prognostics using PF, and (3) post-
processing. Users are required to modify the first part
according to their application. For demonstration purposes,
examples of battery degradation and crack growth are
presented.

This paper is organized as follows: in Section 2, the overall
process of model-based prognostics is explained with the
Matlab code; in Section 3, the usage is explained with a
battery degradation example; and in Section 4, various cases
are described with a crack growth example, followed by
conclusions in Section 5.

2. MODEL-BASED PROGNOSTICS

The process of model-based prognostics is illustrated in
Figure 1, in which the degradation model is expressed as a
function of usage conditions U , elapsed cycle or time t ,
and model parameters θ . The usage conditions and time are
given, while the model parameters characterizing the
damage behavior should be identified. Then, the remaining
useful life (RUL) which represents the remaining time to
failure is calculated based on the estimated model
parameters.

The model parameters are estimated using an algorithm
such as PF by integrating the damage model with the

Dawn An et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Annual Conference of Prognostics and Health Management Society 2012

2

damage data that represent the system’s health state at the
time the data are obtained. Since damage cannot be directly
measured in most cases, a damage quantification process is
required from sensor measurement data, which is called
structural health monitoring (SHM). This tutorial assumes
that data are available in terms of the level of damage at
various times.

2.1. Model Definition: Battery Degradation

In the following explanation, ‘line’ or ‘lines’ in a
parenthesis indicates the line number of the code in
Appendix. In the degradation of a battery (line 2), it is well
known that the capacity of a secondary cell such as a
Lithium-ion battery degrades over cycles in use, and the
failure threshold is defined when the capacity fades by 30%
of the rated value (line 7). A simple form of the empirical
degradation model is expressed by an exponential growth
model as follows (Goebel et al., 2008):

()expa btλ = − (1)

where ,a b are model parameters, t is the time or cycles,
and λ is internal battery performance, such as electrolyte
resistance ER or transfer resistance CTR . The internal
battery performance is normally observed instead of
capacity. Also, there is a relationship between E CTR R+ and
C /1 capacity (capacity at nominally rated current of 1A);

E CTR R+ is typically inversely proportional to the C/1
capacity. Therefore, in this paper, the observed data are
assumed to be given as a form of C/1 capacity for the
purpose of demonstrating the prognostics algorithm.

The C /1 capacity data (lines 5-6) measured at every 5
weeks (lines 3-4) are given in Table 1. The data are
generated by (a) assuming that the true model parameters

true 1a = and true 0.012b = ; (b) calculating the true C /1
capacity according to Eq. (1) for the given time steps; and
(c) adding Gaussian noise 2~ (0,0.05)Nε to the true C /1
capacity data. The true values of parameters are only used to
generate observed data. Then, the goal of prognosis is to
estimate b using the data (lines 16-39)∗.

2.2. Estimation Algorithm: Particle Filter (PF)

PF uses a statistical method called Bayesian inference, in
which observations are used to estimate and update
unknown parameters as a form of the probability density
function (PDF). Bayesian inference is based on the
following Bayes’ theorem (Bayes, 1763):

() () ()| |p L p∝z zΘ Θ Θ (2)

where Θ is a vector of unknown parameters, z is a vector
of observed data, ()|L z Θ is the likelihood or the PDF

value of z conditional on the given Θ , ()p Θ is the prior

PDF of Θ , and ()|p zΘ is the posterior PDF of Θ
conditional on z .

In PF, the Bayesian update is processed in a sequential way
with particles (or samples) having probability information of
unknown parameters; When a new measurement is available,
the posterior at the previous step is used as the prior
information at the current step, and the parameters are
updated by multiplying it with the likelihood. Therefore, PF
is also known as the sequential Monte Carlo method
(Orchard & Vachtsevanos, 2007; Zio & Peloni, 2011). The
general process of PF is based on the state transition
function f and the measurement function h (Zio & Peloni,
2011; Li et al., 2003):

()1, ,k k k kx f x ν−= θ (3)

(),k k kz h x ω= (4)
where k is the time step index, kx is the damage state, kθ
is a vector of model parameters, kz is measurement data.

kν and kω are, respectively, process and measurement
noise. In this paper, the state transition function f is
referred to as a damage model.

