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ABSTRACT 

The manufacturer-provided power curve for a wind turbine 

indicates the expected power output for a given wind speed 

and air density. This work presents a performance analytic 

that uses the measured power and the power curve to 

compute a residual power. Because the power curve is not 

site-specific, the residual is masked by it and other external 

factors as well as by degradation in performance of worn or 

failing components. We delineate operational regimes and 

develop statistical condition indicators to adaptively trend 

turbine performance and isolate failing components. The 

approach is extended to include legacy wind turbines for 

which we may not have a manufacturer‘s power curve. In 

such cases, an empirical approach is used to establish a 

baseline for the power curve. The approach is demonstrated 

using supervisory control and data acquisition (SCADA) 

system data from two wind turbines owned by different 

operators.  

1. INTRODUCTION 

High operations and maintenance costs for wind turbines 

reduce their overall cost effectiveness. One of the biggest 

drivers of maintenance cost is unscheduled maintenance due 

to unexpected failures. Using automated failure detection 

algorithms for continuous performance monitoring of wind 

turbine health can improve turbine reliability and reduce 

maintenance costs by detecting failures before they reach a 

catastrophic stage or cause damage that increases repair 

costs.  

The power curve is a universal measure of wind turbine 

performance and an indicator of overall wind turbine health. 

Many failures and performance deterioration mechanisms 

can manifest in the measured power curve. By exploiting 

this measure with commonly collected supervisory control 

and data acquisition (SCADA) system information, we can 

provide early indications of failures or severe performance 

deterioration. This paper presents an approach to wind 

turbine diagnostics and prognostics that uses nominal power 

curves and operational data.  

While early indication of failure is needed, it is equally 

important to minimize false warnings; therefore, it is 

important to determine data variability measures and bounds 

for normal and anomalous conditions. We use several 

statistical measures to establish separation between normal 

or baseline operation and deteriorated conditions. 

2. WIND TURBINE PERFORMANCE MONITORING 

Performance is described in the context of the underlying 

process physics of the equipment—in this case, the wind 

turbine. Wind turbines convert wind kinetic energy into 

useful electrical energy. As the turbine components 

deteriorate, the efficiency with which wind energy is 

converted to electrical energy decreases and the 

performance of the turbine decreases. Performance 

degradation can indicate problems such as blade 

aerodynamic degradation due to leading and trailing edge 

losses, dirt or ice buildup on blades, drivetrain misalign-

ment, friction caused by bearing or gear faults, generator 

winding faults, or even pitch control system degradation. 

SCADA or operating data of equipment is often used in 

other industries for accurate and timely detection, 

diagnostics, and prognostics of failures and performance 

problems (Bell & Foslien, 2005, Gorinevsky, Dittmar & 

Mylaraswamy, 2002, Kim & Mylaraswamy, 2006). For 

example, in turbine engine diagnostics, failures such as 

turbine degradation, compressor bleed band failure, fuel 

supply system faults, combustion liner burn-through, and in-

range sensor faults can be automatically detected with 

appropriate diagnostic algorithms. SCADA data provides a 

rich source of continuous time observations, which can be 

exploited for overall turbine performance monitoring. With 
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appropriate algorithms, performance monitoring can be 

matured into individual component fault isolation schemes. 

The functional elements of performance monitoring are 

shown in Figure 1. A performance parameter is computed 

based on sensor measurements; this parameter can be raw 

sensor values, sensor values corrected for environmental 

conditions, residuals with respect to a wind turbine model, 

component efficiency or aerodynamic parameters. Anomaly 

detection uses one or more such parameters to test whether 

the wind turbine is behaving within normal bounds. If the 

root cause of the anomaly is further classified as a particular 

component failure, this provides diagnosis. Additional 

elements involve predictive trending and prognostics, 

wherein parameters or fault indicators are trended and time 

to failure is projected. 

