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ABSTRACT inferred from the available signals, which are usually &ibr

The paper presents a novel approach for prognostics ov'sfaulpons’ acoustic emissions, oil contaminants, etc.

in mechanical drives under non-stationary operating condiln this work, we follow an established approach for model-
tions. The feature time series is modeled as an output dfased prognostics, which is to model the fault progression
a dynamical state-space model, where operating conditiodsing a dynamical model. This approach has been applied
are treated as known model inputs. An algorithm for on-lind0 specific cases where the exact model of the fault was de-
model estimation is adopted to find the optimal model at théived. The model, combined with an appropriate state estima
current state of failure. This model is then used to deteemintion algorithm (e.g. Particle Filter) can be used to estenat
the presence of the fault and predict the future behavior anée current state and predict its future evolution (M. Ordha

remaining useful life of the system. The approach s vatidat Kacprzynski, Goebel, Saha, & Vachtsevanos, 2008; M. E. Or-
using the experimental data on a single stage gearbox. chard & Vachtsevanos, 2009; Zhang et al., 2009; DeCastro,

Liang, Kenneth, Goebel, & Vachtsevanos, 2009). However,

most of the authors assume constant operating conditions of
1. INTRODUCTION the machine. Recently, (Edwards, Orchard, Tiang, Goebel, &
An important emerging feature of new generation of con-vachtsevanos, 2010) analyzed the impact of variable operat
dition monitoring systems enables prediction of future-evoNd conditions on the remaining useful life in terms of uncer
lution of the fault and thus enables the plant personnel t&INty-
accommodate maintenance actions well in advance. Everhe aim of this work is to propose a new approach toward
more, it can predict the remaining useful life of the compo-model-based prognostics in which the operating conditions
nent under changing operating condition, thus providing inare considered as a measured input into the model. Because
formation to operators on how the different operating regim the exact relations between the model inputs, fault dingensi
will lengthen or shorten the components useful life. Thisand measured signals are hard to derive, we propose an al-
is a relatively new research area and has yet to receive itporithm for on-line estimation of these relations. The mode
prominence compared to other condition monitoring prob-obtained in this manner can therefore be used to determgne th
lems (Heng, Zhang, Tan, & Mathew, 2009). current state and trend of the fault, predict its future etioh

The focus in this paper will be on mechanical drives. They ard different operating regimes and estimate its remainse u

the most ubiquitous item of equipment in manufacturing andu! life (RUL).

process industries as well as transportation. During tlee-op The paper is organized as follows. Section 2 presents the
ational life-cycle, these items are subjected to weargtaj conceptual idea behind the proposed approach for a general
cracks and other destructive processes. These processes satup. Section 3 introduces the algorithm for model estima-
not be directly observed or measured without interrupfireg t tion that can be used to apply the proposed approach. Section
operation of the machine. The extent of the damage has to Hepresents the experimental setup that was used to colkect th
data for algorithm validation. Section 5 shows the results i
terms of estimating the current state and trend of the faudt a
predict its future evolution. Finally, Section 6 summasitiee
most important results and outlines the directions fortfeirt
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research. is less demanding than in the nonlinear case. The downside
is that linear model can only adequately describe the system
2. THE IDEA OF THE PROPOSED APPROACH in a limited subspace of fault dimension and operating condi

Let us assume that there exists at least one feature that rtci)qns. However, this is partially alleviated by on-line pare-
: . : PIRr estimation that provides an updated model as soon as the
vides the information about the current extent of the fault i

. . ) . . conditions change.
a mechanical system and its value is available trough noisy g

measurements. Furthermore, different operating comditio

affect the extent and the rate of change of the underlyinig fau2.1 Prognosticsunder variable operating conditions

as well as the current feature value. Finally, when the faalt

curs, its progression can be described by a stochastic dynaitis well known (Heng et al., 2009) that the changes in operat
ical process (Gasperin, Juricic, Boskoski, & VizmtR011).  ing conditions (e.g., load, temperature) can greatly atfee
Following the above assumptions, the evolution of fault di-fault in mechanical systems. A schematic representation of

mension in time can be described by the following modepifferent scenarios is given in Figure 1, where it can be seen
(M. E. Orchard & Vachtsevanos, 2009): that under more favorable load, the life of the machine can be

