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ABSTRACT

This paper introduces a novel Markov process formulation
of stochastic fault growth modeling, in order to facilitate the
development and analysis of prognostics-based control adap-
tation. A metric representing the relative deviation between
the nominal output of a system and the net output that is ac-
tually enacted by an implemented prognostics-based control
routine, will be used to define the action space of the formu-
lated Markov process. The state space of the Markov pro-
cess will be defined in terms of an abstracted metric repre-
senting the relative health remaining in each of the system’s
components. The proposed formulation of component fault
dynamics will conveniently relate feasible system output per-
formance modifications to predictions of future component
health deterioration.

1. INTRODUCTION

Continuous improvements in fault diagnostic and fault
growth prognostic technologies have spawned a prolific
growth in the application domain for these technologies, and
a growing research interest in the development of techniques
for using available diagnostic and prognostic information to
improve system control and maintenance. Presently, a clear
analytical process may be applied to implement and evalu-
ate the effectiveness of tools for fault classification and fault
growth prediction; however, the same cannot generally be
said for the follow-on task of making intelligent control deci-
sions based on available diagnostic and prognostic informa-
tion. In general, the application of an analytical approach to
the implementation and evaluation of prognostics-based deci-
sion making techniques will be complicated by the potential
for high uncertainty in estimating the future effects of avail-
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able control actions, and the need to define a computationally
tractable space of present and future control decisions to be
optimized over.

Several recent publications have suggested metrics for quan-
tifying prognostic uncertainty and evaluating the ability of
control modifications to affect meaningful change on fault
growth predictions (Saxena et al., 2008; P. Wang et al., 2012;
Edwards et al., 2010). This paper describes a process for ab-
stracting uncertain models of environmental and fault growth
dynamics into the generalized notation of a non-deterministic
Markov process, in order to promote an application indepen-
dent analysis of prognostics-based control strategies.

Markov decision processes have been widely applied to the
representation of problems involving decision making in
the presence of uncertain or stochastic modeling informa-
tion in the contexts of economics (Hauriea & Moresino,
2006), supply chain management (Parlara et al., 1995), sched-
uled maintenance (Smilowitz & Madanat, 1994), health care
(Sonnenberg & Beck, 1993), and many other disciplines, in
addition to being a widely used tool for describing fault-
adaptive and robust control problems (Zhang & Jiang, 2008).
A formal description of fault growth modeling and remain-
ing useful life (RUL) estimation in terms of Markov process
models, as well as a survey of similar stochastic modeling
techniques, are given in Banjevic and Jardine (2006).

The state transition probabilities in a Markov process descrip-
tion of fault dynamics may be chosen to approximate an an-
alytical formulation of a stochastic process, such as a Gaus-
sian process model of fault growth dynamics, as described
in Sankararaman et al. (2009); alternatively, state transition
probabilities may be defined purely based on empirical ob-
servations of the fault growth process, as is the case with hid-
den Markov model learning techniques (Baruah & Chinnam,
2005), or they may be derived from a combination of a priori
and empirical information.
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The derivation of stochastic fault growth models for a partic-
ular application is not specifically addressed in this publica-
tion; however, an effort is made to clearly identify how vari-
ous sources of uncertain modeling information would be in-
corporated into the Markov process representation of fault dy-
namics. Arguments are provided for defining the state space
of the fault growth process in terms of a metric represent-
ing the relative health of system components, as well as for
defining the action space of the fault growth process in terms
of a metric representing the relative deviation between the
system’s nominal output response and the net system output
that is actually enacted by an implemented prognostics-based
control routine at each control time-step. Operational con-
straints on minimum acceptable system output performance
and maximum acceptable fault growth risk will be formulated
as bounds on the action space available to implemented con-
trollers.

