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ABSTRACT

The field of Prognostic Health Management (PHM) has been

undergoing rapid growth in recent years, with development

of increasingly sophisticated techniques for diagnosing faults

in system components and estimating fault progression tra-

jectories. Research efforts on how to utilize prognostic health

information (e.g. for extending the remaining useful life of

the system, increasing safety, or maximizing operational ef-

fectiveness) are mostly in their early stages, however. The

process of using prognostic information to determine a sys-

tem’s actions or its configuration is beginning to be referred

to as Prognostic Decision Making (PDM). In this paper we

propose a formulation of the PDM problem with the attributes

of the aerospace domain in mind, outline some of the key re-

quirements for PDM methods, and explore techniques that

can be used as a foundation of PDM development. The prob-

lem of satisfying the performance goals set for specific objec-

tive functions is discussed next, followed by ideas for possible

solutions. The ideas, termed Dynamic Constraint Redesign

(DCR), have roots in the fields of Multidisciplinary Design

Optimization and Game Theory. Prototype PDM and DCR

algorithms are also described and results of their testing are

presented.

1. INTRODUCTION

As aerospace vehicles become more complex and their mis-

sions more demanding, it is becoming increasingly challeng-

ing for even the most experienced pilots, controllers, and

maintenance personnel to analyze changes in vehicle behav-

ior that can indicate a fault and accurately predict the short-

and long-term effects that the fault can produce. For this

reason, some of the latest vehicle designs begin to incor-

porate automated fault diagnostic and prognostic methods
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that can assist with these tasks (Janasak & Beshears, 2007;

Benedettini, Baines, Lightfoot, & Greenough, 2009; Reve-

ley, Leone, Briggs, & Withrow, 2010; Delgado, Dempsey, &

Simon, 2012). The research into how to utilize prognostics-

enabled health information in making autonomous or semi-

autonomous decisions on system reconfiguration or mission

replanning is still in its early stages, however.

There are other fields (e.g., operations research, medicine, fi-

nancial analysis, and climatology) where computer-assisted

Prognostic Decision Making (PDM) can play or already plays

a role - even if the terminology used for it is different (see, for

instance, (Räisänen & Palmer, 2001), (Wang & Zhu, 2008),

or (Kasmiran, Zomaya, Mazari, & Garsia, 2010)). While the

fundamentals of PDM methods for these fields are likely to be

similar, we believe that there are important reasons to exam-

ine how such methods should be developed and used specifi-

cally in the context of aerospace.

First, we believe that PDM development needs to be informed

by the unique set of aerospace domain characteristics, where

the operating environment is often harsh and dynamic, sys-

tems are highly complex, and an incorrect decision can lead

to loss of life. Conversely, it would be beneficial to inform ve-

hicle design by the needs and capabilities of PDM algorithms.

This includes computing requirements, sensor suite selection,

component redundancy considerations, operating procedures,

and communication architectures. A capable (and appropri-

ately verified and validated) PDM system can expand both de-

sign and operating options for an aerospace vehicle in much

the same way as a new composite material can do for its struc-

ture or a new type of fuel can do for its propulsion system.

We foresee a number of use cases for PDM in aerospace ap-

plications, with some possibilities listed below:

• Maintenance and supply chain management

• Safety assurance for manned aircraft and spacecraft
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• Mission effectiveness maximization for unmanned vehi-

cles

In this paper we propose a set of general properties that prob-

lems of interest to PDM researchers may have and consider

how methods from the fields of mathematical optimization,

multidisciplinary design optimization, and game theory can

be utilized in the development of PDM systems for aerospace.

The discussion will primarily center on certain elements of

mission-, vehicle-, and subsystem-level reasoning, however

we believe that the longer-term goal of PDM development

should be in creating distributed, yet comprehensively inter-

connected systems that support information flow from the

highest, e.g. fleet, levels down to the individual vehicle com-

ponents - and back. To achieve that goal, four main areas will

need to be addressed: (1) approaches for effective system

(problem) decomposition into subproblems; (2) decision-

making problem formulations for different types of sub-

problems; (3) decision-making methods appropriate for the

subproblem types; (4) methods for adjusting problem for-

mulations (such as constraints) in real-time, if necessitated

by prognostic predictions in off-nominal situations.

The paper is organized around the following objectives:

• Provide some motivating examples for considering PDM

in the context of aerospace engineering (Section 2)

• Identify some of the more challenging problems in

aerospace decision-making and outline the requirements

such problems can impose on PDM methods (Section 3)

• Provide the definitions used in this work and formulate

the problem class of interest from a constrained opti-

mization point of view (Section 5)

• Outline some of the potential approaches to solving the

formulated class of problems (Section 6)

• Discuss the type of situations where a problem formu-

lation may need to be adjusted in real-time and suggest

some approaches to doing that (Section 8)

• Describe prototype algorithms for generating PDM so-

lutions and adjusting system constraints (Section 7 and

Section 9, respectively)

• Demonstrate the algorithms on example scenarios in-

volving a planetary rover (Section 11)

Additionally, Section 4 contains a review of related prior ef-

forts, and Section 10 describes the software/hardware testbed

used in the experiments. The paper concludes with a sum-

mary of findings and an outline of potential directions for fu-

ture work.

2. MOTIVATING EXAMPLES

Before we describe the problem class of interest for our cur-

rent work, it may be helpful to consider a few motivating ex-

amples. They are chosen to illustrate the use cases listed in

the Introduction. While only three examples are mentioned

here, the field of aerospace has certainly no shortage of them.

2.1. A surveying UAV

Our first example is an electrically-powered surveying UAV,

such as the SWIFT (Denney & Pai, 2012). The SWIFT is cur-

rently in development at NASA Ames Research Center. This

example is meant to illustrate the first and the third use cases,

that is where PDM could be an integral part of maintenance

and logistics operations, as well used for contingency man-

agement if degradation of one of the components crosses into

the fault region during the mission.

Description

• The UAV performs surveying missions over a defined

area (e.g., earthquake fault zone mapping, pipeline mon-

itoring, or air sampling)

• Maintenance for degrading or damaged components

needs to be scheduled and replacement parts need to be

ordered. Each of the objectives listed below has an im-

portance value associated with it that can change from

mission to mission or even within the same mission (if,

for instance, an in-flight fault or failure occur).

Objectives

• Maximize the number of measurements or area coverage

per mission

• Maximize vehicle availability for missions

• Maximize safety

• Minimize operational costs

Constraints

• Airspace restrictions

• Battery capacity

• Component operating limits

• Return to point of launch (desirable)

2.2. United Airlines Flight 232

The second use case (safety assurance for manned vehicles)

is illustrated with the example of United Airlines Flight 232

from Denver to Chicago in 1989 (NTSB, 1989):

Description

• A fan disk in one of the three engines of the DC-10 air-

craft failed and disintegrated

• Fan disk shrapnel disabled the presumably redundant hy-

draulic controls

• The crew resorted to using differential thrust on the re-

maining two engines to steer the aircraft to an emergency

landing
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Objectives

Minimize injuries and fatalities

Constraints

• Component capabilities and safety margins

• Location and configuration of potential emergency land-

ing sites

• Availability of emergency services at the sites

2.3. Hayabusa (MUSES-C) spacecraft

The example of JAXA’s Hayabusa spacecraft (Kawaguchi,

Uesugi, & Fujiwara, 2003) illustrates the third use case and

is interesting for a number of reasons. While it became the

first mission to return samples from an asteroid (Itokawa), it

was, however, primarily a technology development mission,

with engineering goals assigned point values pre-launch (ta-

ble 1 1). Due to long communication delays during certain

phases of the mission, autonomous operation was utilized ex-

tensively. Several problems jeopardized mission objectives,

however, and required numerous changes to the mission plan

and the configuration of the spacecraft.