significantly extended.
X1 = f(Xt, Uy, 0) —+ wy (1a)
Yt = g(X¢,u,0) + vy (1b) A
wherex; is the system statg; is the observed feature value, I
u, is the vector of model input$, is the vector of model pa-
rameters, finallyw, andv, are random variables describing mEEmmEmEmEmmmme
system and measurement noise, respectively. The first equa- _|_'_ TeEmEmm
tion in the model represents the fault evolution dynamias an !
the second one describes the feature extraction. Assuming Toes TIME
that the values of the moc_lel paramet@rare k_nown, this A CRITICAL VALUE |
model can be used to predict the future evolution of the fault | R
for any given sequence of the operating conditions (fixed or ’
variable)u,.
Nonlinear models (1) are a very powerful description of the _’"___,/
process dynamics and can describe a broad range of dynamic _ﬁ——':tr_':-
behavior. Usually the estimation methods include only a 1 >
specific family of models, e.g. as shown by (DeCastro et Toeeo TIME
al., 2009) or rely on approximation methods (M. Orchard et __ i , )
al., 2008). If linearized, the expression (1) takes the form Figure 1. Fault progression under different load scenarios

(GaSperin et al., 2011)
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X141 = Axy + Buy +wy (2a)  The exact relations between them and the fault dimension can
y: = Cx; + Du, + vy (2b)  be obtained by advanced and complex modeling approaches,
. which are usually not applicable to real-world conditionmmo
In the model (2)w; andv; are random variables that follow jtoring problems. The main advantage of implementing the

anormal distribution: approach presented here is that it offers a systematid@olut
Wil oA 0 Q S 3) to finding the relation between the machine operating condi-
Vi 0] [s” R tions, feature value and fault dimension. The added funetio

If the functions governing the dynamical behavior of thdtfau ality of our solution can be summarized as follows:

in (1) are known, the linear approximation can be computed,  petection of fault progression: The approach can sepa-
analytically. Hov_vever, this has only been done for a limited rate the fault evolution dynamics from the dynamics en-
number of special cases and for a general setup, the model ¢ o py the variable operating conditions. This means

parameters have to be assumed unknown. To aIIevi_ate this 1 at we can detect the rate at which the fault is progress-
problem we propose a data-driven approach for modeling and ing.

prognostics, where the parameter of the linear model (2) are

estimated on-line based on the past data of the feature.valug,  Egtimation of the remaining useful life: If the future
The benefit of using a linear model is that the parameter esti-  load profile of the machine is known, it can be used as an
mation algorithm can be implemented with minimal computa-  input to the model and predict the future evolution of the
tional load and the analysis of the model (in terms of stahili fault.
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3. MODEL ESTIMATION However, it is convenient to consider the log-likelihooddu

In this chapter we will address the problem of estimating unEIon

known model parameters of the linear state-space models (22 )

Estimating the state-space models is challenging bechase t (8) = logp(Yr|8) = Z logp (ye[Yi-1,0) +logp (y16)
internal system states are not directly observed and theref =2 10
all the information about them has to be inferred form the (10)
measured data. The state sequence can be estimated frémd the maximum likelihood estimator is thus
the data, but the procedure requires the knowledge of the .
model parameters. As this is usually not the case, an apiproac Orr(Yr) = arg m§‘Xp(YT|0> = arg m;’“XL(o) (11)
that allows both the estimation of system states and unkno

W . :
model parameters is required. R closer look at the expressigiiy;|Y;—1,8) in (10) reveals

that it depends on system states. Indeed
3.1 Maximum likelihood estimator

| = o p31[Ye1.0) = [ plyilxe. O)plxi Yo O)dx: (12
Suppose is a random variable with probability density func-
tion p(x|6), whereg is a vector of unknown parameters. Let The formulation of the above integral is problematic and in

X7 = {x1,X2,...,xr} be the set of observed values. Thegeneral case no closed form solutions exist.
probability density function oX is

p(X7|) = p(x1, X2, .. ., %7|0) (4) 3.3 TheExpectation-Maximization algorithm

The pdfp(X7|6) is deterministic function of and is referred The expectation-maximization algorithm can solve the ML
to as thelikelihood function A reasonable estimator fg  €Stimation problem in the case of incomplete or missing.data

could then be to select the values in such a way that the o-nerefore, if the stateX are considered as missing data,
served realizatioXX becomes as likely as possible. Maxi- this algorithm can be successfully deployed to solve the sys

mum Likelihood (ML) estimator for unknown parameters is tem identification problem. Consider an extension to (8).

