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ABSTRACT 

In this study the opportunity to introduce PHM (prognostic 
and health monitoring) concepts into a cracked railway axle 
management is investigated. 
The performances of two different prognostic algorithm are 
assessed on the basis of their RUL (remaining useful life) 
predictions accuracy: a prognostic model based on the 
Bayesian theory and a physical prognostic model. Both 
models rely on the measured crack size. The measured crack 
growth measure has been built from simulated probabilistic 
crack growth path by adding measurements errors. The 
effect of monitoring frequency and the measurement HW 
and SW infrastructure size error to RUL predictions’ 
accuracy is assessed as well, trying to evaluate the 
hypothetical measuring infrastructure capabilities’ (sensors 
+ layout) effect on the overall PHM predictions. 
Furthermore the PHM approach is compared to the classical 
preventive maintenance approach to railway axle 
maintenance management based on expensive and regular 
NDT. 

1. INTRODUCTION  

Railway axles are designed to have an infinite lifetime 
(EN13103, 2001). However occasional failures have been 
and are observed in service. The typical failure positions are 
the press-fits for wheels, gears, and brakes or the axle body 
close to notches and transitions. Such failures always occur 
as fatigue crack propagations whose nucleation can be due 
to different causes (U. Zerbst M. V., 2005). In the case of 
railway axles, the presence of widespread 
corrosion(Hoddinot, 2004)(C.P. Lonsdale, 2004) or the 
possible damage due to the ballast impacts (M. Carboni, 
2007) may constitute such causes. 

This kind of failures is usually tackled by employing the 
‘damage tolerance’ methodology, whose philosophy 
consists (U. Zerbst M. V., 2005)(U. Zerbst K. M., 2005) in 
determining the most opportune inspection interval given 
the ‘probability of detection’ (PoD) of the adopted non-

destructive testing (NDT) technique or, alternatively, in 
defining the needed NDT specifications given a 
programmed inspection interval. 

The negligible number of axle failures is reached thanks to 
role played by inspections carried out with the aim of 
keeping developing fatigue problems at bay. As reported by 
(R.A. Smith, 2004) in the United Kingdom there have been 
about 1.6 axle failures per year over the last 25 years, out of 
a population of about 180,000 axles. (A similar number of 
new axles are introduced every year in PR China, where 
some 2.5 x 106 wheelsets are in fleet service.) These large 
numbers of axles are subjected to inspections in order to try 
to identify cracks before failures occur. In general, the 
examinations are expensive, time consuming and not 
particularly effective in finding cracks. Furthermore, the 
dismantling needed to examine axles, such as the drawing-
off of bearings, can cause scratching damage that is 
sufficiently severe to cause an axle to be retired. The 
rationale behind the frequency of testing is that the largest 
crack that would not be detected in an inspection should not 
grow to failure during the service interval to the next 
inspection. This implies that crack propagation calculations 
should be performed with sufficient accuracy to set the 
inspection interval. However, as stated by (R.A. Smith, 
2004) some difficulties arises: 

• Due to the difficulty in determining the reliability and 
sensitivity of the inspection techniques, the initial crack 
length chosen for the life calculation must be set larger, 
leading to shorter intervals between inspections than are 
really necessary. 

• The service loads are much more stochastic in nature 
than the well-defined hypothetical loads used for the 
initial design rule suggest. In many cases, in the absence 
of experimental measurement, the magnitudes and 
frequencies of these events are unknown, thus making 
cycle-by-cycle crack growth predictions unreliable. 

• Important inputs to fatigue calculations are material 
properties such as crack growth data, fatigue limits and 
fatigue thresholds, which are very sensitive to material 
condition, manufacturing route, surface treatment, 
orientation and load sequence. In many cases these data 
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are lacking, particularly from large specimens 
representative of axles. 

• Abnormal conditions may arise in service. There is 
debate about the best means of protecting axles from 
corrosion and the extent to which coatings may hinder 
inspection. The interactions between fatigue and 
corrosion mechanisms in extending defects are still 
inadequately understood. Higher speeds have led to 
increased examples of damage of axles from flying 
ballast, which may be of the form of crack-like 
indentations on axle surfaces that initiate premature 
failure. 

These considerations can lead to think that maybe, instead 
of using a preventive maintenance approach a predictive 
maintenance approach based on prognostics could be 
convenient. Several aspects has to be considered in order to 
assess the technical and economical feasibility of this 
approach. The first and the most important is the assessment 
of the prognostic algorithm predictions accuracy and its 
sensibility to the goodness of the diagnostic and monitoring  
equipment used. 