Use of SCADA data for performance monitoring or fault 

diagnostics in wind turbines is not as mature as in other 

industries, such as process and aerospace, where condition-

based maintenance (CBM) is more widespread. In some 

cases, SCADA data, mainly temperature (bearing or 

generator-winding), have been used along with vibration 

data for fault detection (Wiggelinkhuizen, et al. 2008, 

Lekou, et al. 2009). Operating data is also used just to 

detrend or normalize the vibration or temperature data 

(Wiggelinkhuizen, et al. 2008). Zaher, McArthur, and 

Infield (2009) presented a method to use SCADA data for 

anomaly detection based on neural network models of 

normal operating modes. The use of power curve based 

performance monitoring is described in (Zaher & McArthur, 

2007). The power curve agent uses a power curve learned 

from operating data for a healthy turbine. Two pairs of 

alarm limits are generated: inner and outer. The inner alarm 

curve is based on the standard deviation for each wind speed 

bin added to the average in each bin. The outer alarm is 

chosen by the study of several turbines operating normally. 

Caselitz, Giebhardt, Kruger, and Mevenkamp (1996) 

showed the effectiveness of utilizing spectra of the electrical 

power output and the vibration measurements to detect the 

imbalanced rotor, the aerodynamic asymmetry, and the 

generator bearing faults. 

Kusiak presented a method to predict the anomaly, the fault 

severity, and the fault isolation using data mining tech 

 

Figure 1. SCADA data-based monitoring 

niques and prediction models based on wind speed and 

power output obtained from SCADA data (Kusiak, 2011). 

Anomaly detection can be performed with a series of 

techniques that range from simple threshold checking to 

complex statistical analysis. Here, we focus on anomaly and 

fault detection methods for analyzing sensor data from 

individual wind turbines. Sensor data used in algorithm 

development and the approaches are described in the next 

sections. 

3. POWER CURVE ANALYTIC 

The power curve is a wind turbine performance 

specification provided by the manufacturer that indicates 

performance during operation at different wind speeds. For 

specific wind turbine operation, power curves are derived 

from non-dimensional Cp-  (power coefficient versus tip 

speed ratio) performance curves of the wind turbine design. 

The nominal power curves are established by the wind 

turbine manufacturers following published guidelines. One 

widely-adopted international standard is published in IEC 

61400-12-1: Power performance measurements of 

electricity producing wind turbines (IEC, 2005). The power 

curve is generally used to estimate the average energy 

production at a particular location for a given Rayleigh wind 

profile and to monitor the power production performance of 

installed wind turbines. 

Typical power curves for different air densities for a wind 

turbine are shown in Figure 2. The operational speed range 

is between the cut-in speed and the cut-out speed. The cut-in 

speed is the wind speed at which the turbine begins to 

generate power. The cut-out speed is chosen to protect the 

turbine and structure from high loads. 

The actual power curve may deviate from the nominal one 

due to site-specific factors (Tindal, 2008), complex wind 

regimes (Rareshide, 2009), or changes in component 

conditions. A complex  terrain, as opposed to a benign one 

(as defined in the standards),  and  different  meteorological 
 

 

Figure 2. A typical power curve 



Annual Conference of the Prognostics and Health Management Society, 2011 

3 

conditions, such as varying wind direction, wind shear, and 

turbulence intensity can cause shifts in the power curve 

from the nominal. 

To clearly account for factors affecting the power curve, the 

magnitude of the deviation from the baseline must first be 

assessed, and this deviation must then be further processed 

to generate various indicators that are relevant to different 

factors and critical wind turbine components. 

3.1. Power Curve Generation 

We use power curves provided by the manufacturer when 

available as the base power curve model. In the absence of a 

manufacturer-provided power curve (e.g., when the wind 

turbine is a refurbished machine or has undergone several 

component or control changes), SCADA data can be used to 

generate one. A number of data fitting approaches have 

been reported in the literature—from a simple polynomial 

fitting to a stochastic power curve generation (Milan, 2008) 

to a more symmetrical sigmoid function or a Gaussian CDF 

fitting (Yan, 2009). Since wind turbine designs and 

controllers are optimized for extracting maximum energy 

through a nonlinear phenomenon and the power coefficient 

Cp is not constant or symmetrical, we prefer to allow local 

optima instead of seeking overall symmetry. For this reason, 

we use polynomial fitting to generate the power curves 

when a manufacturer provided power curve is not available. 