defined by A O (Xr,Yr) = arg max log p(X7, Y7|6) (13)
0 Xr) = argmax p(Xr|0 5
mr(Xr) &1 p(Xrl6) ®) The EM algorithm then solves the problem of simultaneously
where the maximization is performed with respecftand estimating system states and model parameters by altegnati
for a fixedX . between two steps. First, it approximates the likelihoottfu
Rather than (5) it is often convenient to operate with the logtion With its expected value over the missing data (E-step),
likelihood function. and secondly maximizes the likelihood function w.6t(M-
step). A short overview of the algorithm will be presented,
L(6) = log p(X7|0) (6)  while a more detailed explanation can be found in (Haykin,

Since logarithmic function is monotonically increasingpm ~ 2001; Gibson & Ninness, 2005).
imizing the likelihood function is the same as maximizirgy it

logarithm, 1. Start with initial parameter estimaig.

2. Expectation (E) step:
Compute the expected value of the complete data log-
likelihood function.

Consider a dynamic state-space model, whafe = Q0.,01) = Epxrivr o ilogp(Xr, Yr(0)}  (14)
{y¥1,y2,...,yr} are the measured system outpl¥s; = 3. Maximization (M) step:

{x1,x2,...,xr}isthe unobserved sequence of system states  Compute the optimal parameter vector value by maxi-
and@ is vector of model parameters. A straightforward way mizing the functionQ(6,0y).

to define the maximum likelihood parameter estimator far thi
case is Ori1 = argmax Q(0,6) (15)

Or1(Xr) = arg max L(#) (7)

3.2 Likelihood function for dynamical models

O (Yr) = argmaxp(Yr|6) (8) 4. If convergence criteria are not satisfied, ket k -+ 1

where the data likelihood function can be expressed using and return to step.

ehan e According to the EM algorithm, the first task is to compute the
(Yr| (y116) ﬁ (vt ) expected value of the complete data log-likelihood furrctio
p(Y7|0) =p(y1160) | | p(ve|Ye-1,0 (9)
t=2 Q0,01) = Eyxpvr.00)1logp(X7, Y7|0)} (16)
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where the joint likelihood of the measured output and systerB.  Use the estimated mod#&f - and statex to analyze the
states can be written as fault and predict future behavior of the system.

4. When the new feature value is collected, Bet T + 1

Y, Xrlf) = ey X1,...,X7,0)p(x1,...,x7(0
p( g T| ) p(YI TB;T| ! 4 j),p( ! Tl ) and return to step 2.
:p(X1|9> Hp(xt+1|xta0>t]___{p(yt|xtvo) 4. CASE STUDY

(17)  For the purpose of the development and verification of the

h model-based prognostics tools, the experimental test Aed h

been used (Figure 2). It consists of a motor-generator pair

with a single stage gearbox. The motor is a standard DC mo-

tor powered through DC drive. A generator is being used as

—2logp(X7,Yr|0) = log |P1| + (x1 — u1)" Py (x1 —p1) abreak and the generated power is being fed back in the sys-
T tem, thus achieving the breaking force.

+ Z(XtJrl - AXt - But)TQil(Xt+1 — AXt - But) r

Taking into account Gaussian distributions and ignorirey t
constants, the complete data likelihood function can bé wri
ten as

t=1

T

+ Z(yt - Cxt - Dut)TRil(yt - Cxt - Dut) 2 Gearbox Generator
t=1 |

+ Tlog|Q| + Tlog |R| (18)

The expected value of the above expression can be maximized
by the following choices (Gibson & Ninness, 2005):

{‘é [B)} —ox-! (19)
{SQT ISJ 3 _uxluT (20)

Figure 2. The test bed

where

1 N X1 The most informative and easily accessible signals that off
®= T Z Eyxr1yr.6r) { ] [XtT+1,ytT}} (21)  information on gear health are vibration signals (Combet &
— L Yt - - .
t=1 Gelman, 2009). In our setup, the vibration signals are ac-
quired from a sensor placed on the output shaft bearing.

N -
1 X
=53 B {5 BT} @
t=1

L Yt 4.1 Experimental run
N -
1 Xy The set of gears was subjected to a time-varying load pro-
> ==Y E T al 23 . :
T Z PXr[¥r6:) { _ut} [Xt e ] } (23) file. The speed was kept constant throughout the experiment.