Table 1. Pre-launch mission goals for Hayabusa

Pre-launch mission goals Points

Operation of ion engines 50

Operation of ion engines for more than 1000
hours

100

Earth gravity assist with ion engines 150

Rendezvous with Itokawa using autonomous
navigation

200

Scientific observations of Itokawa 250

Touch-down and sample collection 275

Capsule recovered 400

Samples obtained for analysis 500

Description

• A large solar flare damaged solar cells en route to the

asteroid

• Reduction in electrical power negatively affected the ef-

ficiency of the ion engines

• Two reaction wheels (X and Y) failed

• Release of MINERVA mini-probe failed

Objectives

Maximize engineering and scientific payoff

Constraints

• Component capabilities and safety margins

• Orbital mechanics

• On-board propellant amount

1reproduced from http://www.isas.jaxa.jp/e/
enterp/missions/hayabusa/today.shtml

3. PROBLEM CLASS OF INTEREST AND REQUIRE-

MENTS

As discussed in the Introduction, we believe that PDM sys-

tems will eventually need to support decomposition of the

overall problem into smaller problems on different levels of

system abstraction. Some of these smaller problems could

potentially be solved with the more traditional decision-

making techniques, such model-predictive control or partial-

order planning. While investigating the use of such tech-

niques in the context of prognostic decision-making would

certainly be worthwhile, in order to narrow down the scope

of this work we focus on the class of problems for which

decision-making methods may not yet be sufficiently devel-

oped. The examples in the previous section (and others like

them) allow us to outline the general attributes of the class:

Attributes of the problem class of interest

• The system under consideration is complex, consisting

of multiple distinct components

• The operating environment is complex and dynamic

• The system may experience degradation processes, due

to either external or internal factors, that lead to faults

that can be considered significant. Fault magnitudes and

secondary effects may evolve over time.

• In case of a fault (or faults), decision on mitigation ac-

tions required in a limited amount of time

Requirements

The following high-level requirements could then be pro-

posed on the PDM methods for solving such problems:

1. Should be general and adaptable

It may not be possible to define even partial solutions a

priory for specific combinations of system state, environ-

mental conditions, constraints, and objectives.

2. Should utilize prognostic information, if available

While offering the benefits of an insight into a fu-

ture system state, incorporation of prognostic capabil-

ity may also result in a substantial increase in compu-

tational complexity. In practice, obtaining prognostic in-

formation could require execution of a computationally-

expensive simulation for each potential solution.

3. Shall accommodate uncertainty and inconsistency in

input data

Input data available in aerospace applications often suf-

fers from noise, drop-outs, uncertainty of accuracy, and

other issues.

4. Should support system decomposition

The ability to account for condition, objectives, and con-

straints of individual subsystems and components can re-

sult in increased solution quality. Carrying out decision-

making in a distributed fashion can also be beneficial

from the performance point of view.
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5. Should not depend on knowing objective function

properties

Objective functions (defined in Section 5) may not be

guaranteed to be convex or differentiable, for example,

thus ’blackbox’ reasoning techniques may need to be uti-

lized.

6. Shall be time-boundable

In most cases a valid solution will be required within a

prescribed period of time. In some circumstances the

system will also be required to be interruptable, i.e. ca-

pable of supplying a valid solution even if the decision

making process is interrupted before the originally spec-

ified time interval has elapsed.

7. Shall support multi-action solution generation

In addition to being able to generate single-action so-

lutions, such as setting controller gain values, the sys-

tem needs to be able to generate multi-action solution

sequences.

8. Should support multiple objectives

This requirement is motivated by scenarios where, for

instance, failure risk is to be minimized while mission

payoff is to be maximized. Also applicable to cases

where the condition of multiple subsystems or compo-

nents needs to be taken into account.

A subset of these requirements (High-dimensional, Expensive

(computationally), Blackbox) is sometimes referred to in the

literature as HEB (Shan & Wang, 2009).

4. PRIOR WORK

Before moving on to describing the initial approach we chose

to take in developing decision-making methods, we will re-

view some of the prior related efforts. The research efforts

described in this section were chosen from several different

fields where prognostic-style information is used for system

action determination and we believe them to be representative

of the current state of the art.

4.1. Prognostics-enhanced control

Pereira et al propose a Model Predictive Control (MPC) ap-

proach for actuators that distributes control effort among sev-

eral redundant units (Pereira, Galvao, & Yoneyama, 2010).

Redistribution is performed based on prognostic information

on their deterioration. A degradation model of the plant is

used that represents damage accumulation to be proportional

to the exerted control effort u and its variation ∆u. Bogdanov

et al (Bogdanov, Chiu, Gokdere, & Vian, 2006) investigate

coupling of a prognostic lifetime model for servo motors with

a family of LQR controllers. External load disturbances on

the servo are assumed to be stochastic.

In (D. W. Brown, Georgoulas, & Bole, 2009) Brown et al

report on prognostics-enhanced fault-tolerant controller that

trades off performance for RUL. The controller is based on

MPC principles, with control boundaries for tRUL corre-

sponding to a particular input uRUL used as soft cost con-

straints. The work is extended with error analysis and esti-

mation of uncertainty bounds for long-term RUL predictions

in (D. W. Brown & Vachtsevanos, 2011). In (Bole, Tang,

Goebel, & Vachtsevanos, 2011) Bole et al also study opti-

mal load allocation given prognostic data about fault magni-

tude growth (including uncertainty bounds on the prediction).

The concept of Value at Risk (VaR), coming from the field

of finance, is used as the key performance metric. The case

study used in the experiments is an unmanned ground vehicle

(UGV) that experiences winding insulation degradation in the

drive motors due to thermal stress.

4.2. Post-prognostic decision support and condition-based

maintenance

Iyer et al use the term post-prognostic decision support to

describe their framework for Pareto set generation and inter-

active expression of user preferences throughout the process

(Iyer, Goebel, & Bonissone, 2006). The approach is illus-

trated with a logistics planning example, where mission assets

need to be allocated based on the estimated state of health of

an asset and the projected availability of replacement parts.

An exhaustive search technique was used as the optimization

method in the experiments, with the intention to replace it

with a genetic algorithm in the future.

In (Haddad, Sandborn, & Pecht, 2011b) and (Haddad, Sand-

born, & Pecht, 2011a) Haddad et al present a prognostics-

enabled optimization model for maximizing availability of an

offshore wind farm. The model is based on Real Options

Analysis (ROA) and stochastic dynamic programming. The

concept of ROA also comes from the field of finance and

refers to analysis over either real, tangible assets or opportuni-

ties for cost avoidance. The method is illustrated with an ex-

ample where an optimum subset of turbines to be maintained

needs to be found, given the information on their degradation,

availability requirements, and cost constraints.

4.3. Automated contingency management

The work done by Tang, Edwards, Orchard, and others on

Automated Contingency Management (ACM) includes ele-

ments of prognostics-enhanced control, but also extends to

prognostic mission replanning (Tang et al., 2007; Edwards,

Orchard, Tang, Goebel, & Vachtsevanos, 2010; Tang, Het-

tler, Zhang, & Decastro, 2011). Diagnostic and prognostic

algorithms for various component types were developed and

integrated into a prototype decision-making framework for an

unmanned ground vehicle (UGV). RUL estimates were used

either as a constraint or as an additional element in the cost

function of the path-planning algorithm. A Field D*-style

search routine was used for receding horizon planning. Meth-
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ods for estimating and managing process uncertainty were

also developed.

5. DEFINITIONS AND PROBLEM FORMULATION

In this section we provide the definitions of the concepts used

in the rest of this work and represent the problem class de-

scribed in Section 3 in terms of Partially Observable Markov

Decision Processes. The definitions generally follow the con-

ventions found in the contemporary prognostic health man-

agement, optimization, game-theoretic, and decision-making

literature, with some exceptions as noted. In combining nota-

tion conventions used in several different fields, some of the

terms had to be assigned symbols that may not be typical for

them.

5.1. System

The term system in this set of definitions is used in a simi-

lar sense to the term plant from control theory. It can refer

to a single component or the entire vehicle, depending on

the context. The system is modeled as a constrained, fac-

tored, discrete-time Partially Observable Markov Decision

Process (POMDP). POMDP (or, in some cases, the more

traditional Markov Decision Process), is often used to rep-

resent decision-making under uncertainty and with incom-

plete information about the system (Peek, 1998; Malikopou-

los, 2007; Bryce & Cushing, 2007; Boularias, 2010; Bole,

2012). We define POMDP as a tuple {S,A,Z, b0, T, O,R},
with the components explained below:

S A finite set of par-

tially observable states,

S = {s1, s2, ...s|S|}

A A finite set of possible actions,

A = {a1, a2, ...a|A|}

Z A finite set of observations,

Z = {z1, z2, ...z|Z|}

b0 An initial set of beliefs

T : S ×A→ P (S) A state transition function,

for each state and action giv-

ing a probability distribution

over next states, T (s, a, s′) =
p(s′|s, a)

O : A× S → P (Z) An observation probability

function (sensor model),

O(z, a, s′) = p(z′|s, a)

R : S ×A→ R A reward function

5.2. State Variables

Additionally, a vector of state variables

X = {x1, x2, ...x|X|}

is defined, along with a set of constraints on them:

C(X) = {c1(X) ≥ 0, c2(X) ≥ 0, ...c|C|(X) ≥ 0}.