2. GENERALIZED STOCHASTIC MODELING OF THE
FAULT GROWTH PROCESS

Consider a discretized fault growth process of the form:

γl∈Sl, Sl={αl, αl+∆l, αl+2∆l, ..., αl+ml∆l} (1)

pli,j(x (k) ,a (k) ,w (k))=P (γl (k+1)=sj |
γl (k)=si,a=a (k) ,w=w (k)), (2)

si, sj ∈ Sl, a (k) ∈ A (k) , w (k) ∈W (k) , k ∈ N
m∑
j=0

pli,j = 1, ∀ i ∈ {0, 1, ...,m} (3)

where γl (k) is a random variable representing the magnitude
of the lth component fault mode at time-index k, Sl represents
a uniformly quantized state space of potential fault magni-
tudes, and pli,j(x,a,w) represents the probability of transi-
tioning from damage state si to damage state sj , given esti-
mates of the system state x, a set of low-level control com-
mands a, and the states of environmental and other exoge-
nous inputs to the systemw. Eq. (3) specifies that the sum of
all transition probabilities defined at each system state must
always be equal to one.

The Markov process notation given in Eqs. (1)-(3) may be
used to describe fault growth processes for all systems in
which the following assumptions are satisfied:

Assumption 1. State transition probabilities pli,j are only
dependent on the current states of γl, x, a, and w, and not
on any states or inputs occurring previously. This is referred
to as the memoryless assumption, or the Markov assumption.
For cases in which the fault growth process is not completely
memoryless, but future states only depend on a finite number
m of previous states, the Markov assumption can be satisfied
by defining the state space of the process to be the orderedm-

tuple of the current state and the m previously visited states
(H. S. Wang & Chang, 1996).

Assumption 2. State transition probabilities are considered
to be time invariant; although, it may be the case that fault
growth models are not precisely known a priori and must
be adapted online using techniques such as particle filtering
(Orchard et al., 2008) or Bayesian learning (Saha et al., 2009).
Online adaptation of the prognostic model on the basis of past
observations will technically violate Assumption 1; however,
the error induced by this effect is typically ignored because
model adaptation transients are generally difficult to charac-
terize and they will die out as the model is adapted.

Assumption 3. At all discrete time-steps, the state space
S, the action space A, and the space of environmental and
other exogenous inputs to the system W are adequately rep-
resented by a finite set of states, which will be bounded from
above by the availability of computational resources. In the
event that fault growth must be modeled as a continuous time
process, such as the Poisson process (Shetty et al., 2008), a
representation of fault growth modeling similar to that given
in Eq. (2) may be expressed in terms of a continuous time
Markov process (Serfozo, 1979) or a semi-Markov process
(Dong & He, 2007).

The required assumptions are mild enough to allow a wide
array of fault growth processes to be described in terms of
the Markov process notation given in Eqs. (1)-(3) (Guidaa &
Pulcini, 2011; Tang et al., 2009).

2.1. Formulating the Markov process in terms of compo-
nent health rather than fault magnitude

Component fault magnitudes can generally be described by a
real number corresponding to a measurable physical property
such as crack length, spall width, or pitting depth; although,
in many cases, faults cannot be directly measured in situ and
diagnostic routines are needed to approximate current fault
magnitudes based on the secondary effects observed in avail-
able sensor measurements. Sensor noise and modeling uncer-
tainties will often result in significant diagnostic uncertainty,
and it is common practice for diagnostic estimates to be re-
ported in terms of a probability distribution over the potential
fault magnitudes that could correspond to a given set obser-
vations.

The notation introduced in this subsection will add a layer
of abstraction to the fault magnitude estimates produced by
online fault diagnostic and fault growth prognostic routines.
Rather than formulating the Markov process in terms of com-
ponent fault magnitudes, a transformation is assumed to exist
that will express the fault growth process in terms of an ap-
plication independent metric representing the state of heath
(SOH) of each system component.

The SOH for component l at time t will be represented in
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terms of a probability distribution over a uniformly quantized
set of component health percentages between 0% and 100%;

γl (t)∈S, S = {s1, s2, ..., sm},
s1 = 0%, si = si−1 + ∆%, 1 < i ≤ 100%/∆% (4)

where ∆% is a quantization step-size for the state space of
γl. The notation given in Eq. (2) is now considered to define
the probability of transitioning from one component SOH to
another, on the basis of the current states of x, a, and w at
time-index k.

