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ABSTRACT

Test benches are used to evaluate the performance of new 
turbofan engine parts during development phases. This can 
be especially risky for the bench itself because no one can 
predict in advance whether the component will behave 
properly. Moreover, a broken bench is often much more 
expensive than the deterioration of the component under 
test. Therefore, monitoring this environment is appropriate, 
but as the system is new, the algorithms must automatically 
adapt to the component and to the driver's behavior who 
wants to experience the system at the edge of its normal 
domain. 

In this paper we present a novelty detection algorithm used 
in batch mode at the end of each cycle. During a test cycle, 
the pilot increases the shaft speed by successive steps then 
finally ends the cycle by an equivalent slow descent. The
algorithm takes a summary of the cycle and works at a cycle 
frequency producing only one result at the end of each 
cycle. Its goal is to provide an indication to the pilot on the 
reliability of the bench's use for a next cycle.

1. INTRODUCTION

This document follows two previous articles published in 
2010 and 2011 in the PHM Society. The first one (Lacaille
& Gerez & Zouari, 2010b) presents the health-monitoring 
architecture we deploy on one of our test benches and gives
clues about adaptation to context changes in the use of the 
machine. We proposed an algorithmic solution using 
simultaneously an autoadaptive clustering algorithm and 
local detection tools calibrated on each cluster. In the 
second paper (Lacaille & Gerez, 2011c) a lighter solution 
based on similitude computations and nearest neighbor 
algorithms was given. This implementation was essentially 
given to be embedded in the FADEC computer of the 
engine. In fact the algorithms used on test benches are also 

good prototypes for online solutions. It’s why a fast solution 
needed to be developed to check if it could also work on 
dedicated hardware when the engine is installed under an 
aircraft wing.

Those two previous propositions deal with online 
abnormality detection: during the execution of the test. They 
essentially detect fleeting events that suddenly appears 
without more warning. This paper presents a solution for an 
off line analysis. The algorithm was already implemented in 
a lighter form on operational data broadcasted via SatCom 
(as ACARS messages) to the ground. This limited version 
of the algorithms was partly described in (Lacaille, 2009c), 
the current proposition deals with automatic detection of 
stationary levels, building of temporal snapshots, analysis of 
the ground database of such snapshots with a clustering 
algorithm to detect recurrent configurations, and the novelty 
detection algorithm. Figure 1 shows the OSA-CBM 
decomposition of each layer of the algorithm.

Figure 1: OSA-CBM architecture of the algorithm.
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The health-monitoring algorithms are developed by Snecma 
under the SAMANTA platform which was previously 
described in (Lacaille, 2009b). This environment 
industrializes blocs of mathematic processing tools in 
graphical units. Aeronautic engineers are able to exploit 
each mathematic module to build their own specific 
solutions. In our case this method uses signal filters to 
prepare the data, a stationary process detector, a clustering 
tool, some regression and dimension reduction algorithms to 
help normalize observations and make them as much 
independent of the acquisition context (bench cell driving) 
as possible. For the novelty detection part, it uses a score 
computation, a threshold based configurable statistic test 
and a diagnosis confirmation tool. The two first OSA-CBM 
layers (mostly signal filtering) are assembled apart from the 
rest of the algorithm. They produce an off line database of 
snapshots which is processed by the learning phase of the 
analysis layer (#3). The results from the data-driven part and 
the statistic test in last layer (#4) produce the diagnosis.

SAMANTA platform embed also some automatic validation 
layers (see Lacaille, 2010a and 2012) that helps compute 
key performance indicators (with precision) using cross-
validation schemes.

2. CONTEXT OF APPLICATION

A turbofan development test bench is subject to lots of 
changes in behavior. The interaction between pilot and 
engineers is really tense and the system may be stopped at 
any instant if some analyst finds an abnormality in the 
observations. The sensors are directly broadcasted to 
observations consoles and validated numeric solutions may 
launch alarms. The health-monitoring goal is not to stop the 
process but to provide information about the health of the 
test bench itself (or the tested engine part, but we give a lot 
more attention to the bench which is more expensive and 
less damageable than the tested prototypes). 

2.1. Implementation in the test cell

To minimize interactions between the driving of the system 
and the PHM algorithms we implement an execution driver 
of our SAMANTA platform on a separate server with a 
local memory buffer able to deal with days of high 
frequency acquisition data (50kHz) and weeks of low 
frequency acquisition (10Hz) and enough storage space to 
manage a big database of snapshots (some data vectors per 
cycle – with one or two cycles each day).