According to the damage model in Eq. (3), the battery
degradation model in Eq. (1) can be rewritten in the
following form (line 29):

() 1expk k kx b t x −= − ∆ (5)
with 1k kt t t−= + ∆ . In this case, process noise kν is ignored
because it can be handled through the uncertainty in model

∗ For simplicity, it is assumed that a = 1 is given.

Figure 1. Illustration of the model-based prognostics process

time step, k initial, 1 2 3 4 5
weeks 0 5 10 15 20

C /1 (Ahr) 1.0000 0.9351 0.8512 0.9028 0.7754
time step, k 6 7 8 9 10

weeks 25 30 35 40 45
C /1 (Ahr) 0.7114 0.6830 0.6147 0.5628 0.7090

Table 1. Measurement data for battery degradation problem

Annual Conference of Prognostics and Health Management Society 2012

3

parameters. For the measurement function, it is assumed
that kz is the same as C /1 capacity including measurement
noise kω . Gaussian noise, ()~ 0,k Nω σ , is used with
unknown standard deviation σ . Therefore, the unknown

parameters become [](), ,
T

x b σ = = Θ θ , including the

damage state kx which is obtained based on the model
parameter kb (see Eq. (5)) (line 8).

The process of PF is based on the Bayes’ theorem illustrated
in Figure 2 with one parameter estimation. At the first time
step, i.e., 1k = , n samples of the parameters are drawn
from the initial (prior) distribution (lines 9, 16-21). Then,
the following three steps are employed. In the first
prediction step (lines 25-30), the posterior distributions of
the model parameters at the previous (1k − th) step are used
for the prior at the current (k th) step in the form of samples
(lines 26-27). Also, the damage state at the current time is
transmitted from the samples of the damage model at the
previous step based on the model parameters (lines 28-29).
The samples in this step correspond to ()kp Θ in Figure 2.
Next is the updating step (lines 31-33), which is related to
the likelihood of measurement data ()|k kL z Θ in the figure.
Assuming kω is normally distributed, the likelihood of the
measurement can be expressed as (line 33):

()
() 2

| , ,

1 1exp , 1, ,
22

i i i
k k k k

i i
k k k

ii
kk

L z x b

z x b
i n

σ

σπσ

  −  = − =
  

   



 (6)

In Eq. (6), the PDF value of kz at the given i th samples of
the unknown parameters , ,x b σ=Θ corresponds to the
weight of the i th samples; the weight is proportional to the
magnitude of the PDF value, which is expressed as the
length of the vertical bar in Figure 2. Finally, the samples
with high or low weight are duplicated or eliminated,
respectively, at the resampling step (lines 34-39). Among

several methods, the inverse CDF method (Zio & Peloni,
2011) is used, which is illustrated in Figure 3. Firstly, a
CDF is constructed from the likelihood function in Eq. (6)
(line 35), which is illustrated as solid curve in the figure.
Next, a random value is generated from ()0,1U (line 37),
which becomes a CDF value (e.g., 0.45 in the figure).
Finally, a sample of the parameter having the CDF value is
found (line 38), which is marked by a rectangle in the figure.
By repeating this process n times, n samples are obtained
(line 36). Note that since samples exist in a discrete form,
the sample having the closest value to the CDF value is
selected. Consequently, the resampled results become the
posterior distribution ()1:|k kp zΘ in Figure 2, which
corresponds to the posterior distribution at the current step
(line 38), and is also used as the prior distribution at the next
(1k + th) step (lines 25-30).