Component fault magnitudes are generally expected to mono-
tonically increase with time; correspondingly, component
SOH should monotonically decrease with time. A mandate of
monotonically decreasing component health is incorporated
into the Markov process notation as follows:

pli,j = 0, if j > i,

m∑
j=0

pli,j = 1 ∀i ∈ {0, 1, ...,m} (5)

This constraint will be problematic for techniques that model
process uncertainty with an analytical distribution that lacks
an explicit lower bound. For example, in the case of fault
growth prognostic techniques such as Kalman filtering and
Gaussian process modeling, an assumption of Gaussian un-
certainty will introduce some probability that the fault mode
does not monotonically increase. In such cases, it would be
necessary to assure that the probability attributed to the non-
realizable outcomes, P (γl (τ) < γl (t)) for τ > t, will be
acceptably small. It will not always be the case that com-
ponent health is strictly monotonically decreasing; however,
consideration of this constraint serves to illustrate the flexibil-
ity provided by representing modeling uncertainties in terms
of a quantized probability mass function (pmf), when com-
pared to techniques that assume a continuous probability dis-
tribution function (pdf).

2.2. Formulating the action space of the fault growth pro-
cess in terms of commanded and applied loads

Consider a process model for component damage accumula-
tion that is expressed in terms of a metric representing the
load or stress applied to a component at each control time-
step:

pli,j(ul)=P (γl (k+1)=sj |γl (k)=si, ul=ul (k)),

si, sj ∈ S, ul ∈ Ul (k) (6)

where ul represents the load applied to component l and
Ul (k) represents the domain of feasible component load al-
locations for component l at time-index k. The component
loading variable may represent pressure, force, torque, or a
wide variety of other stressors that drive component damage.

Determination of Ul (k) at present and future control time-

steps will require a mapping function to translate system
hardware limitations and estimated environmental loading
conditions into the component loading domain. A mapping
between available low-level control actions and feasible com-
ponent loadings, as well as an inverse mapping are both as-
sumed to be known:

F (a (k) ,x (k) ,γ (k) ,w (k)) : A (k)→ U (k)

F (u (k) ,x (k) ,γ (k) ,w (k))
−1

: U (k)→ A (k)
(7)

where F represents a mapping from a given system state,
health state, exogenous demand state, and a set of low-level
control actions available at time-index k, onto the domain of
feasible component load allocations available at time-index
k.

2.2.1. Performance constraints

In addition to being defined in terms of the hardware limita-
tions of control effectors, the domain of feasible component
load allocations will generally also be bounded by operational
constraints on minimum allowable output performance and
maximum allowable fault growth risk.

Consider a constraint on minimum allowable system perfor-
mance that is defined in terms of a maximum allowable devi-
ation from some commanded system state:

|xc (k)− x (k)|i ≤ ∆i (k) , i ∈ {1, 2, ..., n} (8)

where x and xc are n dimensional vectors that represent the
actual and commanded output states of a system respectively,
and ∆i specifies a maximum acceptable error between the ith

dimensions of x and xc.

If the system’s kinematics are known, then Newton’s laws of
motion can be applied to express the system’s dynamics in
terms of the instantaneous forces on its constituent compo-
nents,

ẋ = f (x,u,w) (9)

If the system is overactuated, then formulating the sys-
tem’s dynamics in terms of instantaneous component loads
will result in actuation redundancies being identified by the
nullspace of u. Consider the following generic representa-
tion of nonlinear system dynamics:

ẋ = A (x,w) +B (x)u (10)

where A (x,w) ∈ Rn, B (x) ∈ Rn×q, x (t) ∈ Rn, and
u (t) ∈ Rq . If B (x) does not have full column rank, i.e,
rank{B (x)} = p < q ∀x, then the system is overactuated,
and B (x) can be factorized as:

B (x) = Bν (x)Bu (x) (11)

where Bν (x) ∈ Rn×p and Bu (x) ∈ Rp×q both have rank p.
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The system can now be rewritten as:

ẋ = A (x,w) +Bν (x)ν
ν = Bu (x)u

(12)

where ν(t) ∈ Rp represents the net output control effort pro-
duced by the system’s q components.