2.2. Reliability computation

The PHM algorithms should present computation results 
with a minimum of reliability because we don’t want to 
interrupt an expensive test experiment scheduled for weeks 
or months with bad reasons. Hence a very important 
attention is given to the false alarm performance indicator 
(PFA). The other indicator we follow is the probability of
detection (POD). It is a lot easier to compute because we 
have some past logbooks on which all historical events
where recorded. The main job in that case was to label those 
(handwritten) data and to compute the detection rate on past 
tests.

The PFA indicator is given by Eq. (1). If one writes 
P(�������� ) the probability that an abnormality is detected 
by the algorithm, P(�����ℎ�) the probability that the 
system is healthy. Then the false alarm rate is just the 
probability that the system is healthy but that an 
abnormality is detected. It is represented as the following 
conditional probability:

��� = P(�����ℎ�|�������� ) (1)

This is clearly different from the usual 
� = P(Detected|Healthy) which is the first species statistic 
error that one needs to calibrate to define the test rejection 
domain. This PFA value really represents the inconvenience 
of stopping a test for no reason.

The probability of detection is simply given by Eq. (2): 

Figure 2: Deployment of the PHM system on a distinct server.
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��� = P(�������� |������) (2)

It is the standard 1 − � value, usually called “test power” in 
statistical background. 

PFA can also be rewritten according to Bayes’ rule and a 
computation of � in Eq. (3) shows that the test threshold 
should be chosen very far from normal behavior when one 
intends to respect a small boundary constraint on the false 
alarm rate:

� = ��� ⋅ ���
1 − ��� ⋅ �

1 − � ≃ ��� × ��� × � (3)

where 	� = P(������) is usually very small for aircraft 
engine parts (less than 10-6 per hour). A very careful 
attention is needed for the choice of this detection threshold. 
It is why the decision part of the algorithm has two 
additional modules: one for confirmation by several 
successive detections and another for the optimization of the 
threshold, using a model of the score distribution queue with 
Parzen windows.

Figure 3 shows the meaning of the rejection threshold
computed from a choice of � and the power 1 − � of a 
statistical test.

Figure 3: Threshold selection for decision test.

2.3. Description of the bench data

The main element we have to monitor is the rotating shaft 
and the principal bearing (called #4 here). One of the 
exogenous information we have to deal with is the external 
loading applied on the right of this shaft. This is a 
longitudinal force which have a lot of influence on the 
system behavior because it may change the dynamic mode
positions.

Most measurements come from dynamic high frequency 
acquisitions. The corresponding low-frequency observations 
are filtered energy computations which may be either 
piloted by the shaft speed or be total vibration energy,
eventually quantified according to given bandwidths.

The table below (Table 1) gives the complete list of used 
sensors.

Index
ESN Engine serial number
CYCL Engine cycle reference
DATE Date of cycle (start to off)

N° Sensor Label Unit
01 XN Shaft rotation speed tr/min
02 XN_DERIV Accel. of the rotation -
03 TORQUE UI/w kg/h
04 P4 Pressure Piston #4 bar
05 PORSDE Position rectifier deg
06 VANPRIM Position primary vane %
07 P1 Pressure Piston #1 bar
08 K_0N Disp. Up Pilot mmDA
09 K_0T Disp. Up RMS mmDA
10 K_1N Disp. Down Pilot mmDA
11 K_1T Disp. Down RMS mmDA
12 ACC_4RN Accel. #4 Rad Pilot cm/s eff
13 ACC_4RT Accel. #4 Rad RMS cm/s eff
14 T4 Temp. #4 degC
15 ACC_1HN Accel. #1 Horiz Pilot cm/s eff
16 ACC_2VN Accel. #2 Vert Pilot cm/s eff
17 ACC_3VN Accel. #3 Vert Pilot cm/s eff
18 ACC_MN Accel. Engine Pilot cm/s eff
19 ACC_1HT Accel. #1 Horiz RMS cm/s eff
20 ACC_2VT Accel. #2 Vert RMS cm/s eff
21 ACC_3VT Accel. #3 Vert RMS cm/s eff
22 T1 Temp. #1 degC
23 ACC_MT Accel. Engine RMS cm/s eff
24 T2 Temp. #2 degC
25 T3 Temp. #3 degC

Table 1: List of sensors and corresponding units, blue and 
green backgrounds identify respectively a selection for the 

exogenous and endogenous variables.

The #1 to #4 numbers refer to the different bearings where 
accelerometers are measuring vibration data. Those 
vibration values are summarized as local energies for a 
frequency band that corresponds to the shaft speed (N) or a 
total amount of energy (T). The first sensors (blue 
background) are used as context information or exogenous 
variables. The corresponding data vector is used to identify
the context of the measurement. They are used to select 
stationary snapshots and to classify the snapshots into 
clusters. The others variables (endogenous) are used to 
monitor the bench when a context is clearly identified.