5.3. Decision Variables

A set of decision variables U , the values of which can be

controlled, is defined as well:

U = {u1, u2, ...u|U |}

Each ui ∈ U, i = 1, 2, ...|U |, is coupled with a domain Di,

over which it is defined. The following inequality and equal-

ity constraint sets are specified for the decision variables:

G(U) ={g1(U) ≥ 0, g2(U) ≥ 0, ...g|G|(U) ≥ 0},

H(U) ={h1(U) = 0, h2(U) = 0, ...h|H|(U) = 0}.

5.4. Decision Making

A policy π is defined as a function mapping POMDP states to

actions, π : S → A, with Π defined as the set of all possible

policies.

Decision-making in the context of this work is defined as

the process of determining a policy π and/or the values of

decision variables in U . For policies, a decision δ(π) =
{a1, a2, ...an} is defined as the solution to the POMDP (cor-

responding to a policy π) and is described as an ordered set

of actions.

A feasible or satisfactory policy πs is defined as a policy for

which δ(πs) is such that no C(X) are violated in any of the

states achieved. Πf is the set of all feasible policies.

If, additionally, objective functions and an objective vector

are defined:

~f(π) = {f1(π), f2(π), ...f|~f |(π)},

then the optimal policy can be defined as:

π0 , πf : min~f(πf ),

where every objective function is reaching its minimum (best)

value. Note that a general assumption of multiple objectives

and, therefore, multiple objective functions is made.

Finding this strictly optimal (often called ideal or utopian)

policy in practice is usually not possible. Therefore the con-

cept of a compromise policy that achieves good results for

the entire objective vector, while possibly not minimizing any

particular objective function, is utilized. This concept, known

as Pareto optimality, is used widely in economics, operations

research, and engineering.

A Pareto optimal policy is defined as a policy that is

not dominated by any other policy in Π. A vector

~α = {α1, α2, ..., αk} is defined to dominate vector ~β =

{β1, β2, ..., βk} if and only if it is partially less than ~β:

(∀i ∈ [1, 2, ...k], αi ≤ βi) ∧ (∃j ∈ [1, 2, ...k] : αj < βj).
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Dominance of ~α over ~β is conventionally denoted as ~α ≺ ~β.

Policy π∗ ∈ Π is then Pareto optimal if and only if:

(∀i = 1, 2, ...K,¬∃π′ ∈ Π : π′ 6= π∗, fi(π
′) ≤ fi(π

∗))

∧(∃j = 1, 2, ...K : fj(π) < fj(π
∗)).

π∗ is rarely unique, and, therefore, a Pareto set (also known

as Pareto front (or Pareto frontier)) is defined as:

Π∗ , {π ∈ Π|¬∃π′ ∈ Π, π′ ≺ π}.

A representation of a Pareto front for two objective functions

is provided on Figure 1. Note, in particular, that a Pareto front

should not be assumed to be continuous or convex.

Figure 1. Pareto front

5.5. System Degradation and State of Health

Degradation is defined as the process of reduction in system

performance through time with respect to some criterion (Fig-

ure 2). Degradation can be reversible (e.g. through mainte-

nance or self-healing) or irreversible. State of Health (SOH)

is a generalized and normalized way of representing degrada-

tion, usually defined in the [0, 1] domain (SOH = 1 corre-

sponds to full health and SOH = 0 represents an inoperable

system). η is used to denote the SOH (h is used in some of

the references listed, but is reserved for the decision variables

equality constraints in this work). η is uniformly discretized

and included as a component of the state vector.

Fault

Cfault(X) ∈ C(X) is a subset of the state constraints se-

lected to indicate a significant deviation from nominal behav-

ior, i.e. a fault. A fault occurs when any of the constraints

in Cfault(X) is violated. We expect fault constraints to be

defined on SOH in most cases, however this definition allows

for constraints on other state variables to be used to indicate

a fault (such as energy depletion).
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Figure 2. Degradation progression

Failure

Similarly, a Cfailure(X) ∈ C(X) subset is defined to in-

dicate deviations from the nominal behavior that render the

system functionally unusable.

5.6. Prognostics

In this work prognostics is defined as information on pro-

jected change in plant behavior through time, e.g. due to wear

or degradation (Figure 2). In contrast, a commonly used def-

inition states prediction of the Remaining Useful Life (RUL)

and End of Life (EOL) as the goal of prognostics (Daigle &

Goebel, 2010; Saxena et al., 2008). We believe that the latter

definition may prove to be less convenient for the purposes

of PDM, as obtaining intermediate degradation predictions

could be important. Decisions on how to minimize degrada-

tion could then be made based upon such predictions. For

the modeling approach chosen, incorporating prognostic in-

formation into the decision process amounts to populating the

POMDP with state and transition information.

The following assumptions are made for the above definition:

• A prognostic estimate is defined for a specific instance in

time, given the information up to that moment

• Prognosis depends on information regarding the future

operating conditions

• Uncertainty in system modeling, outputs, observations,

and current/future operating conditions is admissible.

6. SELECTING A POLICY GENERATION APPROACH

Having defined the requirements on PDM methods for the

problem class of interest and described our modeling ap-

proach, we now turn to considering the suitable policy gen-

eration techniques. Such techniques are generally classified

into satisficing or optimizing (Simon, 1956), although alter-

native taxonomies exist as well. The goal of the optimiz-

ing techniques is to find solutions on the Pareto frontier or

as close to it as possible. The latter only attempt to find fea-

sible solutions. Satisficing techniques are used extensively in

many types of applications and often have the advantage of

being computationally inexpensive. They also generally lend

themselves well to validation and verification.

6



Annual Conference of the Prognostics and Health Management Society 2012

In this work, however, we chose to formulate the decision-

making problem from the optimization point of view - primar-

ily because we believe that this will allow us to take greater

advantage of prognostic information. In the rest of the section

we comment only briefly on the major types of optimization

methods with respect to the requirements in Section 3. As

we do not aim to provide a comprehensive survey of modern

optimization techniques, interested readers can refer to (Das

& Chakrabarti, 2005), (Shan & Wang, 2009), or (Rao, 2009),

to list a few.

Exhaustive search (or brute-force methods) are generally

straightforward to implement and are capable of generating

exact Pareto sets. Scalability is the main issue with this

type of methods, as they quickly become computationally in-

tractable. They can, however, be useful for verifying perfor-

mance of other optimization methods on simple problems.

Gradient Descent, Hill Climbing and similar local search

methods are not guaranteed to find global optima. Gradient

Descent methods also generally require objective functions

to be defined and differentiable over the entire search space.

Linear Programming, Constraint Programming, Newton,

and Quasi-Newton methods require knowledge of objective

function properties as well.

Dynamic Programming (DP) methods are widely used for

policy generation. The main downsides of traditional DP for-

mulations are that for multi-objective problems a single com-

posite objective function needs to be constructed, i.e. a Pareto

set is not produced, and that system decomposition can be

difficult to accomplish. Some DP-based methods have been

developed, however, that attempt to circumvent both of these

issues (see (Hussein & Abo-Sinna, 1993; Driessen & Kwok,

1998; Liao, 2002)). Additionally, with factored state spaces

being exponential in size with the number of state variables,

exact DP methods become unsuitable for large-size problems.

In certain applications, approximate DP methods have been

used (Kveton, Hauskrecht, & Guestrin, 2006).

Stochastic methods (such as Simulated Annealing, Quantum

Annealing, Metropolis-Hastings, Cross-Entropy, or Probabil-

ity Collectives) generally satisfy the requirements we pro-

posed in Section 3. None of them guarantee optimality; they

do, on the other hand, posses the anytime property (can be

interrupted at any time and still return a valid result), can be

used with blackbox objective functions, and can accommo-

date system decomposition.