Inverting the dynamics given in Eq. (12) enables the perfor-
mance constraint given in Eq. (8) to be expressed as a max-
imum allowable deviation from a given output control effort
profile:

r = Bν (xc)
−1 · (ẋc −A (xc,w))

|νi (k)− ri (k)| ≤ ∆̃i (k) , i ∈ {1, 2, ..., p}
(13)

where ν and r are p dimensional vectors that represent an ac-
tual and a desired net output force to be exerted by the system
at a given time, and ∆̃i (k) specifies a maximum acceptable
error between the ith dimensions of ν and r.

Because Bν (x) has full column rank, a system response, ẋ,
is uniquely determined by ν (t); however, if the system is
overactuated, then the allocation of load among functionally
redundant components may be specified by minimizing the
aggregate component damages corresponding to load alloca-
tions in the nullspace of Bu (x). Prognostics-based control
in terms of component load allocations has been analyzed
for an overactuated electro-mechanical actuator and an un-
manned ground vehicle in previous publications (Bole et al.,
2010, 2011).

2.2.2. Prognostic constraints

Prognostic constraints are typically specified in terms of a
lower bound on the failure time of system components. Con-
straints on the minimum acceptable component failure time
may be specified in terms of a maximum acceptable prob-
ability that the component will reach 0% health by a given
time:

P (γl (tM ) = 0%|γl (tp) ,w (tp) , ul (tp)) < αl (14)

where tp is the time at which the fault growth prediction is
made and αl is an upper bound on the probability that com-
ponent l is failed at time tM .

If ul was known over the domain t = [tp, tM ], then for-
ward induction could be used to evaluate Eq. (14) from Eq.
(6). Many publications on the topic of prognostics-based con-
trol opt to simplify the prognostics problem by assuming that
component loadings will be unvarying over the prediction
horizon:

u (t) = u (tp) ∀t ∈ [tp, tM ] (15)

However, in most cases, time-varying environmental load-
ing conditions and time-varying component health estimates
are expected to result in time-varying loadings on a system’s

ζi (t)

Low 
Load

t

γi(tp)

health

tp + τa tp + τa tp + τa

γi = 0

High 
Load

tM

Figure 1. Uncertainty in fault growth predictions for high and
low loads at various prognostic horizons

components. In such cases, the production of prognostic es-
timates with the highest degree of realism will require future
component loadings to be modeled as a stochastic process
that accounts for the statistics of all parameters affecting com-
ponent load allocations within the controlled system.

Consider the drawing in Figure 1, the growth of uncertainty
in component health estimates at prognostic horizons of in-
creasing length is shown for two potential loading conditions,
denoted as ‘high load’ and ‘low load’. As shown in the figure,
fault growth estimates at different loading conditions are ex-
pected to diverge over time. In cases where prognostic uncer-
tainty becomes very large, due to high uncertainty on predic-
tions of future component loading conditions, or high uncer-
tainty on predictions of component damage as a function of
loading profiles, the magnitude of prognostic uncertainty may
be managed by limiting the length of the prediction horizon.

The specification of a lower bound on acceptable value at
risk (VaR) assessments of system health over the range t =
[tp, tM ] may be used to enforce constraints on component
longevity, using fixed horizon prognostic predictions. The
VaR of a random variable X at a confidence level ψ is de-
fined as:

V aRψ (X) = inf {x ∈ R : P (X < x) > ψ} (16)

A finite horizon prognosis constraint is written as follows:

V aRβl
(γl (tp + τ)) > ζl (tp + τ) (17)

where τ specifies a time horizon at which prognostic con-
straints will be evaluated, ζl specifies a lower bound on the
depletion of component health over the range t = [tp, tM ],
and βl defines the maximum acceptable probability that the
health of component l is less than ζl at time tp + τ .

An example definition of ζl (t) is given in Figure 1. The spec-
ification of an appropriate profile for ζl (t) will be left as a
design choice. Some general considerations for the specifica-
tion of an appropriate profile include:

1. If component health is expected to be monotonically de-
creasing, then ζl(t) must also be a monotonically de-
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creasing function. Additionally, if it is ever the case that
V aRβl

(γl (tp)) < ζl (tp + τ), then the prognostic con-
strain is unsatisfiable.