3.2. Power Residual Generation 

The difference between the measured actual power and the 

power expected based on the power curve is called the 

power residual. Since generated power depends on the air 

mass as well, a family of power curves may be specified for 

different air densities. Hence, before we can calculate the 

power residual, we need to obtain the air density, which can 

be calculated using either of the following equations. 

 

 ρ = p / RT (1) 

or 

 ρ = (p0 / RT) exp(gz/RT) (2) 

 

where ρ is the air density at location in kg/m
3
, p0 is the 

standard sea level atmospheric pressure, p is the air pressure 

in Newtons/m
2
, T is the ambient air temperature in Kelvin, z 

is the location altitude in meters, and R is the specific gas 

constant (287 J kg
-1

 Kelvin
-1

). 

When air density, wind speed, and, in turn, the expected 

power are available, the power residual can be readily 

calculated: 

Power_residual = Power_actual – Power_expected (3) 

3.3. Operational Metrics 

Although the wind turbine is designed to operate between 

the cut-in and cut-out wind speeds, its power response to 

various factors discussed above is not identical across the 

wind speed range. Figure 3 visualizes the variation in the 

power residual with respect to wind speed, denoted by the 

blue dots. This plot illustrates the residual or power 

deviation of the baseline data from the power curve. Even in 

the case of baseline data (data used for power curve 

generation), there is variation in the distribution of residuals 

across wind speeds. The analysis presented in the following 

sections are based on characterizing these residual statistical 

metrics for the baseline and other cases—the difference in 

which can be visualized in plots, but need quantitative 

measures for automated analytics.  

Notice that the variation starts small at low wind speeds, 

then expands in both positive and negative directions as the 

wind speed increases and tapers off once the rated power is 

reached, forming a bird-like shape which we call the 

Hummingbird model. To delineate the nominal and 

anomalous residuals with respect to the Hummingbird 

model, wind speed bins are defined and the standard 

deviation of the power residual for each bin is calculated. 

Three-sigma from the mean residual for each wind speed 

bin is used to set the upper and lower bounds on the 

residuals. The residual points that are outside these bounds 

for a particular wind speed bin are  marked and used for 

anomaly detection as explained in the next section. Recall 

that the power curve shown in Figure 2 had first a concave 

segment followed by a convex segment. These two 

segments respond to increasing turbulence intensity in 

opposite manner—the power increases in the concave 

region while it decreases in the convex region as the 

turbulence intensity increases. Such factors determine the 

variability characteristics of the residuals at different wind 

speeds and provide a way to characterize the operational 

envelope. 

 

Figure 3. Power residual scatter plot of the baseline data 
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To model the operational envelope and be able to identify 

any data point that lies outside of it, Osadciw, Yan, Ye, 

Benson, and White used the Kaiser window fitting approach 

(Osadciw, et al. 2010). We prefer an industrial process 

control approach to define the operational parameters. This 

approach is naturally adaptive and easily accounts for 

performance changes due to normal component wear and 

other factors.  

By adjusting the baseline period and the window size, 

changes in different time scales can be detected. For 

example, if the baseline is established using data collected 

from a newly installed wind turbine, any long-term changes 

in the turbine performance such as the deterioration of the 

aerodynamic performance of the rotor blades can be 

detected. However, using data only from a recent period to 

establish the baseline would mask any long-term 

performance degradation while exposing symptoms of an 

impending component failure. 

In line with the standard practice of wind speed binning, we 

determine the power residuals for each bin and compute the 

corresponding bin statistics such as the mean and variance. 