Genetic algorithms (often classified together with stochas-

tic methods) also satisfy the proposed requirements. In such

algorithms a prototype (candidate) solution is described as

an individual member of a population. Biologically-inspired

operators (selection, reproduction, mutation, and others) are

used, guided by fitness functions. Genetic algorithms produce

a Pareto front approximation in each iteration and, therefore,

are also anytime.

For this phase of the work we, ultimately, chose to develop

a policy generation method based on Probability Collectives.

In the future, we also plan investigate policy generation via

genetic algorithms. A method based on Simulated Annealing

(SA) was used in the prototype constraint redesign framework

(Section 9).

7. POLICY GENERATION ALGORITHM DEVELOPMENT

The current policy optimization algorithm is referred to as

Probabilistic Policy Generator (PPG). With its roots in the

work on Probability Collectives (PC) (Wolpert, Strauss, &

Rajnarayan, 2006), it belongs to the class of blackbox opti-

mization methods. Such methods have the goal of finding a

value x ∈ X that minimizes an associated value F (x). X is

an optimization space (not to be mistaken for the X used to

denote POMDP state vectors in other parts of this work) and

F (x) could be an objective or a utility function. The follow-

ing process is repeated iteratively: (1) an x is chosen from X;

(2) statistical information about F (x) is updated; (3) the next

value of x is chosen using the (x, F (x)) pairs found up to that

point.

The main difference between the conventional blackbox ap-

proaches and PC is that while the former operate directly on

the values of x (by constructing a map M from a subset of

{(x, F (x))} to the next sample x), the latter works with prob-

ability distributions over x. That is done by specifying a map

m from a subset of {(x, F (x))} to the next distribution over

X , P (X). That distribution is then sampled to select the next

value of x. The goal of conventional blackbox approaches

is to design M in such a way as to increase the likelihood

of finding values of x corresponding to the small values of

F (x). In the PC case, the goal for designing m is to gen-

erate P (X) peaked around the small values of F (x). This

can be more formally described, for example, in terms of the

expected value:

find min
P

∫

F (x)p(x)dx, s.t.

x ∈ X,

∫

p(x)dx = 1, p(x) ≥ 0 ∀x,

with the integrals are replaced by sums for discrete distribu-

tions.

There are a number of advantages to working with distribu-

tions over X rather than working with X directly. One is that

the same algorithm could, in most cases, be used for different

types of space X without significant modifications. Another

is that P generated by a PC-based algorithm will be peaked in

some dimensions, while being broad in others, thus supplying

sensitivity information on the importance of getting better es-

timates for the values of those dimensions. A PC-based algo-
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rithm can also be used to combine and, ideally, improve upon

solutions produced by other optimization algorithms. To do

that, P is initialized to a set of broad peaks, each centered on a

solution generated by the other algorithm(s). As P is updated,

the shapes of the peaks are defined further and some of them

become merged, producing combined solutions. Finally, the

approach can be extended to multi-component vectors ~x in a

relatively straightforward fashion.

The earlier versions of the PPG algorithm were described

in (Balaban et al., 2011; Narasimhan et al., 2012). It uses

’look-ahead’ sampling to aggregate information about policy

options, gradually increasing the probability of choosing the

more optimal solutions. Its input parameters are the follow-

ing:

A valid actions set

~f(π) objective function vector

~v objective preference vector

Gt inequality constraint set

Ht equality constraint set

l maximum policy length

N1 number of utility function calls allocated to the

first phase of the algorithm

N2 number of utility function calls allocated to the

second phase of the algorithm

M number of stages .

Execution time is controlled by specifying l, N1, N2, and M
(further explained below). The algorithm (see Algorithm 1)

operates in the following manner:

Initialization (lines 2-5)

A set of partial policies, Π′, is initialized with a single mem-

ber, π′
0. For simplicity, a partial policy π′ is defined as the set

actions mapped to the first several states achieved for a deci-

sion δ. For instance, {a1, a2} is a partial policy correspond-

ing to the decision {a1, a2, a3, a4, a5}. The probability of π′
0

achieving maximum utility (p(π
′

0)) is set to 1. Finally, first

phase utility function call quotas are allocated per stage (for a

total of N1), with increasing stage numbers corresponding to

progressively longer policy roots. The allocation is currently

done using a cubic function, with the earlier stages receiving

a greater proportion of the total number.

Partial policy extension (lines 7-15)

The first phase of the algorithm is executed for M number of

stages. In each iteration the partial policies in Π′, generated

during the preceding stages, are extended and the probability

of them resulting in an optimal solution is estimated. In order

to extend the partial policies, sets of feasible follow-on ac-

tions are determined first. In the example problem described

in Section 11, the rover should visit each of its target loca-

tions once at the most. Thus, if a maximum of five locations

maximum is to be visited, partial policy π′ = {a1, a2} (move

to node 1, then to node 2) has Aπ′ = {a3, a4, a5} as the set of

possible follow-on actions. The valid one-action extensions

are then {a1, a2, a3}, {a1, a2, a4}, and {a1, a2, a5}. These

offsping partial policies replace the parent partial policy (π′)

in Π′ and split its probability value evenly.

Partial policy probability estimation (lines 17-22)

The probability of each partial policy in updated Π′ achiev-

ing maximum utility is estimated next. To achieve that, Π′ is

sampled randomly according to the prior distribution. Each

sample π′ is used to obtain a decision of the maximum length

l, with valid completion actions selected from Aπ′ . The pol-

icy pi corresponding to the sample decision is then evalu-

ated with respect to the objective function vector ~f and the

constraint set C(X). Note that in order to satisfy the con-

straints, the extended decision may be truncated short of the

maximum length. For instance, if δ = {a1, a2, a3, a4, a5}
does not satisfy one or more of system constraints, while

δ = {a1, a2, a3, a4} does, then the latter is picked. The util-

ity value u(π) is computed (currently by using the preference

vector ~v) and the posterior probability of π′ is adjusted after

the sampling process is complete. A Normalized Root Mean

Squared Error (NRMSE) metric is used to aggregate informa-

tion on how well π′ is performing relative to the maximum

utility value seen so far:

ǫπ′ =

√

√

√

√

√

n
∑

i=1

(umax − u(π))2

n(umax − umin)2
,

where n is the number of sample decisions constructed for π′,

and umin and umax are the minimum and the maximum val-

ues of the utility function observed so far, respectively. The

metric is the same as a normalized Lp metric (Coello, Lam-

ont, & Veldhuizen, 2007), with p = 2.

Monte Carlo simulation on Π′ (lines 27-32)

Once the probability distribution P (Π′) is shaped, a Monte

Carlo simulation is run for N2 sample policies. Policy roots

are picked according to the distribution, extended to the max-

imum length satisfying C(X) and evaluated with respect to
~f .

Solution set filtering (lines 36-38)

Finally, the solution set Π∗ is reduced using a variant of the

bounded objective method and according to the priority vec-

tor ~v. The objective functions in ~f(π) are sorted in descend-

ing order, based on the values in ~v, |v| = K. Π∗ is then

reduced to Π∗
f1

, where the highest-ranked objective is maxi-

mized. Π∗
f1

is subsequently reduced to Π∗
f2

and so on, until

either |Π∗
fk
| = 1 (k = 1, 2, ...K) or k = K.