Other variables such as microphone band energies are not 
displayed in Table 1. Such selection of endogenous and 
exogenous variables defines an instance of the algorithm. It 
is possible to build different kind of instances (with 
corresponding algorithmic parameters) for any part of the 
test bench one selects to monitor.

The abnormalities may be very tricky to detect. For example 
on Figure 4 one can see measurements taken during a test 
cycle that contains such anomaly. Just looking the data is 
rarely sufficient to find the abnormal behavior. A 
mathematic comparative analysis is definitely needed.
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Figure 4: Example of measurements acquired during a 
whole cycle. The black stepwise line represents the shaft 

speed. Displacement (light blue and green) and 
accelerometers (dark blue and magenta) are highlighted. 
The other blue sensor is the load (the last data have no 

meaning since the shaft stopped). An abnormality is hidden 
in those data.

3. ALGORITHMS DESCRIPTION

The algorithm is made of two parts. The first one identifies 
stationary measurement intervals (in context data) and 
builds a snapshot of the endogenous measurements. The 
second part loads the database of snapshots, builds clusters,
and for each cluster search for abnormalities.

3.1. Snapshots extraction

Figure 5: Graph of SAMANTA modules to extract 
snapshots and build a database.

The first step of snapshot extraction is the selection of 
measurements to identify stationary data. The stationary 
measurement detector waits for a main control value to be 
almost constant and tests a vector of endogenous 
measurements for second order statistic stationarity. In our 
case we use the shaft speed as main control and test other 
endogenous data for stationarity.

Once a stable point detected, a buffer of observations is 
recorded and defines the snapshot. Figure 6 shows a list of 
snapshots detected on a symbolic cycle that may represent a 
real flight.

Figure 6: Example of snapshots identification, each star 
represents a point detected as a possible snapshot for the test 

cycle.

3.2. Novelty detection

The detection part uses three mathematic models: the 
clustering algorithm, the score algorithm and the decision 
algorithm. Each one needs a specific learning phase to 
calibrate.

Figure 7: The novelty detection graph of SAMANTA 
modules.

The clustering learning phase uses the whole snapshot 
database (eventually obtained from a sub-sampling of the 
snapshot buffers) but only exogenous vectors of values to 
isolate homogeneous clusters with an EM algorithm. This 
algorithm, as described in (Lacaille et al. 2010b), is a 
generative statistic model from a mixture of Gaussian 
distributions. Each Gaussian identifies a different set of 
snapshots. The number of classes is estimated by a BIC 
criterion and the unclassed snapshots are not used.

During the learning phase a database of snapshot buffers is 
used to define the individual classes which can eventually 
further be labeled as flight regimes or operating modes. To 
make this possible, each buffer signal curve is compressed 
into a set of shape indicators hence  replacing the 
multivariate temporal signal by a vector of indicators U. The 
compression scheme (Figure 8) uses specific algorithms to 
enlighten changes in the data: for examples an algorithm 
computes the trend of the signal, another looks for jumps 
and a generic compression uses automatic templates built
from a principal component analysis (PCA).

Shaft speed (XN)

Accel.

Disp
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Figure 8: Compression process that builds indicators from a 
multivariate temporal buffer.

The set of exogenous indicator vector U is then used by the 
classification algorithm to build classes as a mixture of 
Gaussians. The number of classes to build is controlled by a 
BIC criterion but may be also given by expert bounds as the 
snapshots are essentially identified as standard layers.

Each set of classed snapshots (the ones that belong to a 
cluster) are used to calibrate a score model. Once 
indentified in a specific class, each multivariate temporal
signal of endogenous data is compressed locally in another 
indicator vector Y (Figure 9). The score process has two 
steps; the first one normalizes the endogenous data 
suppressing disparities due to little variations in the context. 
This is done by a regression algorithm controlled by a L1
criterion (LASSO algorithm) as described in (Lacaille & 
Côme, 2011b). The second step is a model of the residual of 
this regression by a Gaussian score (a Mahalanobis 
distance) see (Lacaille, 2009c).

Figure 9: Score analysis after snapshot identification.

Equation 4 explains the mathematics of the regression 
model. Each parameter ��,� correspond to a combination j, 
non necessary linear, of exogenous variables in U used to 
predict endogenous observation ��,� of parameter k (or a 

function of endogenous parameters) for all snapshots i of a 
given cluster.