For analysis, we also set a nominal operational boundary for 

each bin at some multiple of the standard deviation for that 

bin in the baseline data (3-sigma in this case). In Figure 3, 

the operational boundary is indicated by the staircase 

magenta lines surrounding the nominal variation (and 

defining the Hummingbird). Note that this operational 

boundary is not a ‗threshold‘ in the anomaly detection 

sense. The n-sigma boundary provides insight into the 

variability of the residuals inside each bin and gives us an 

opportunity to characterize the shape of the residual 

distribution curve. This curve forms the basis for developing 

condition indicators that could separate nominal operation 

from faulty or deteriorated operation. Notice that although 

the Hummingbird in Figure 3 has a curvy shape, the nearly  

 

 

Figure 4. Power residuals in winter, 2008 

straight horizontal line in the middle indicates that the mean 

power residual for the baseline remains close to zero. Also 

note that at this early stage of development of an algorithm, 

we do not characterize the power curve model as accurate or 

not accurate with respect to the baseline data. We 

characterize only the baseline residual metrics and compare 

these metrics with subsequent time periods, including those 

with failure on the horizon. 

3.4. Operational Regime Based Condition Indicators 

Having defined the operational boundary, we can now 

generate various statistics and other parametric variables 

that we call condition indicators (CI). The CIs can be as 

simple as the mean of the power residual for a wind speed 

bin. We can also calculate higher statistics such as skewness 

to measure distribution symmetry and kurtosis to see how 

peaked or flat a distribution we obtain for each wind speed 

bin. These indicators can be computed using an appropriate 

set of data for the baseline to detect short- and long- term 

changes. 

4. TEST CASES 

We have tested the power curve analytic approach with the 

SCADA data from two different wind turbines belonging to 

two different operators. 

4.1. Data Set I 

We obtained Data Set I from a mid-power wind turbine that 

supplies power to a university campus and sells excess 

power to the grid. It recently came out of 5-year warranty 

with the turbine manufacturer. The SCADA data is available 

in 10 minute and hourly intervals for 2006-2010. 

Figures 4 and 5 show the power residuals plotted using the 

winter and summer 2008 data.  

 

 

Figure 5. Power residuals in summer, 2008 
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Figure 6 shows a mean power residual condition indicator 

(CI_MPR) computed for each season in 2008 and 2009. 

Notice that CI_MPR is indistinguishable at low and high 

speeds, but it clearly shows a shift from 2008 to the next 

year at mid speeds. The shift indicates a noticeable 

improvement in the turbine performance in 2009. 

Unfortunately, the maintenance logs are not available from 

this wind turbine for us to verify the results or track the 

cause of the improvement to a particular maintenance 

action. 

4.2. Data Set II 

We collected Data Set II from a small, reconditioned wind 

turbine that provides power to the operator‘s office building, 

and the excess power is sold to the grid. The data is 

available at 1-min sampling rate. 

This operator encountered an issue with the gearbox during 

routine, semi-annual maintenance in October, 2009. The 

low-speed gear was moving axially on the input shaft of the 

gearbox. To proactively repair this condition, the gearbox 

had to be removed from the turbine and taken to the 

rebuilding facility. The gearbox was disassembled and the 

low-speed shaft sizing was corrected to prevent the axial 

movement. The gearbox was then reassembled and 

reinstalled in the turbine. 

This maintenance event provides a good test case for the 

power curve analytic approach. As a first step of our 

analysis, the data was split up by quarter for each year. The 

first quarter data from 2009 was used to establish the 

baseline. The power residuals were generated for the 

remaining quarters. Notice that the CI_MPR in Figure 7, 

plotted as a broken yellow line, drops further away from the 

baseline as the wind speed increases. Although this provides 

an indication of anomaly, it is not yet clear whether the drop  

 

 

Figure 6. Improvement in WT performance at mid-range 

wind speeds. 

in CI_MPR is the result of seasonal variations. Since we do 

not have many years‘ worth of data, this is hard to ascertain. 

Building on this first indication of an anomaly, we compute 

two other condition indicators: Skewness (CI_SKEW) and 

kurtosis (CI_KURT). Figure 8 clearly shows that the power 

residual symmetry as measured by the CI_SKEW for the 

Q3_09 is much more skewed than the other quarters. Figure 

9 provides more CI_KURT evidence for the anomaly. It is 

clear that seasonal variations are not a consideration for 

either of these indicators, and any small variations between 

datasets are completely dominated by the indicator curve for 

the quarter with the failure. 