8



Annual Conference of the Prognostics and Health Management Society 2012

Algorithm 1 PPG

1: procedure PPG(A, ~f(π), ~v, l, N1, N2,M )
2: π′

0 ← {a0} ⊲ null action to assume the initial state
3: Π′ ← {π0} ⊲ set of all policy roots
4: p(π′

0) = 1 ⊲ assign initial probability
5: Ns ← allocateUtilityFunctionCalls(N1)
6: for stage← 1,M do
7: for all π′

i in Π′ do
8: Aπ′

i
← getV alidActions(π′

i)
9: ⊲ generate all possible one-action extensions

10: Π′
πi
← extendPolicyRoot(π′

i, Aπ′

i
)

11: Π′
new ← {Π′

new,Π
′
π′

i
}

12: for all π′
j in Π′

new do

13: p(π′
j)← p(π′

i)/ |Π
′
new|

14: end for
15: end for
16: ⊲ update P (Π′)
17: for i← 1, Ns(stage) do
18: π′

s ← getRandomSample(Π′, P (Π′))
19: πs ← extendPolicy(π′

s, l)

20: ~f(πs)← evaluatePolicy(πs, ~f(π), H,G)

21: us ← calculateUtility(~f(πs), ~v)
22: p(π′

s)← updateRootProbability(π′
s, us)

23: end for
24: end for
25: Π′ ← {Π′

new}
26: Πmc ← ∅
27: ⊲ Monte Carlo simulation on Π′

28: for i← 1, N2 do
29: π′

mc ← getRandomSample(Π′, P (Π′))
30: πmc ← extendPolicy(π′

s, l)

31: ~f(πs)← evaluatePolicy(πs, ~f(π), H,G)
32: Πmc ← {Πmc, πs}
33: end for
34: Π∗ ← Πmc

35: ⊲ Filter policy set

36: ~f(π)sorted ← sortDescending(~f(π), ~v)
37: n=1
38: while (|Π∗| ≥ 1)&(k < K) do
39: for all π in Π∗ do
40: Π∗ ← { all π in Π∗|fk(π) is max}
41: end for
42: end while
43: end procedure

8. DYNAMIC CONSTRAINT REDESIGN

The preceding sections of the paper concentrated on the in-

corporation of prognostic information into the decision mak-

ing process and the selection of appropriate policy optimiza-

tion methods. The outcome of a multi-objective optimization

is a Pareto set of policies Π∗. There are three ”goldilocks”

possibilities with respect to the size of Π∗:

1. The size is acceptable, i.e. 1 ≤ |Π∗| ≤ N , where N is

the maximum number of candidate policies that can be

practically down-selected by inspection, using heuristic

methods, or by some other means.

2. The size is too large, i.e. |Π∗| ≥ N . In this case the

set can be reduced either through interaction with a hu-

man expert (as described earlier in (Iyer et al., 2006)) or

through an autonomous process that adds/tightens con-

straints in C(X) and re-runs the optimization until a Π∗

of a desired size is achieved.

3. No feasible solutions exist, i.e. |Π∗| = 0. In this case the

original constraints in C(X) may need to be relaxed or

eliminated.

The second case is an interesting research area that we hope to

explore further in the future. In the current work, however, we

focus on the third case. In addition to the absence of feasible

solutions, however, there could be another reason why Π∗

may not be suitable - which is the subject of the next section.

8.1. Performance goals satisfaction

Consider the case where, in addition to constraints in C(X),
constraints (or, rather, performance goals) were also defined

for some or all of the elements of ~f , as is done in Goal Pro-

gramming (Tamiz, Jones, & Romero, 1998), for instance:

Γ(~f) = {γ1(~f) ≥ 0, γ2(~f) ≥ 0, ...γ|~f)|(
~f) ≥ 0}.

An example of a Pareto set not satisfying some of the perfor-

mance goals in Γ(~f) is illustrated on Figure 3.

Figure 3. An example of a Pareto set not satisfying a perfor-
mance goal (γf1 ).

If no acceptable solutions are found during the optimization

process and if the performance goals are considered to be of

high enough importance, then constraints in C(X) may need

to be changed or eliminated.

For convenience, in this paper we refer to the process of mod-

ifying system constraints as Dynamic Constraint Redesign

(DCR). In the context of an aerospace vehicle, DCR could

mean knowingly damaging a component or a subsystem be-

yond repair if that means saving the overall vehicle. Only sys-

tem constraints will be considered for the purpose of this dis-
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cussion, however one can also envision eliminating or relax-

ing external constraints, such as airspace restrictions or flight

separation distances.

DCR can also be thought of as redesigning the vehicle ”on the

fly”, by changing its performance characteristics to the out-

side of the known envelope - while simultaneously searching

for a Pareto optimal policy to best utilize the modifications

in the current mission. Some of the same issues arise as dur-

ing the original design, e.g. subsystem compatibility assur-

ance, choice of design variables, and design variable sensi-

tivity analysis. In the last few decades the field of Multi-

disciplinary Design Optimization (MDO) has been developed

to address these and other issues during the initial design of

complex systems. We believe that some of the techniques

from MDO community could be beneficial in development of

DCR as well.

8.2. Multidisciplinary Design Optimization (MDO)

In this section we briefly review some of the most popular

MDO approaches and comment on their applicability to DCR

(far more extensive descriptions of contemporary MDO ap-

proaches and methods can be found, for instance, in (Agte

et al., 2009; Shan & Wang, 2009; Honda, Ciucci, Lewis, &

Yang, 2010)). First, however, it would be helpful to note some

key differences between MDO and DCR problems:

• Robust validation and verification of a candidate point

design using independent methods may not be possible

for PDM/DCR, unlike in MDO;

• Related to the preceding point, the risk associated with

each potential DCR solution needs to be quantified;

• Achieving real-time performance will, generally, be of

far greater importance to PDM/DCR than to MDO.

One of the ways to classify modern MDO algorithms is into

these two broad categories: All-At-Once (AAO) and decom-

position. All-at-Once algorithms, also referred to as All-In-

One (AIO) or single-level, aim to achieve design decisions

through a single global optimization process (Cramer, Den-

nis, Frank, Shubin, & Lewis, 1993; N. Brown, 2004). While

such formulations have some attractive qualities (for instance,

each iteration produces a discipline-feasible solution and sen-

sitivity analysis on design variables is usually easy to per-

form), they also have significant downsides. A designer us-

ing AAO methods is likely to run into scalability issues when

applying them to large, complex systems. Also, by aggregat-

ing knowledge from the subsystems into a single optimizer,

some of the discipline-specific knowledge may be lost. Fi-

nally, AAO approaches tend to limit the use of well-proven

analysis and optimization techniques at the discipline level.

Decomposition methods break down a design optimization

problem into multiple subproblems, usually along the bound-

aries of disciplines, subsystems, or individual components

(Cramer et al., 1993). Some of the better known methods are

bi-level, such as Collaborative Optimization (CO), Con-

current Subspace Optimization (CSSO), or Bi-Level In-

tegrated System Synthesis (BLISS), and multi-level, such

as Analytical Target Cascading (ATC).

CO (Braun, Gage, Kroo, & Sobiesky, 1996; Roth & Kroo,

2008; Roth, 2008) uses target values of the design and state

variables, specified at the system level, to guide individ-

ual discipline optimizations. Communication between disci-

plines in most CO implementations is limited, which simpli-

fies implementation, but can also result in slow convergence.

The CSSO method (J. E. Renaud & Gabriele, 1993;

Sobieszczanski-Sobieski, Agte, & Sandusky, 1998; Sellar,

Batill, & Renaud, 1996; G. Renaud & Shi, 2002) performs

discipline-specific optimization using local objective func-

tions, variables, and constraints, while approximating effects

on system performance using Global Sensitivity Equations,

Response Surfaces, or other types of system models. Simi-

larly, system-level models of disciplines are used in order to

approximate their behavior. As performance information is

accumulated throughout the process, the models can be up-

dated correspondingly.

In BLISS (Sobieszczanski-Sobieski et al., 1998;

Sobieszczanski-Sobieski, Emiley, Agte, & Sandusky,

2000) each iteration of the procedure improves the design

both on the local (discipline) and system levels. First,

a concurrent local optimization is performed using the

discipline design variables and keeping the system-level

variables constant. Then, a system-level optimization on

shared variables is done. Total derivatives are communicated

among the disciplines to help predict the effects of local

design choices on the other disciplines.

Analytical Target Cascading (ATC) (Kim, 2001; Kim,

Michelena, Papalambros, & Jiang, 2003; Allison, Kokko-

laras, Zawislak, & Papalambros, 2005), is primarily intended

for problem decomposition by subsystems and components,

rather than disciplines. ATC approach is flexible and multi-

level, allowing complex system architectures to be repre-

sented. Other formal MDO methods can potentially be in-

tegrated within an ATC framework (Agte et al., 2009).

Methods founded on the principle of Lagrangian Dual-

ity (LD) may also be of interest for certain elements of

PDM/DCR. Classical LD methods are generally applied

to convex problems and accommodate decomposition into

smaller sub-problems. In order to handle non-convex prob-

lems, Augmented Lagrangian Duality (ALD) theory has been

developed (Hestenes, 1969). ALD algorithms, however, lose

the decomposition capability. In recent years, several re-

search efforts combined LD and ALD approaches to attain

both the ’convexification’ properties of ALD and the de-

composition properties of traditional LD (Blouin, Lassiter,
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Wiecek, & Fadel, 2005; Tosserams, Etman, Papalambros, &

Rooda, 2005).