2.3. Prognosis: Predicting the Damage State and RUL

Once the estimated parameter is obtained (lines 25-39, line
43), the future damage state and RUL can be predicted by
progressing the damage state until it reaches the threshold as
shown in Figure 4 (lines 24-30, 40-47). In the figure, the
two dashed curves and the PDF shape, respectively,

Figure 2. Illustration of the PF process

Figure 3. Illustration of resampling method

Figure 4. Illustration of RUL prediction

Annual Conference of Prognostics and Health Management Society 2012

4

represent the prediction interval of the damage state and the
distribution of time when the damage state reaches the
threshold. The distribution of RUL can be obtained by
subtracting this PDF from the threshold. In the prognosis
step, only the damage state is transmitted (lines 25-30)
without updating model parameters (lines 40-41). At this
time, the measurement error with the updated standard
deviation is added to the damage state (lines 44-46).

3. MATLAB IMPLEMENTATION

In this section, the usage of the 62-line Matlab code is
explained. The code is divided into three parts: (1) problem
definition for user-specific applications, (2) prognostics
using PF, and (3) post-processing for displaying results. The
block diagram of the code is illustrated in Figure 5. Only the
problem definition part needs to be modified for different
applications, which are further divided into two sections:
parameter definition and model definition. In the parameter
definition, all known parameters as well as the initial
estimate of unknown parameters are defined, such as the
name of parameters to be estimated, the probability
parameters of initial distributions of the unknown
parameters and measured data, etc. (lines 1-14). Next, the
damage equation or state transition function is defined in
model definition (line 29). Once these two are completed,
users can obtain the RUL distribution at the current time and
its percentiles, median and 90% prediction interval. Detailed
explanations are given in the following subsections with an
example of battery degradation, in which italicized bold
letters represent the Matlab code in the Appendix.

3.1. Problem Definition (Lines 1-14, 29)

3.1.1. Parameter Definition (Lines 1-14)

For the battery degradation example, ‘Battery’ is used for
WorkName, which is the name of the result file. The
capacity is measured at every 5 weeks, so ‘weeks’ and the
number 5 are, respectively, typed in TimeUnit and dt. The
C/1 capacity data in Table 1 are stored in measuData, which

is a 1 1k × vector. According to the definition of failure
threshold in Section 2.1, 0.3 (30% of C/1 capacity) is used
for thres. ParamName is the name of the unknown
parameters to be estimated; damage state ‘x’, model
parameter ‘b’ and the standard deviation of measurement
error ‘s’ are included. When determining the parameters’
name, there are four cautions: (1) the user can define
anything for the parameter’s name, but the length of
parameters’ name should be the same as each other; (2)
when assigning a one letter name, be careful not to use i, j, k,
n, p, u because they are already used in the code; (3) the
parameter’s name representing the damage state and model
parameters should be used as the model equation on line 29;
and (4) the parameter’s name of the damage state and
standard deviation, respectively, should be placed on the
first and the last row. initDisPar is a p q× matrix of
probability parameters of initial distributions, where p and
q are the number of unknown parameters and probability
parameters, respectively. Since there are no available prior
information, it is assumed that the initial distributions of the
three (=p) unknown parameters are uniform whose
probability parameters are two (=q), lower and upper
bounds:

() () ()0 0~ 0.9,1.1 , ~ 0,0.05 , ~ 0.01,0.1ox U b U s U (7)

Equation (7) can be typed as [0.9 1.1; 0 0.05; 0.01 0.1]; in
initDisPar. The rest of the required parameters are the
number of particles (or samples) n and significance level
signiLevel for calculating the confidence interval (C.I.) and
prediction interval (P.I.). Usually, 1,000~5,000 particles and
a 5, 2.5 or 0.5 significance level for 90%, 95% or 99%
intervals are used. In this example, 5000 and 5 are set for n
and signiLevel, respectively. To consider the effect
according to the number of samples, users can refer to Ref.
(Pitt et al., 2012).

3.1.2. Model Definition (Line 29)

The damage model equation in Eq. (5) is used in line 29. In
the equation, the time interval t∆ is expressed as dt in the
script, which was defined in line 4. Also, the model
parameter kb and the damage state at the previous step 1kx − ,
respectively, are expressed as b and x, which were defined
in line 8. The algebraic expressions should use component-
wise operations (i.e., using ‘.’) since damage state is a
vector with n samples.