Argmin∑ ���,� −∑ ����,�� ��� 		 subject to ∑ |��| < �� (4)

The final and optimal constant C is chosen such that the 
generalization error of the regression is the smallest. The 
generalization error is computed by a cross validation 
scheme. The next graph (Figure 10) explains in 2 
dimensions why the constraint is to be chosen in absolute 
value instead of Euclidian norm. The figure schematizes the 
mean square regression coefficient as the point	�� and iso-
square errors as red ellipses (first part of equation 4). The 
blue shapes (disk for L2 constrain and square for L1
constraint) represents the value of the second part of 
equation 4. The value � to select is on a tangent intersection 
of an ellipse (ellipsoid in higher dimension) and the surface 
of the blue shape. The radius of the ellipse is the square 
error and the radius of the blue shape is the constraint. It 
appears clearly that with a square (cube, hypercube) the 
chance to find an edge point of the surface is important. As 
soon as those points are on the main axis, most of the 
coefficients of � should be zero. 

Figure 10: Minimization subject to L1 constraint (absolute 
value) instead of a L2 constraint (Euclidian norm) ensures
that most coefficients are set to zero, hence improving the 

regression robustness with a small loss in mean square error.

As this model automatically selects variables to ensure a 
good robustness, we may use a big set of computations as 
inputs. In fact the aeronautic experts give clues about the 
physic process and help the conception of a big vector X of 
indicator functions that makes a great uses of formal 
physical equations.

The final score s of a single observation is given by (Eq. 5) 
where �� = �� − ��� is the residual of the preceding 
regression for a variable k and a current snapshot and Σ is 
the matrix of covariance of the vector	� = (��).

� = ��Σ��� (5)

The score should follow a standard χ� distribution under 
very restrictive constraints on the model and residual 
distribution. In general those constraints are not completely 
respected, and in any cases as the real dimensionality of the 
problem stays approximate, an indetermination of the 
freedom level is possible. We use a last module of algorithm 
to establish a more precise decision rule. This decision rule 
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is not only based on one score computation but on a small 
list of successive scores. Each individual score is compared 
to a threshold � and the Boolean results are combined 
together by a vote process. The law of the scores is modeled 
with Parzen windows on healthy observations. Then 
artificial abnormal behaviors are produced with the help of 
aeronautic experts and a mechanical physic simulator. Using 
the empirical distribution of scores and the pseudo abnormal 
observations one is able to determine a good choice for the 
threshold for a given	� computed from equation 3. 

4. RESULTS AND CONCLUSION

Two campaigns of measurements where done on the same 
bench test cell. The first one was to challenge a civilian 
compressor and lasted almost 3 months. It was a bench 
calibration test. The second campaign uses a military 
compressor as an extractor for another development bench, 
we get also around 3 months of data. In each case, when the 
bench was working we may have one to three runs per day. 
Results cannot be presented in this article; the main goal for 
the PHM team was to validate the algorithm and the 
monitoring process.

4.1. Examples of detected abnormalities

Example 1. Normally, during a stabilized step, if the axial 
pressure on the shaft increases, the vibration level should 
decrease. It was not the case on Figure 11 and this was 
detected as an abnormal feature.

Figure 11: On that test run the vibration level, measured by 
an accelerometer (light blue), decreases when the pressure 
augments (dark blue) and during a stabilized level (XN in 

green).

Example 2. Figure 12 shows a sudden increase of the total 
vibration levels during a deceleration phase. This is also 
another kind of abnormal behavior which was not detected 
at first because the system was not able to differentiate 
between main accelerations and deceleration (begin or end 
of the run), but as soon as we enter this information as a 
context observation the detection is fixed.

Figure 12: A sudden augmentation of vibration was detected 
by vibration sensors (red and blue) during a deceleration 

(shaft speed in green).

4.2. Conclusion

The work was tested on data obtained during the 6 months 
of experimentation. The PFA indicators were computed on 
observed data with the prerequisite identification of all the 
real abnormalities referenced in the logbook. Then new 
simulated defects compatible with the real observations 
were artificially added to the data at known random 
positions on the signals. A false alarm rate of PFA=1.3% 
and a detection rate of POD=78% were obtained on high 
speed rotation clusters. On low speed clusters, too much 
variability of the endogenous variables was observed to give 
conclusive results. More work will be done on the 
identification of specific recurrent clusters, but in any cases 
the algorithm may still be used if some standard states are 
defined, and if one asks the pilot to reach those states at the 
beginning of each run.

Another model should also be defined for non-stationary 
measurements because some known difficulties may arise 
when the bench crosses a vibration mode during a transient 
phase such as acceleration or deceleration.

NOMENCLATURE

BIC Bayesian Information Criterion
LASSO Least Absolute Shrinkage and Selection 

Operator
FADEC Full Authority Digital Engine Control
OSA-CBM Open Systems Architecture for Condition-based 

Maintenance
PFA Probability of False Alarm
POD Probability Of Detection
SAMANTA Snecma Algorithm Maturation And Test 

Application
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