Finally, MDO methods that have evolved from the field of

Game Theory offer some promising alternatives for design

decomposition architectures. The idea of using game for-

mulations in design problems goes back to the work of Vin-

cent (Vincent, 1983) and Rao and Freiheit (Rao & Freiheit,

1991). Some of the further developments are described in

(Lewis & Mistree, 1997), (Marston, 2000), and (Clarich &

Pediroda, 2004). Games of different forms have been studied

for use in MDO applications, at least to some extent: coop-

erative (Pareto), approximately cooperative, non-cooperative

(Nash), coalition, and leader/follower. While intuitively a co-

operative (Pareto) form game would appear to be the natu-

ral choice when setting up an MDO or a PDM/DCR prob-

lem, the other forms have their place as well. For instance,

the leader/follower (also known as Stackelberg or extensive)

form can be used to set up a sequential analysis problem.

The non-cooperative (Nash) form could be used in situations

when the established communication protocols between sub-

systems prove to be insufficient for a particular situation or

are affected by a system fault. The coalition form can be used

in organizing system analysis by discipline.

For the first DCR prototype we chose to implement a cooper-

ative game-theoretic protocol (described in the next section),

with alternative formulations to be implemented and com-

pared in future work. Similarly to BLISS, the implemented

algorithm passes the derivatives of local objective functions

with respect to shared variables. This is done in order to in-

form subsystems of the effects their choices may have on the

other subsystems.

9. DCR ALGORITHM DEVELOPMENT

In the prototyped game-theoretic DCR algorithm the play-

ers (subsystems) cooperate in exploring the, potentially, very

large option space by taking turns in conducting the search

and, when necessary, relaxing some of their constraints. The

current formulation of the algorithm tests the concept for two

subsystems, with extension to larger numbers of subsystems

planned for subsequent work. One constraint per subsystem

is currently chosen as the target for redesign (c1 and c2).

The process (illustrated on Figure 4) starts with one player

randomly picked to go first (let us assume that it is Subsystem

1). Subsystem 1 conducts an iteration of the search, finding

its best guess at the optimal policy π∗. The policy needs to

satisfy constraints in both C and Γ. Also, a maximum of N
utility function calls is allowed per iteration. If no acceptable

policy is found, the target constraint c1 is adjusted (becoming,

for instance, 62−Tmax > 0). Another search iteration is per-

formed and suitability of solutions is evaluated. The process

repeats until a maximum number of search attempts, Nmax,

is reached or a non-empty set Π∗
1 is found. Π∗

1, empty or oth-

erwise, is then sent over to Subsystem 2, along with the neces-

sary gradient information on objective function performance

(in a non-cooperative formulation only Π∗
1, also known as the

Best Reply Correspondence or BRC, would be transmitted).

Note that gradient estimates are shared not only for policies in

Π∗
1, but also for other policies considered during the search.

If there is at least one policy π∗ ∈ Π∗
1 that is also suitable

from the point of view of Subsystem 2, then the process is

stopped. Otherwise Subsystem 2 conducts its own search it-

eration, adjusting c2 as needed, and hands over control of the

search to Subsystem 1 after either Nmax search iterations are

completed or a non-empty Π∗
2 is found. Π∗

2 and the objective

function gradients are then transmitted back to Subsystem 1.

The process continues until a π∗ satisfying both subsystems

is found.

It is important to take a look at how objective functions for

each of the players are designed. In non-cooperative game

formulations (and some of the traditional MDO approaches)

discipline/subsystem objective functions primarily focus on

the needs of that particular discipline or subsystem. In order

to help expedite convergence, in this cooperative formulation

composite objective functions that take into account the effect

a candidate solution may have on global objectives and on the

other players are used. The functions take on the following

form:

f1(π) = w1,1fg(π) + w1,2|∇f2,l|π + w1,3f1,l(π),
f2(π) = w2,1fg(π) + w2,2|∇f1,l|π + w2,3f2,l(π),

where fg is the global objective function (currently a single

one), fi,l is the objective function local to the subsystem, i
is the subsystem number, and wi,j are the weights used to

specify the degree of influence of each of the components of

fi.

Another important feature of the algorithm is that with each

iteration the size of the constraint-adjusting step is increased,

thus encouraging the players to come up with a solution suit-

able from the other subsystems’ (and global) points of view

as quickly as possible.

���������	
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Figure 4. Two-subsystem cooperative game formulation

A variant of Simulated Annealing (Bertsimas & Tsitsiklis,

1993), or SA, is currently utilized for searches of the option

space by the subsystems. In this particular case SA was cho-

sen to take advantage of the gradient information exchanged
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by the subsystems, while also avoiding getting ’stuck’ at the

local minima. The algorithm accomplishes the latter by per-

forming randomized jumps to other promising locations of

the search space. The probability of continuing with the local

search vs. performing a jump is influenced by an annealing

schedule T (t), and is

p[x(t+ 1) = xj |x(t) = xi] =

wij exp

[

−
1

T (t)
max{0, f(xj)− f(xi)}

]

,

where

X A finite search space (again, not to be mistaken

for the POMDP state vector).

f A real-valued objective function f defined on X .

X∗ ⊂ X is the set of the global minima of f .

Xi The neighbor set of xi, Xi ⊂ {X − xi}, xi ∈ X .

wij A probabilistic weight for transition from xi to

xj , xj ∈ Xi, s.t.
∑

xj∈Xi
wij = 1, with

xj ∈ Xi ⇐⇒ xi ∈ Xj implied.

T The annealing schedule. T : N → (0,∞) is a

non-increasing function and N is a set of positive

integers, T (t) is the temperature at time t.

The above assumes that xi 6= xj , xj ∈ Xi. If xi 6= xj and

xj /∈ Xi, then p[x(t+ 1) = xj |x(t) = xi] = 0.

10. TEST PLATFORM

The testbed being used in the current validation experiments

is the K11 planetary rover prototype and its associated soft-

ware simulator (Balaban et al., 2011). Another testbed tar-

geted for future experiments is the Edge 540 UAV located

at NASA Langley (Hogge, Quach, Vazquez, & Hill, 2011).

While the algorithmic infrastructure is developed to accom-

modate the UAV, that part of the work is, otherwise, in its

early stages.

10.1. K11 overview

The K11 is a large four-wheeled rover platform (approxi-

mately 1.4 m long by 1.1 m wide by 0.63 m tall, weighing

roughly 150 kg). Each wheel is driven by an independent

250 W graphite-brush motor, connected through a bearing

and gearhead system, with each motor controlled by a single-

axis digital motion controller. Four 14.8 V 3.3 Ah lithium-

ion batteries, connected in series, power the vehicle. The

on-board computer runs control and reasoning algorithms, as

well as coordinates data acquisition. Measurements available

on-board are shown in Table 2 and on Figure 5.

In the table F , B, L, R refer to front, back, left, and right,

respectively. Altitude h is determined using λ, φ and a terrain

mapM.
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Figure 5. K11 data flow

Table 2. K11 data

measurement symbol

absolute position (longi-
tude, latitude)

λ, φ

wheel angular velocity ωFL, ωFR, ωBL, ωBR

attitude (yaw, pitch, roll) α, β, γ
battery temperature Tb1, Tb2, Tb3, Tb4

battery voltage Vb1, Vb2, Vb3, Vb4

motor temperature TmFL, TmFR, TmBL, TmBR

motor current IFL, IFR, IBL, IBR

power bus current Ibus

The software simulator reproduces both nominal and off-

nominal behavior of the hardware testbed. The simulator has

a dual purpose: (a) to aid in the development of PDM al-

gorithms as a virtual testbed and (b) to provide ~f estimates

during the decision-making process.

10.2. Fault Modes

Table 3 describes the K11 fault modes, implemented either

in hardware, simulation, or both. Some of the fault modes,

such as sensor faults, are injected primarily for testing diag-

nostic functionality (i.e. such faults have brief fault-to-failure

times), while the others exhibit a more continuous fault pro-

gression behavior and are used for validation of prognostic

algorithms.

10.3. Diagnostic Functionality

Two diagnostic algorithms are currently in use with the K11

testbed. The first one, QED (Qualitative Event-based Di-

agnosis), is described in (Daigle & Roychoudhury, 2010).