3.2. Prognostics using PF (Lines 15-47)

The prognostics process is composed of three steps: (1) the
initial distributions of the parameters (lines 16-21), (2)
estimation process (lines 25-39, 43), and (2) prognosis (lines
24-30, 40-47). In terms of the code usage, there are two
issues that can be considered according to users’ intention:
the initial distribution (line 18) and the likelihood function

Figure 5. Block diagram of the code

Annual Conference of Prognostics and Health Management Society 2012

5

(line 33). In the code, the default options for the initial
distribution and the likelihood function, respectively, are
uniform and normal distribution. The other probability
distributions can also be employed, and this will be
introduced in Section 4.

3.3. Post-processing (Lines 48-62)

Once problem definition is completed and the code is
implemented, distribution and its percentiles of RUL at the
current time can be displayed. Figure 6 shows RUL results
at 45 weeks after the updating process is progressed up to

9k = (see Table 1; 9k = corresponds to k1=10 in the
script since the initial, 0k = is stored in k1=1). Figure 6(b)
shows 5, 50 (median), and 95 percentiles, which are caused
by signiLevel=5 (line 13). Also, the solid box in the figure
represents that the results are saved as a name of
‘WorkName (line 2) at current time.mat’.

The other results, such as the trace of parameters and
prediction of the damage state, can be displayed by using
sampling results during the updating process. Users can
display the sampling results of any variable at each step by
entering ParamResul into the Matlab command window;
xResul, bResul and sResul are forms of adding
ParamName (line 8) to Resul. Therefore, users can draw
the percentiles of the damage state prediction by coding
plot(repmat(time,1,3), prctile(xResul',perceValue)'), and
for the other cases, xResul is replaced with bResul or
sResul. If the true values of the model parameters are

known, the results can be compared with the true values. In
this problem, the true values of b=0.012 and s=0.05, and the
true damage state are calculated using Eq. (1) or Eq. (5).
The additional visual results are shown in Figure 7.

4. PRACTICAL USE

The code can be easily adapted by users for more practical
use. As an example, the usage algorithm with a crack
growth example is considered in the following subsections.

4.1. Model Definition: Crack Growth

It is assumed that a through-the-thickness center crack exists
in an infinite plate under the mode I loading condition. The
rate of damage growth can be expressed using the Paris
model (Paris & Erdogan, 1963) as

()d ,
d

ma C K K a
N

σ π= ∆ ∆ = ∆ (8)

where a is the crack size, N is the number of cycles, m
and C are damage model parameters, K∆ is the range of
the stress intensity factor, and σ∆ is the stress range. The
model can be rewritten in the form of the state transition
function:

()1 1
km

k k k ka C a dN aσ π − −= ∆ + (9)

The model parameters km and kC as well as the damage
state ka are estimated using the measured crack size kz at
every 50 cycles under loading condition σ∆ =78MPa,
which is listed in Table 2. First the true crack size data are
generated using Eq. (9) with true 3.8m = and

10
true 1.5 10C −= × . The measured crack size data are then

generated by multiplying noise, which is lognormally
distributed with standard deviation of 0.001/ ka (m). For the

20 40 60 80 100 120 1
0

100

200

300

400

500

600

RUL (weeks)

at 45 weeks

(a) RUL distribution

(b) percentiles of RUL

distribution
Figure 6. Visual results obtained from the code: battery

degradation example

5 10 15 20 25 30 35 40 45
0

0.02

0.04

Time (weeks)

b

 Median
90% CI
True

0 5 10 15 20 25 30 35 40 45

0.02

0.04

0.06

0.08

0.1

Time (weeks)

s

Median
90% CI
True

(a) trace of parameter update

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Time (weeks)

C
/1

 c
ap

ac
ity

 (A
hr

)