=1 . . . . .
! ] Vibration signals were acquired every 5 minutes and each ac-
and the required expected values of the system states can Bgsition took 5 seconds.

computed using a standard Kalman smoother (Haykin, 2001%‘he complete experiment lasted approximately 180 hours. At

The estimated values of model parameters at a time instangge end extensive pitting damage was clearly visible on both
T, along with the estimated state sequence and the modghay and pinion, as shown in Figure 3.

structure defined by (2) constitute the model of the fault dy-
namics at this particular time instance and is labeléd.

3.4 Algorithm Summary

The presented algorithm, adopted for machine health estima
tion and prognostics can be summarized as follows:

1. Selecttime window and sefl’ = N + 1.

2. Run the EM algorithm for model estimation
using past data yr_nN,yr-n—1,---,yr and Figure 3. Gear condition after 180 hours of operation
UT—-N,UT—-N—1y---,UT-
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4.2 Gear fault dynamics whereQ andR are covariance matrices of Gaussian random

The main source of vibrations in meshing gears originateﬁa”ableswt andv,, respectively. The model structure is de-

from the changes in the bending stiffness of the gear teet ped by selecting the number of hidden sfcates, _mez_asured in-
as well as variations in the torsional stiffness of the shaftP4™ and outpu_ts. In our case, the state dimensiom is 2,
and supporting bearings (Howard, Jia, & Wang, 2001). Aéhe number of inputs is = 2 (torque and temperature) and

gear teeth rotate through the meshing cycle the overall-benE:he model hag = 1 measured output (vibration feature). The

ing stiffness changes according to the number of teeth p,rese_unknown model parameters are thus matrices with the follow-

in the meshing contact. Under constant operating condition ing dimensions: .
these variations are expressed as a spectral component posi A eR™™ B e R™", CeR™™,
tioned at the gear mesh frequency. D € R¥*" Q € R™™ R ¢ RIxd (25)

Alocalized fault alters the original tooth stiffness prefilThis  prior to running the algorithm, these parameters have to be
alteration occurs every time the damaged tooth enters amesfjtalized to some values. In this problem formulatione th
ing contact. This localized fault affects the produced &ibr gg|ection of the initial values is not crucial as the liketi
tions by the appearance of an additional modulation compgynction for linear system is unimodal and there is no threat

nentaround the original gear mesh frequency (Randall, 1982¢ giergence. The values of all the matrix entries were thus
As the fault progresses and spreads on all teeth the changesst 1 a neutral value of 1.

the gear mesh frequency component become more apparent.

As our goal is to perform the earliest possible estimation op.1 Detecting thetrend of the fault

the remaining useful life of the observed gears, we havetbaseyfier g model M is obtained at a certain time poi, it

our algorithm on the information contained in the signafis € can pe analyzed to determine the current trend of the fault,
ergy portion extracted from the sidebands around the prinCieyen under variable operating conditions in the period & da
ple gear mesh component. This value was computed for eaglyquisition. This is made possible because the state-space
vibration acquisition session and the corresponding tigte S model can distinguish between the feature dynamics that is
ries represents the feature values. due to the variable operating conditions (model input matri

In terms of modeling the gear fault dynamics the featureesaluB) and the dynamics due to the fault progression (system state
is the model output while the known inputs into the model arematrix A). Therefore, by analyzing the eigenvalues of the
torque and temperature. The model inputs and outputs asystem matrixA, one can determine weather the fault pro-
shown in Figure 4. gression has a stable dynamics (i.e. it will remain of a con-
stant size) or unstable dynamics (i.e. the fault dimensiiin w
increase in time).

A more illustrative way to present this is by visualizing tbe
ture evolution of the feature value at constant operating co
ditions. In Figure 5, this is done for two different timés..,

‘ ‘ ‘ 20 one with stable and one with unstable dynamics.
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5. RESULTS

o

I I
60 T 80 100 120
Time [h] pred

The developed algorithm for model estimation was imple-F_ 5 Detecti f the fault : i i
mented with the sample size 6f = 200, which corresponds lgure 5. e edg ‘on ot the fault progression at non-staliyn
to approximately 16 hours. The unknown model parametergper""t'ng conditions

are:
It can be seen that in the first case (Figure 5 (top)), the pre-

6=[A,B,C,D, Q,R] (24) dicted feature value is constant, which means that the fault



Annual Conference of the Prognostics and Health ManageS8waiéty, 2011

will not progress. Thé&,,.q here wast4h and no fault was 34: ‘ ; — Voraion feaure
indeed present at that time. In the second case (Figure 5 (bot | , , - - ~95% confidence inerval
tom)), the model was estimated Bf,.q = 78h, where the
fault started to increase and the model thus predicted tde gr

ual increase of the feature value even at a constant load.