It utilizes a qualitative diagnosis methodology that isolates

faults based on the transients they cause in the system behav-

ior, manifesting as deviations in residual values (Daigle &
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Table 3. K11 fault modes.

fault model subsystem

battery capacity degradation Power

parasitic electric load Power

motor failure Propulsion

increased motor friction Propulsion

sensor bias/drift/failure Sensors

Roychoudhury, 2010). The second, Hybrid Diagnosis Engine

(HyDE) is a diagnosis algorithm that uses candidate genera-

tion and consistency checking to diagnose discrete faults in

stochastic hybrid systems (Narasimhan & Brownston, 2007).

’Hybrid’ in this case refers to combined discrete and contin-

uous models used by the algorithm to analyze input data and

deduce the transitions in system state over time, including

changes indicative of faults.

10.4. Prognostic Functionality

Once a fault is detected and diagnosed, a prognostic algo-

rithm appropriate to the type of the fault is invoked. For

battery capacity deterioration, as well as for charge estima-

tion, an algorithm based on the Particle Filter framework is

planned to be used (Saha & Goebel, 2009) and (Saha et al.,

2011). Prognostic estimation of temperature build-up inside

the electric motors - which can lead to winding insulation de-

terioration and eventual failure - will be done using a Gaus-

sian Process Regression algorithm (Balaban et al., 2011). Fi-

nally, work is in progress to implement prognostics for elec-

tronic components of the motor drive units (such as capaci-

tors and power transistors) using Kalman Filter and Extended

Kalman Filter approaches (Celaya, Saxena, & Saha, 2011).

11. VALIDATION EXPERIMENTS

The following section describes the scenarios used for vali-

dating the policy optimization algorithm, PPG, and the con-

straint redesign algorithm, DCR. Subsections 11.1 (Policy

optimization) and 11.2 (Dynamic Constraint Redesign) are

structured in a similar manner: formal scenario formulations

are provided first, followed by descriptions of how the exper-

iments were conducted, with the experimental results sum-

marized last. Both of the algorithms have only been tested in

simulation at this time.

11.1. Policy optimization

Policy optimization experiments were developed around a

scenario (Scenario R1, with ’R’ denoting rover scenarios)

where, for science operations, an unmanned planetary rover

is tasked with visiting a certain number of locations. Each

location has a scientific payoff (reward) value associated with

it. The terrain is of variable elevation and the surface fric-

tion coefficient is considered to be constant. The rover has

a finite amount of energy available to complete the mission.

At some point during the mission a system fault is detected

(e.g., a deteriorating electrical connector) that limits the over-

all remaining useful life of the vehicle. We also assume that

the degradation rate depends on the operating conditions (e.g.

the amount of heat generated in the instrumentation compart-

ment during the drive). Either depletion of energy or com-

plete component failure signify EOL. The goal of the PDM

system is to reassess the original mission plan and find a

suitable (ideally, optimal) compromise between extending the

life of the vehicle and achieving the maximum science payoff

as possible.

11.1.1. Scenario formulation

Given:
ce, cη Inequality constraints

on available energy and

health

~f(π) = {fr(π), fη(π), fe(π)} Objective functions

for cumulative reward,

health degradation, and

energy consumption

~v = {vr, vh, ve}, (vr, vh, ve ∈
[0, 1])

Optimization prefer-

ences vector

N = {n1, n2, ..., n|N |} Nodes (locations) to be

visited

a , {ni, nj}, i ∈
[1, 2, ...|N | − 1], j ∈
[2, ...|N | − 1]

An action constitutes a

move between a pair of

nodes (start and finish)

a1 = {n1, ni}, i 6= 1 The first action of a de-

cision is a special case

(go from the current lo-

cation, labeled n1, to an-

other node

am = {nj , nk}|(am−1 =
{ni, nj}), (i, j, k ∈
[1, 2, ...|N |]), (m ∈
[2, 3, ...|N |])

Any action after the first

one needs to start on the

node where the previous

one finished

Find:

Π∗ Pareto set of policies

11.1.2. Design of experiments

A synthetic terrain map M was generated (Figure 6) and ten

wayponts (nodes) still to be visited by the rover were selected

on it. Each node is associated with a reward value (shown

in parenthesis). The bar on the right side of the map and the

isolines depict the elevation changes.

Test scenarios with increasing numbers of remaining nodes

(6-10) were then created. The nodes were selected in such

a way so as to make it impossible for the vehicle to visit

13



Annual Conference of the Prognostics and Health Management Society 2012

1(41)

2(52)

3(31)

4(71)

5(34)
6(39)

7(95)

8(50)
9(30)

10(60)

10 20 30 40 50 60 70 80 90 100

10

20

30

40

50

60

70

80

90

100

0

10

20

30

40

50

60

70

80

90

100

Figure 6. Terrain map with scientific target locations (eleva-
tions and distances are in meters)

all of them before either energy depletion or vehicle health

deterioration resulted in EOL. PPG was allocated a limited

number of utility function calls (UFC) to test performance in

resource-constrained conditions. An exhaustive search algo-

rithm (ES), used for verifying PPG results and benchmarking,

was not limited in how many times it could invoke the utility

function. The metric used for evaluating performance was the

cumulative reward for the best path (policy) found by each al-

gorithm. Each scenario was executed 30 times and the mean

and standard deviations were computed. All of the code was

written in MATLAB (R2010b) and executed on an Intel Core

i7 Duo 2.8GHz computer.

11.1.3. Experimental results
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Figure 7. Mean execution times comparison

Table 4 summarizes the cumulative reward results obtained

by ES and PPG. The number of utility function calls used by

ES is provided for comparison. While not quite achieving

scores as high as ES for the larger size problems, PPG still

does relatively well, particularly given that in those scenarios

it uses a small fraction of UFC used by ES (PPG performance

improves, as expected, if more UFC are permitted).

Execution time for each of the algorithms was also recorded

for all of the scenarios, with the data summarized in Table

5. It can be observed that execution times for ES start grow-

ing exponentially with problem size and using this approach

becomes impractical for problems containing more than 10

nodes. While not having the ability to validate the cumulative

reward performance on problems larger than that (in reason-

able time), we still tested PPG with scenarios containing 15,

20, and 25 nodes. The average execution times are presented

on Figure 7 and lead us to believe that the approach adopted

for PPG remains practical for real-time applications even for

policies with large numbers of actions (at least up to 25). The

question of how to evaluate the quality of generated policies

in large-size problems is something we hope to investigate in

subsequent work.

11.2. Dynamic Constraint Redesign

To test the DCR algorithm, a scenario was used (Scenario

R2) where one of the rover motors (FL) has experienced an

Increased Motor Friction fault. This results in increased cur-

rent consumption by the motor and, consequently, a higher

rate of heat build-up both in it and the batteries supplying the

current. For the purposes of this scenario the batteries are

viewed as a single unit, with its temperature denoted by Tb.

Temperature of the affected motor is denoted as Tm. Even

given the fault, the rover is still required to travel a certain

distance in a given amount of time in order to reach a point fa-

vorable for battery recharging and communication with con-

trollers. To accomplish that, the rover needs to alternate pe-

riods of driving with periods of stationarity, in order to not

exceed the maximum temperature limits for both the battery

and the motor. The two components belong to Power (Po)

and Propulsion (Pr) subsystems, respectively. As the com-

ponents heat up and cool at different rates, a suitable sched-

ule for driving and cooling down periods (policy) needs to be

negotiated between the subsystems. As no acceptable poli-

cies may exist that satisfy both the minimum distance and the

maximum time constraints, the two subsystems may need to

negotiate increases in their operating temperature limits. It is

in the interest of each subsystem to keep its limit as low as

possible, in order to reduce the risk of failure. The rover, as

a whole, is also interested in keeping the risk of component

failure as low as possible, while still achieving the destination

in the time alloted.
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Table 4. Maximum cumulative reward values obtained by ES and PPG algorithms (in points)

nodes ES UFC ES result 500 UFC PPG mean (σ) 5000 UFC PPG mean (σ) 10000 UFC PPG mean (σ)

6 720 237 235.60 (05.33) 237.00 (00.00) 237.00 (00.00)

7 5040 311 295.80 (11.29) 305.77 (09.11) 305.77 (09.11)

8 40320 343 329.93 (08.51) 342.57 (02.37) 340.83 (04.93)

9 362880 373 326.27 (11.31) 345.47 (16.50) 348.87 (16.76)

10 3628800 403 347.47 (22.93) 382.73 (18.04) 388.97 (16.47)