Median
90% PI
Measurement
True
Threshold

(b) C/1 capacity prediction

Figure 7. Visual results obtained from the additional code:
battery degradation example

time step, k initial, 0 1 2 3 4
time (cycles) 0 50 100 150 200
crack size (m) 0.0119 0.0103 0.0118 0.0095 0.0085
time step, k 5 6 7 8 9
time (cycles) 250 300 350 400 450
crack size (m) 0.0122 0.0110 0.0120 0.0113 0.0122
time step, k 10 11 12 13 14
time (cycles) 500 550 600 650 700
crack size (m) 0.0110 0.0124 0.0117 0.0138 0.0127
time step, k 15 16 17 18 19
time (cycles) 750 800 850 900 950
crack size (m) 0.0115 0.0135 0.0124 0.0141 0.0160
time step, k 20 21 22 23 24
time (cycles) 1000 1050 1100 1150 1200
crack size (m) 0.0157 0.0149 0.0156 0.0153 0.0155

Table 2. Measurement data for crack growth problem

Annual Conference of Prognostics and Health Management Society 2012

6

RUL calculation, the critical crack size is determined as
0.0463m. More specific information for crack growth
problem is in the literature by An et al. (2012).

It is assumed that the standard deviation of measurement,
σ , is known as 0.001m. Also, the initial distribution of the
parameters and the likelihood function are, respectively,
normal and lognormal distributions, which are as follows:

- initial distribution:

()()

() ()

24
0

2 2
0 0

~ 0.01, 5 10 ,

~ 4,0.2 , log ~ 22.33,1.12

a N

m N C N

−×

−
 (10)

- likelihood function:
()

2

| , ,

ln1 1exp , 1, ,
22

i i i
k k k k

i
k k

ii
kk k

L z a m C

z
i n

z
λ

ζπζ

  −
 = − = 
   



 (11)

where
2

ln 1
(,)

i
k i i i

k k ka m C
σζ

  
 = +  
   

 and

()21ln (,)
2

i i i i i
k k k k ka m Cλ ζ = −  .

4.2. Modifying the Code for the Crack Growth Problem

4.2.1. Problem Definition

Based on the above given information, the code in the
Appendix is changed as follows:

- line 2: WorkName='Crack';

- line 3: TimeUnit='cycles';

- line 4: dt=50; (or dN=50, but should be matched with
line 29)

- lines 5-6: measuData=[0.0119 0.0103 0.0118 0.0095
0.0085 0.0122 0.0110 0.0120 0.0113 0.0122 0.0110
0.0124 0.0117 0.0138 0.0127 0.0115 0.0135 0.0124
0.0141 0.0160 0.0157 0.0149 0.0156 0.0153
0.0155]';

- line 7: thres=0.0463;

- line 8: ParamName=['a';'m'; 'C'; 's'];

- line 9: initDisPar=[0.01 5e-4; 4 0.2; -22.33 1.12; 0.001
0]; This is corresponds to Eq. (10) except the last two
values, 0.001 and 0 for σ (='s'). Even if σ is a
deterministic value, it should be included in lines 8-9.
Therefore, users should make σ become a deterministic
value (0.001m) by using 0.001 and 0, which stand for
mean and standard deviation, respectively. In other

words, the probability parameters should be set to make
the n samples become the same as a deterministic value.

- line 13: signiLevel=2.5; 95% intervals are calculated.

- insert it next line 13: delSigma=78;

- line 29: exp(C).*(delSigma.*sqrt(pi*a)).^m.*dt+a; This
corresponds to Eq. (9), but note that ()log C is used
instead of C due to a numerical problem (C is a very
small value).