2. The greater the difference between V aRβl
(γl (tp)) and

ζl (tp + τ), the greater the control freedom allowed un-
der the prognostic constraint. Online or a priori infor-
mation could be used to make adjustments to ζl (t) so as
to allow for greater control freedom during higher pri-
ority time-periods at the expense of potentially incurring
greater component health deterioration over those time-
periods.

2.3. Fault prediction in terms of relative deviations from
nominal system outputs

Consider the existence of a nominal control system, which
would adequately control a system in the absence of any com-
ponent degradation modes. This section introduces a met-
ric to represent the relative deviation between the net output
control effort that would have been exerted by the system on
its environment if a nominal control law were used, and the
net output control effort that is actually exerted by a given
prognostics-based control routine at each control time-step.

The proposed metric is defined for each of the system’s output
degrees of freedom as:

ρl (k) =
|νl (k)|
|ν∗l (k)|

, l ∈ {1, 2, ..., p} (18)

where ν∗ and ν represent the net output control effort that
would have been commanded by a nominal control law and
the net control effort output that is actually commanded by an
implemented control routine at time-index k.

The Markov process defined in Eq. (6) is rewritten in terms
of this new metric as:

plsi,sj (ρ (k))=P (γl (k+1)=sj |γl (k)=si,ρ=ρ (k))

=

∫
νr∈Nr(k)

P (νr (k) |ρr = ρr (k)) · (19)

P (γl (k+1)= sj |γl (k)=si,u (k)=H(ν (k))) du

si, sj ∈ S, ul ∈ Ul (k) , r ∈ {1, 2, ..., p}

where P (νr (k) |ρr) can be estimated using available
stochastic modeling of the future net output control effort
demands on the system, and H (ν (k)) represents a map-
ping from a net system output force vector to a component
loading vector. As described in Section 2.2.1, if no over-
actuation is present in the system, then component loadings
are uniquely specified by a net system output force profile;
however, if the system is overactuated, then the nullspace of
the component loading domain can be resolved by an opti-
mization routine that seeks to minimize the aggregate loss

of health among functionally redundant degrees of freedom.
Note that all modeling of internal and external dynamics that
affect component degradation are now described by the prob-
ability transition matrix plsi,sj (ρ). This formulation of fault
growth dynamics provides a convenient means for analyzing
the prognostics-based control problem, because it directly re-
lates modifications to system output performance to predic-
tions of component degradations.

The performance constraint, defined in terms of allowable net
system output control effort in Eq. (13), is now expressed in
terms of ρ as:

|1− ρi (k)| ≤ ∆̄i (k) , i ∈ {1, 2, ..., p} (20)

where ∆̄i defines a constraint on the maximum allowable de-
viation from a system’s nominal control effort output in di-
mension i at time-index k.

A uniformly quantized state space for ρi under the perfor-
mance constraint is defined as:

ρi (k) ∈ Θ (k) , Θ (k) = [θ1, θ2, ..., θm],

θ1 = 1− ∆̄i (k) , θm = 1 + ∆̄i (k) (21)

2.3.1. An example of output control effort regulation

A simple example is considered here to examine the regula-
tion of a system’s net control effort output using the perfor-
mance metric ρ. The example system to be regulated is a
linear actuator attached to a simple mass-spring-damper sys-
tem, defined by a massm, a spring constant k, and a damping
coefficient c:

mẍ = −kx− cẋ+ ν (22)

A nominal control law for the system is represented by the
following proportional feedback equation:

ν∗ = kp · (x− xc) (23)

where x and xc represent an actual and a commanded actua-
tor position respectively, ν and ν∗ represent the net actuator
output force and that commanded by the nominal control law
respectively, and kp is a gain coefficient within the nominal
controller. Diagrams of the mass-spring-damper system and
the proposed control law are shown in Figure 2. Values for
all variables in the controlled mass-spring-damper system are
given in Table 1.