Table 5. ES and PPG execution time (in seconds)

nodes ES UFC ES mean (σ) 500 UFC PPG mean (σ) 5000 UFC PPG mean (σ) 10000 UFC PPG mean (σ)

6 720 0.0192 (0.0003) 0.1756 (0.0049) 1.5961 (0.0183) 3.3543 (0.2253)

7 5040 0.1154 (0.0020) 0.2079 (0.0083) 2.2419 (0.1778) 4.5870 (0.4473)

8 40320 0.8385 (0.0105) 0.2212 (0.0114) 3.5883 (0.2132) 9.0177 (0.8424)

9 362880 8.0367 (0.0448) 0.2350 (0.0072) 4.1321 (0.1315) 12.7910 (0.3515)

10 3628800 310.9904 (3.9258) 0.2412 (0.0060) 4.4041 (0.2654) 14.4285 (0.7322)

11.2.1. Scenario formulation

Given:
vc = 0.3m/s the minimum velocity the rover can

maintain without stalling, given the

fault. Also assumed to be best

(cruise) velocity in terms of energy

efficiency

Tb,init = 40◦C the initial operating temperature of

the battery

Tm,init = 35◦C the initial operating temperature of

the motor

Tb,max0
= 60◦C the initial operating temperature

limit for the battery

Tm,max0
= 60◦C the initial operating temperature

limit for the motor

Ta = 30◦C the ambient temperature (constant)

Is = 5A peak current drawn by the affected

motor in order to reach vc from full

stop (start current)

Ic = 2A current drawn by the affected motor

at vc (cruise current)

dmin = 500m the minimum traverse distance

tmax = 3600s the maximum time to reach the des-

tination

ts = 2s the time needed to achieve cruise ve-

locity from a complete stop

A notional current profile for the damaged motor is shown on

Figure 8. For simplicity, current draw by the three healthy

motors was assumed to be constant throughout the motion at

1A each. It is also assumed that prognostic information on

battery and motor EOL is provided.

Find:

td drive period duration

tc cooldown period duration

Tb,maxf
final operating temperature limit for the

battery, Tb,maxf
∈ [Tb,max0

,∞)

Tm,maxf
final operating temperature limit for the

motor, Tm,maxf
∈ [Tm,max0

,∞)

In this formulation td, tc, Tb,maxf
, Tm,maxf

are the decision

variables.

11.2.2. Design of experiments

Each subsystem was given a maximum of M = 3 search it-

erations before it had to relinquish control of the process. td
and tc could be picked from intervals between 10 and 100s, in

10s increments. A simplified version of the simulator (track-

ing only the distance traveled and the temperature state of the

affected motor and the battery) was used as the utility func-

tion, in order to speed up execution. The following general

thermal state equation was used in the simulator:

dT = 1
Ct

(RI2 + h(Ta− T ))dt,

where T is the component temperature, Ct is the thermal ca-

pacity coefficient, R is the electrical resistance, I is the cur-

rent, h is the heat transfer coefficient, and ta is the ambient

temperature. Model parameters used in the experiments are

provided in Table 7.

Table 7. Model parameters

parameter motor battery units

Ct 11 25 J
K

R 0.5 1.0 Ohm
h 0.03 0.08 W

K
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�

Figure 8. Current profile for the damaged motor

Table 6. DCR iterations in the example run

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

active subsystem Po Po Po Pr Pr Pr Po Po Po Pr Pr Pr Po Pr Pr

td(s) 50 50 60 30 30 40 70 50 80 40 50 50 80 70 90

tc(s) 80 80 90 90 90 100 100 60 80 90 100 80 80 90 100

Prognostic information was supplied in a differential form as

the probability of reaching EOL:

dpEOL = a
1010T

3dt,

where a = 1.5 1
K3 for the battery and a = 1.3 1

K3 for the

motor.

The system probability of EOL was calculated as a weighted

sum of the two component EOL probabilities: psystem =
0.8pb + 0.2pm. In this case the battery failure was consid-

ered to be a greater risk than a motor failure, as in the latter

case the possibility of achieving the objective remained by us-

ing the remaining three motors. Minimization of risk of pre-

mature failure was included in both the local and the global

components of the subsystem objective functions.

11.2.3. Experimental results

The output from one of the runs of the algorithm is presented

on Figure 9 and in Table 6. The top subplot of Figure 9 shows

the evolution of temperature constraints for the two subsys-

tems throughout the negotiation process. The middle subplot

shows the maximum distances achievable from each of the

subsystems’ point of view. The process ends when both of the

subsystems are predicted to be capable of achieving dmin, al-

beit with a higher risk of failure while doing so. The bottom

subplot shows the estimated risk of system failure for each

iteration of the algorithm. Table 6 shows which subsystem

had the control of the process during each iteration and the

{td, tc} pair it proposed as the best solution. In the exam-

ple run given here, the final temperature limit for the battery

was found to be at approximately 65.3◦C and the one for the

motor at approximately 75.5◦C.

12. SUMMARY AND FUTURE WORK

In this paper we outlined our approach to development of

prognostic decision making methods for aerospace applica-

tions. First, definitions for prognostic decision making and

related concepts were suggested, then a few motivating ex-

amples (highlighting potential use cases for PDM) were de-

scribed. The examples also helped to illustrate the general at-

tributes of the problem type we hope to address: (1) complex,

multi-component systems; (2) dynamic operating environ-

ments; (3) degradation/fault modes that evolve in their char-

acteristics over time and have the potential of substantially af-

fecting system performance; and (4) decisions on mitigation

measures required in a finite amount of time. From there we

derived our set of high-level requirements for aerospace PDM

systems. With these requirements in mind, we reviewed re-

lated prior efforts from the areas of prognostics-enabled con-

trol, post-prognostic decision support, condition-based main-

tenance, and automated contingency management. We then

explained our process for selecting suitable policy genera-

tion techniques and presented a prototype algorithm that uses

probabilistic methods and prognostic information in gener-

ation of action policies. The algorithm, PPG, was tested

against an exhaustive search algorithm on scenarios involving

a planetary rover prototype. We also considered the problem

where no feasible policies are found or where feasible poli-

cies in the generated Pareto set are not sufficient for attaining

performance objectives, given the current system constraints.

We proposed that this problem has certain common character-

istics with problems from the field of Multidisciplinary De-

sign Optimization and reviewed some of the modern MDO

approaches for applicability. One of the approaches is based

on game-theoretic principles and served as a foundation for

the second algorithm presented, DCR. This algorithm sets up

a negotiating framework for subsystems to adjust their operat-

ing constraints, if that becomes necessary for achievement of

high-importance system objectives. DCR was demonstrated

on a problem involving two subsystems, power and propul-

sion.

16



Annual Conference of the Prognostics and Health Management Society 2012

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
60

65

70

75

80
Subsystem temperature constraints

iteration

te
m

p
er

at
u

re
 (

d
eg

re
es

 C
)

 

 

propulsion

power

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

minimum desired distance

Achievable distances

iteration

d
is

ta
n

ce
 (

m
)

 

 

propulsion

power

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.3

0.4

0.5

0.6

0.7
System failure risk

iteration

ri
sk

Figure 9. DCR output example

While it is not possible to cover all of the topics discussed

in sufficient detail in one paper, we hope that it provides a

good foundation for future efforts. The work done so far also

gave us a better appreciation for the challenges ahead. One of

them is developing more efficient multi-objective optimiza-

tion algorithms - given the high computational cost of a utility

function (simulation) call in a typical application. We plan to

continue our development of probabilistic optimization meth-

ods and further investigate applicability of evolutionary algo-

rithms. Use of multi-fidelity models and response surfaces

for utility simulation will be researched as well.

For the problem of DCR, we plan to concentrate on the

following three goals: (1) extend the current, cooperative

game DCR algorithm to greater possible numbers of play-

ers/subsystems; (2) investigate other formulations, possibly

based on ideas in CO, CSSO, and BLISS; (3) develop meth-

ods for selection of those constraints that offer the most sys-

tem benefit if revised (approaches based on Lagrangian Du-

ality appear promising for this purpose). We also hope that

decomposition formulations researched for DCR will also

prove helpful for the prognostic policy generation work. Fi-

nally, identifying and, if necessary, developing suitable per-

formance metrics will become more important as complexity

of test scenarios and algorithms increases.
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