4.2.2. Prognostics using PF

The initial distribution of the parameters and the likelihood
function are different from those of battery degradation.
Therefore, the lines 18, 33 and 45 should be modified as
follows:

- line 18: param(j,:)=normrnd(initDisPar(j,1),initDisPar
(j,2),1,n);

- line 33: sigl=sqrt(log(1+(paramPredi(end,:)./
paramPredi(1,:)).^2)); mul=log(paramPredi(1,:))-0.5*
sigl.^2; likel=lognpdf(measuData(k),mul,sigl);

- line 45: sigl=sqrt(log(1+(param(end,:)./param
(1,:)).^2));mul=log(param(1,:))-0.5*sigl.^2;
eval([ParamResul(1,:)'(k,:)=lognrnd (mul,sigl,1,n);']);

If the prior information and the distribution type of
measurement error are not given, the initial distribution and
the likelihood function should be assumed. It would be a

1000 1200 1400 1600 1800 2000 2200
0

200

400

600

800

1000

RUL (cycles)

at 1200 cycles

(a) RUL distribution

(b) percentiles of RUL
distribution

Figure 8. Visual results obtained from the code: crack growth
example

0 200 400 600 800 1000 120

3.5

4

4.5

Time (cycles)

m

Median
90% CI
True

200 400 600 800 1000 120
-26

-24

-22

-20

Time (cycles)

lo
g(

C
)

Median
90% CI
True

(a) trace of parameter update

0 500 1000 1500 2000 2500 3000 35
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (cycles)

C
ra

ck
 s

iz
e

(m
)

Median
90% PI
Measurement
True
Threshold

(b) crack growth prediction

Figure 9. Visual results obtained from the additional code:
crack growth example

Annual Conference of Prognostics and Health Management Society 2012

7

good exercise to study different distribution types based on
the above revision.

4.2.3. Post-Processing

The results obtained from the code are shown in Figure 8.
Also, users can obtain Figure 9 using the stored results of
the parameters; aResul, mResul, CResul which can be
known by typing ParamResul in the command window.

5. CONCLUSION

This paper presents a tutorial for model-based prognostics
with a Matlab code. The code is simply constructed with 62
lines using an example of battery degradation, and users can
easily modify the code for their specific applications. Also,
more practical cases are considered with a crack growth
example. This will be helpful for the beginners in
prognostics to use the prognostics method for their
applications.

ACKNOWLEDGEMENT

This work was supported by the International Cooperation
of the Korea Insitute of Energy Technology Evaluation and
Planning (KETEP) grant funded by the Korea government
Ministry of Knowledge Economy (No. 20118520020010).

REFERENCES

An, D., Choi, J. H., Schmitz, T. L., & Kim, N. H., (2011).
In-Situ Monitoring and Prediction of Progressive Joint
Wear using Bayesian Statistics, Wear, vol. 270(11-12),
pp. 828-838.

An, D., Choi, J. H., & Kim, N. H., (2012). Identification of
Correlated Damage Parameters under Noise and Bias
Using Bayesian Inference. Structural Health
Monitoring, vol. 11(3), pp. 292-302.

Bayes, T., (1763). An Essay towards solving a problem in
the doctrine of chances, Philosophical Transactions of
the Royal Society of London, vol. 53, pp. 370-418.

Daigle, M., & Goebel, K., (2011). Multiple Damage
Progression Paths in Model-based Prognostics.
Aerospace Conference, 2011 IEEE.

DeCastro, J. A., Tang, L., Loparo, K. A., Goebel, K., and
Vachtsevanos, G., (2009). Exact Nonlinear Filtering
and Prediction in Process Model-based Prognostics.
Annual Conference of the Prognostics and Health
Management Society.

Goebel, K., Saha, B., Saxena, A., Celaya, J. R., &
Christophersen, J., (2008). Prognostics in Battery
Health Management. IEEE Instrumentation and
Measurements Magazine, vol. 11(4), pp. 33-40.

Kalman, R. E., (1960). A New Approach to Linear Filtering
and Prediction Problems. Transaction of the ASME—
Journal of Basic Engineering, vol. 82(1), pp. 35-45.

Luo, J., Pattipati, K.R., Qiao, L., & Chigusa, S., (2008).
Model-based Prognostic Techniques Applied to a

Suspension System. IEEE Transactions on System, Man
and Cybernetics, vol. 38(5), pp. 1156-1168.