In this example, the net output force exerted by the controlled
effectors on the environment and the performance metric used
to regulate that output are both one dimensional:

ν = ρν∗ (24)

Figure 3 shows the behavior of the system as ρ is linearly var-
ied over the domain [0.2, 1]. It should generally be expected
that smaller values of ρ will induce greater errors in tracking
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x(k)(k)k
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m
(k)

(k)

C
e(k)

(k)

Plant Model Control System

(k)
x(k)

Figure 2. Diagram of mass-spring-damper plant model and
control system

Coefficient Value
m 1
k 2
c 5
kp 15

Table 1. Coefficients used in mass-spring-damper simulation

a desired output profile, and these induced errors will result
in greater net actuator output force demands by the nominal
control law. Both of these features are clearly visible in the
experimental results given in Figure 3. Another observation
that can be made from the results given in Figure 3 is that
while ρ < 1 will always result in an apparent reduction in the
net output control effort that would have been commanded by
a nominal control law at a given control time-step, the error
dynamics that are induced by lowering ρ will not necessarily
result in lowered net system output control effort over a finite
window of observation. A marginally increasing trend in the
peak-to-peak actuator loads over a cycle is observed as ρ is
lowered; this type of behavior illustrates the fact that achiev-
ing a good tradeoff between the reduction of component load-
ing and induced errors in trajectory tracking will generally
require closed loop regulation of ρ.

3. THE PROGNOSTICS-BASED CONTROL PROBLEM

The prognostics-based control problem can generally be
viewed as an optimization problem, in which implemented
control routines will select values of ρi at each control time-
step in an attempt to minimize the risks posed by the appli-
cation of load to degrading components, while also minimiz-
ing any deviation from a system’s nominal performance. The
problem of specifying appropriate metrics for assessing the
risk posed by probabilistic prognostic predictions of future
component health deterioration may generally be considered
independently from the problem of building prognostic mod-
els. Assuming that discrete Markov modeling will provide
a sufficiently accurate approximation of a system’s fault dy-
namics, then the Markov process notation described in Sec-
tion 2 could be used to evaluate any given risk metric for use
in any given prognostics-based control method. Future work
will address the specification of appropriate risk metrics and
the use of this Markov process formulation for deriving and
evaluating prognostics-based control policies on sample ap-
plications.

Figure 3. Plots showing position profile tracking and actuator
loading dynamics as ρ is varied over the range [0.2, 1]

If aversion to the potential degradation of a system’s nomi-
nal output loading performance and aversion to the potential
degradation of component SOH are adequately expressed in
terms of an expectation of accumulated state transition costs,
then the search for a control policy that optimizes a stochas-
tic system of the form disclosed in Eq. (19) is expressible
as a Markov decision process (MDP). MDPs are commonly
used to analyze problems involving decision making in the
presence of uncertain or stochastic information, and opti-
mizing control policies may be identified using well studied
MDP optimization techniques such as backwards induction
for finite horizon optimization problems, and linear program-
ming, value iteration, and policy iteration for discounted and
average-reward infinite horizon optimization problems. The
requirement that fault risk must be expressed as an expecta-
tion of accumulated state transition costs over a finite or in-
finite horizon may seem to be an overly restrictive constraint
on the general problem of quantifying risk; however, over the
past several decades much has been published on the theory
of encoding various forms of risk aversion into the specifi-
cation of MDP state transition costs (Hernandez & Marcus,
1996; Ruszczyriski, 2009).

4. CONCLUSIONS

This paper introduced a novel Markov process representation
of component health dynamics. A metric representing the
relative deviation between instantaneous samples of the net
output force that would have been enacted by a nominally
controlled system, and the net system outputs that are actually
enacted by an implemented prognostics-based control routine
at each time-step, was used to define the action space of the
Markov process. The state space of the proposed Markov pro-
cess formulation was defined in terms of an abstracted met-
ric representing the relative health remaining in each of the
system’s components. Operational constraints on minimum
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acceptable system output performance and maximum accept-
able fault growth risk were formalized, and the mappings nec-
essary to impose those constraints on the domain of feasible
control actions available to implemented prognostics-based
control routines were specified. Arguments were provided
for the potential convenience and robustness of the proposed
notation for evaluating prognostics-based controllers.
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