Vibration feature

O s N W o

5.2 Model-based prognostics under non-stationary ; ;
conditions ‘ ‘ ‘ ‘

60 70 T, 80

o

o

i i i
920 100 110 120
Time [h]

The modelM+ includes all the information about the cur-
rent fault state as well as the relation between the operatinFigure 7. Long term prediction under variable loadgt.; =
conditions and the fault. Therefore it can be used to predictsy,

the evolution of the fault under variable operating cordisi.

For example, if the future time profile of the load is known, ) ) N
the model can predict the feature time series for that SpecifiThe model assumes linear relations between these quantitie

load profile. The example of such a prediction is shown inVhich can be interpreted as a local approximation of the oth-
erwise complex nonlinear relations. The benefit of this ap-

Figure 6 >€ comp : :
proximation is that the model parameters can easily be esti-
3’_V_b — : mated on-line. This means that the model is constantly up-

25[] = = = Predicted mean : dated as new data arrive.

- = =95% confidence interval

The approach was validated on a laboratory test bed using a
single-stage gearbox and vibration sensors. The problesn wa
to detect and predict the faults in gear and the model anal-
ysis and prognostics on the experimental data validated our
hypotheses.

Future work will include validation of the approach for esti
mation of the remaining useful life of the gear and examine
how the RUL depends on the load profile. However, to prop-
erly conduct this study, further experiments are required.

Vibration feature
I S

I
o

Figure 6. Long term prediction under variable loadgt.; =
44h

It can be seen that the model predicted a stable fault dynarrﬁ{-E':ERE'\‘CES

ics and the changes in the feature value only occur due t@ombpet, F., & Gelman, L. (2009). Optimal filtering of

changes in the load. In the actual experiment, the initialt fa gearnext term signals for early damage detection based
occurred around the timé&; = 55h, which is impossible to on the spectral kurtosisMechanical Systems and Sig-
predict with the model that is based only on the data up to nal Processing23, 652-668.

timeTyreq < Tf. DeCastro, J. A., Liang, T., Kenneth, L. A., Goebel, K., &

Effect like this may occur because the underlying model is Vachtsevanos, G. (2009). Exact nonlinear Filtering
linear and serves only as a local approximation. However, it and Prediction in Process Model-Based Prognostics. In

is crucial to note that if such a fault occurs, it is reflected i Proceedings of the 1st Annual conference of the PHM
the feature values data and the algorithm will quickly incor Society, San Diego, USA, September 27 - October 1,
porate the new data into the model and produce the updated  2009.

parameter values. Edwards, D., Orchard, M. E., Tiang, L., Goebel, K., & Vacht-

sevanos, G. (2010). Impact of Input Uncertainty on
Failure Prognostic Algorithms: Extending the Remain-
ing Useful Life of Nonlinear Systems. Wnnual Con-
ference of the Prognostics and Health Management So-
ciety, 2010.
Gasperin, M., Juri€ic, D., Boskoski, P., & VizZintin, ®2011).
Model-based prognostics of gear health using stochas-
The paper presents a new approach for model-based prognos- tic dynamical modelsMechanical Systems and Signal
tics of mechanical drives under non-stationary operatorg ¢ Processing25(2), 537-548.
ditions. The novelty of the proposed algorithm lies in the us Gibson, S., & Ninness, B. (2005). Robust Maximum-
of dynamical model to describe the relations between operat Likelihood Estimation of Multivariable Dynamic Sys-
ing conditions, fault dimension and vibration feature ealu tems.Automatica4l, 1667-1682.

After the model is adapted to the new data, the prediction is
updated and a result of a later prediction is shown in Figure 7

It can be seen, that the actual feature value almost alweys li
within the 95% confidence interval of the prediction.

6. CONCLUSIONS
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