Orchard, M. E., & Vachtsevanos, G. J., (2007). A Particle
Filtering Approach for On-Line Failure Prognosis in a
Planetary Carrier Plate. International Journal of Fuzzy
Logic and Intelligent Systems, vol. 7(4), pp. 221-227.

Paris, P. C. & Erdogan, F., (1963). A Critical Analysis of
Crack Propagation Laws, ASME Journal of Basic
Engineering, vol. 85, pp. 528-534.

Payne, S. J., (2005). A Bayesian Approach for the
Estimation of Model Parameters from Noisy Data Sets.
IEEE Signal Processing Letters, vol. 12(8), pp. 553-556.

Zio, E., & Peloni, G., (2011). Particle Filtering Prognostic
Estimation of the Remaining Useful Life of Nonlinear
Components. Reliability Engineering and System Safety,
vol. 96(3), pp. 403-409.

Li, P., Goodall, R. & Kadirkamanathan, V., (2003).
Parameter Estimation of Railway Vehicle Dynamic
Model using Rao-Blackwellised Particle Filter,
European Control Conference.

Pitt, M. K., Silva, R. S., Giordani, P., & Kohn, R., (2012).
On Some Properties of Markov Chain Monte Carlo
Simulation Methods based on the Particle Filter.
Journal of Econometrics, In Press (available online,
July 2012).

BIOGRAPHIES

Dawn An received the B.S. degree and M.S. degree of
mechanical engineering from Korea Aerospace University
in 2008 and 2010, respectively. She is now a joint Ph.D.
student at Korea Aerospace University and the University of
Florida. Her current research is focused on the Bayesian
inference, correlated parameter identification and the
methodology for prognostics and health management and
structural health monitoring.

Joo-Ho Choi received the B.S. degree of mechanical
engineering from Hanyang University in 1981, the M.S.
degree and Ph.D. degree of mechanical engineering from
Korea Advanced Institute of Science and Technology
(KAIST) in 1983 and 1987, respectively. During the year
1988, he worked as a Postdoctoral Fellow at the University
of Iowa. He joined the School of Aerospace and Mechanical
Engineering at Korea Aerospace University, Korea, in 1997
and is now Professor. His current research is focused on the
reliability analysis, design for life-time reliability, and
prognostics and health management.

Nam Ho Kim received the B.S. degree of mechanical
engineering from Seoul National University in 1989, the
M.S. degree and Ph.D. degree of mechanical engineering
from Korea Advanced Institute of Science and Technology
(KAIST) in 1991 and the University of Iowa in 1999,
respectively. He worked as a Postdoctoral Associate at the
University of Iowa from 1999 to 2001. He joined the Dept.
of Mechanical & Aerospace Engineering at the University

http://www.sciencedirect.com/science?_ob=PublicationURL&_tockey=%23TOC%235767%232011%23999039996%232840751%23FLA%23&_cdi=5767&_pubType=J&view=c&_auth=y&_acct=C000019180&_version=1&_urlVersion=0&_userid=404077&md5=693ec7e9fd4bcbb17ec84b611bbe265a

Annual Conference of Prognostics and Health Management Society 2012

8

of Florida, in 2002 and is now Associate Professor. His
current research is focused on design under uncertainty,
design optimization of automotive NVH problem, shape

DSA of transient dynamics (implicit/explicit) and structural
health monitoring.

APPENDIX: MATLAB CODE

%===== PROBLEM DEFINITION: PARAMETER DEFINITION ============================= 1
WorkName='Battery'; % work results are saved by WorkName 2
TimeUnit='weeks'; % time unit name 3
dt=5; % time interval (five weeks) 4
measuData=[1.0000 0.9351 0.8512 0.9028 0.7754 0.7114 0.6830 0.6147 ... 5
 0.5628 0.7090]'; % measured data at every time intervals (k1 x 1) 6
thres=0.3; % threshold - critical value 7
ParamName=['x'; 'b'; 's']; % model parameters' name to be estimated 8
initDisPar=[0.9 1.1; 0 0.05; 0.01 0.1]; 9