The preceding analysis is based on lumped data for certain 

quarters. Diagnostics and prognostics depend on the under-

lying measurements; very exclusive sensor measurements 

for particular failure modes provide more accurate and 

earlier warnings of that failure. Since power generated is a 

very broad measure, how early can any such deviations 

from normal be detected? We performed the same analysis 

for moving 30-day windows with 1-day progression 

intervals. Figures 10 and 11 show the variation of skewness 

and kurtosis of residual distribution in each wind speed bin. 

The moving window plots started deviating from the normal 

around Sept 30 to Oct 3. 

Notice that in Figures 8-11, the biggest difference between 

the suspect data sets and the baselines occur at around 24 

mph. By focusing on this wind speed bin, we can take a 

closer look at the data to see any early indication of the 

impending failure. 

Figures 12 and 13 show the CI_SKEW and CI_KURT for 

the wind speed bin at 24 mph, computed daily, with the 30-

day moving windows from the days preceding the failure. 

The last day that the data was collected before dismantling 

the turbine was October 22, 2009. In the figures, several 

days from the earlier periods are also included for 

comparison. 

 

Figure 7. Power residuals in fall, 09 
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Figure 8. Skewness per quarter for each wind speed 

 

 

Figure 9. Kurtosis per quarter for each wind speed 

 

Figure 10. Skewness of power residual distribution in a 30-

day moving window 

 

Figure 11. Kurtosis of power residual distribution in a 30-

day moving window 

 

Figure 12. Skewness in days preceding the gearbox failure 

 

Figure 13. Kurtosis in days preceding the gearbox failure 
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Notice that on October 3, 2009 there is a significant rise in 

both CI_SKEW and CI_KURT, and the CIs remain at these 

new elevated levels until the failure. This shows that the 

first indication of the impending failure occurred about 20 

days before the failure and that both indicators seem to be 

robust as demonstrated by the consistency in the elevated 

levels until the failure. 

Note that these condition indicators can only quantify the 

wind turbine‘s difference in operation compared to the  

baseline or other periods of data. Our work analyzed the 

data with statistical measures to see whether the CIs capture 

approaching failures. At this stage, we cannot associate the 

anomaly to a particular failure—especially using a broad 

measure such as power. However, since the gearbox failure 

was noted and repaired and since no other major repairs or 

adjustments were performed during that timeframe, it is 

likely that the gearbox failure was manifested in the CIs. 

With additional data and experience, it may be possible to 

associate changes in CIs in particular bins to particular 

failure modes or operational changes. 

In this gearbox failure case, the scheduled maintenance 

coincided with the developing failure. The operator was able 

to correct the problem in time and, in their own words, ―it 

allowed us to salvage all gearing and shafts. Had the 

problem progressed, it would have damaged the components 

beyond repair and greatly increased the cost of the repair.‖ 

5. CONCLUSION 

We showed that the wind turbine power curve analytic is 

useful for assessing wind turbine performance and 

generating robust indicators for component diagnostics and 

prognostics. The analytic takes advantage of a universal 

measure of wind turbine performance with commonly 

collected SCADA information and provides easy config-

uration based on process control approaches for condition-

based monitoring. Condition-based rather than hours-based 

maintenance enables high reliability and low maintenance 

costs by eliminating unnecessary scheduled maintenance. 

As demonstrated in the gearbox failure case in Data Set II, 

early detection of an impending failure can save an operator 

costly repairs and long downtimes.  

The wind turbine performance analytic power curve analysis 

method clearly separates out pre-failure data from other 

normal operating data. Instead of simply assigning uniform 

thresholds for power curve deviation, our approach uses 

operational regime based condition indicators. Operational 

regime-based CIs prevent false alarms (recognizing unique 

regime variabilities) and increases the possibility of fault 

isolation (different faults may manifest at different regimes). 

It emphasizes detecting slow performance degradation 

caused by component wear as well as degradation due to an 

impending failure. Condition indicators that not only take 

into account the variability of the power residual, but also 

the distribution shape and symmetry, provide additional 

means of detecting and isolating failure cause. 
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