% probability parameters of initial distribution, p x q 10
 % (p: num. of unknown param, q: num. of probability param) 11

n=5e3; % number of particles 12
signiLevel=5; % significance level for C.I. and P.I. 13
%== 14
% % % PROGNOSTICS using PARTICLE FILTER 15
p=size(ParamName,1); 16
for j=1:p; %% Initial Distribution 17

param(j,:)=unifrnd(initDisPar(j,1),initDisPar(j,2),1,n); 18
ParamResul(j,:)=[ParamName(j,:) 'Resul']; 19
eval([ParamResul(j,:) '=param(j,:);']); 20

end; 21
k1=length(measuData); k=1; %% Update Process or Prognosis 22
if measuData(end)-measuData(1)<0; cofec=-1; else cofec =1; end 23
while min(eval([ParamResul(1,:) '(k,:)'])*cofec)<thres*cofec; k=k+1; 24

% step1. prediction (prior) 25
paramPredi=param; 26
for j=1:p; eval([ParamName(j,:) '=paramPredi(j,:);']); end 27
paramPredi(1,:)=...%===== PROBLEM DEFINITION: MODEL DEFINITION ====== 28

exp(-b.*dt).*x; 29
 %== 30

if k<=k1 % (Update Process) 31
% step2. update (likelihood) 32
likel=normpdf(measuData(k),paramPredi(1,:),paramPredi(end,:)); 33
% step3. resampling 34
for i=1:n; cdf(i)=sum(likel(1:i)); end; cdf=cdf./max(cdf); 35
for i=1:n; 36

 u=rand; 37
loca=find(cdf >= u); param(:,i)=paramPredi(:,loca(1)); 38

end; 39
else % (Prognosis) 40

param=paramPredi; 41
end 42

for j=1:p; eval([ParamResul(j,:) '(k,:)=param(j,:);']); end; 43
if k>k1; 44

eval([ParamResul(1,:) '(k,:)=normrnd(param(1,:),param(end,:));']); 45
end 46

end 47
% % % POST-PROCESSING 48
time=[0:dt:dt*(k-1)]'; %% RUL Calculation 49
perceValue=[50 signiLevel 100-signiLevel]; 50

Annual Conference of Prognostics and Health Management Society 2012

9

for i=1:n; 51
loca=find(eval([ParamResul(1,:) '(:,i)'])*cofec>=thres*cofec); 52
RUL(i)=time(loca(1))-time(k1); 53

end; 54
RULPerce=prctile(RUL',perceValue); 55
figure; set(gca,'fontsize',14); hist(RUL,30); %% RUL Results Display 56
xlim([min(RUL) max(RUL)]); xlabel(['RUL' ' (' TimeUnit ')']); 57
titleName=['at ' num2str(time(k1)) ' ' TimeUnit]; title(titleName) 58
fprintf('\n # Percentiles of RUL at %g cycles \n', time(k1)) 59
fprintf('\n %gprct: %g, median: %g, %gprct: %g \n' , perceValue(2), ... 60
 RULPerce(2), RULPerce(1), perceValue(3), RULPerce(3)) 61
Name=[WorkName ' at ' num2str(time(k1)) '.mat']; save(Name); %% Work Save 62

	Abstract
	1. Introduction
	2. Model-Based Prognostics
	2.1. Model Definition: Battery Degradation
	2.2. Estimation Algorithm: Particle Filter (PF)
	2.3. Prognosis: Predicting the Damage State and RUL

	3. Matlab Implementation
	3.1. Problem Definition (Lines 1-14, 29)
	3.1.1. Parameter Definition (Lines 1-14)
	3.1.2. Model Definition (Line 29)

	3.2. Prognostics using PF (Lines 15-47)
	3.3. Post-processing (Lines 48-62)

	4. Practical Use
	4.2.1. Problem Definition
	4.2.2. Prognostics using PF
	4.2.3. Post-Processing

	5. Conclusion
	Acknowledgement
	References
	Biographies
	Appendix: Matlab Code