This section constitute the first attempt to answer to this  
question through an explanatory assessment of two 
prognostic algorithms. The first one is based on statistical 
method, the second one exploit the good understanding of 
the crack propagation physical process to estimate the time 
to fail of a cracked axle. Moreover, the predictive 
maintenance approach is qualitatively compared to the 
classical preventive approach.  

2. PROBLEM  FORMULATION  

2.1 Simulation of the crack growth paths – The 
stochastic crack growth algorithm 

In this paragraph the stochastic crack growth model used in 
this work is presented. The non-powered railway axle 
considered in the present study is manufactured in A1N 
steel and used in Y25 bogie with a diameter D equal to 160 
mm. 

Service loads acting on railway axles are the result of 
vertical and lateral forces (EN13103, 2001) due to their 
normal functioning, and the maximum bending moments 
can be found in the area of the wheels press-fit (U. Zerbst 
M. V., 2005)(M. Carboni, 2007). On the basis of these 
considerations, fatigue crack growth has here been analyzed 
at the typical T-transition between the axle body and the 
press-fits. 

Different algorithms for simulating the crack growth of 
cracked components are available in literature. Some of 
them consider the crack growth modeling as stochastic 
process, see for example (K.Ortiza, 1988),(D.A. Virkler, 
1979).(J.L Bogdanoff, 1985). However, the likelihood of 
lifetime calculations depends on the adopted FCG algorithm 

and only the most complex algorithms are able to 
adequately describe crack propagation under variable 
amplitude loading in railway axles (S. Beretta M. C., 2006). 

In the present work the NASGRO algorithm (Anonymus, 
2006) will be considered. This FCG model has been chosen 
because it is the reference algorithms in analyses where 
random loadings are involved, since it takes into account the 
‘‘plasticity-induced crack closure’’ phenomenon (EN13103, 
2001). Moreover, NASGRO has been used in several papers 
addressing the propagation of fractures in railway axles (U. 
Zerbst M. V., 2005) (S.Beretta M. , Simulation of fatigue 
crack propagation in railway axles, 2005)(S. Beretta M. C., 
2004). 

The considered software adopts the Paris-based crack 
propagation law called ‘‘NASGRO equation’’: 

 

 
da

dN
= C ��1 − f

1 − R
�∆K�� �1 −

∆K��

∆K
��

�1 −
∆K�1 − R�∆K����

�� 2.1 

 

where ‘‘C’’, ‘‘ n’’, ‘‘ �’’ and ‘‘�’’ are empirical constants, 
‘‘ �’’ is the stress ratio, ‘‘∆K��’’ is the threshold SIF range 
and ‘‘∆K����’’ the critical SIF. 

To analyze cracked bodies under combined loading, the 
stress intensity factor is expressed as: 

 
∆K�	
 = 	
 α� �a

D
���

��


+ β� �1 − R��S + ε�√πa 2.2 

Where α� and β are empirical constants, S is the applied 
bending stress, a is the crack size and ε is a random 
coefficient (introduced later in the paragraph). The bending 
stress is considered plane since NASGRO is not able to 
consider rotating bending conditions. This assumption has 
not a significant influence on estimated life predictions as 
demonstrated in (S.Beretta M. , Rotating vs. plane bending 
for crack growth in railway axles, 2005)(S.Beretta M. M., 
2006). 

The closure function is defined as: 

 

 f = A� + A�R 2.3 

Where 

 

A� = 0.825 − 0.34ϑ + 0.05ϑ� 
cos �π
2

S���
� 

A
 = �0.415 − 0.071ϑ�S� 

 

2.4 

ϑ is a plane stress/strain constraint and S� is the ratio of the 
maximum applied stress to the flow stress. 
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Since NASGRO does not consider the geometry of the 
typical transitions of axles, equation 2.5 is modified in terms 
of the maximum SIF present at the notch root and calculated 
as 

 ∆K = K�∆K�	
 2.6 

K� represents the experimental stress concentration (S. 
Beretta M. C., 2004). 

As demonstrated by (S. Beretta M. C., 2006), the crack 
growth randomness can be described considering the stress 
intensity factor threshold as a random variable. Particularly, 
it is demonstrated that ∆K�� can be considered as belonging 
indifferently to a lognormal distribution or normal 
distribution. In this work is considered as a normal variable 
with mean ∆K�� and standard deviation �∆���

. The empirical 
calibration of all the other parameters is carried out by 
means of dedicated fracture mechanic experiments. Their 
values are listed in Appendix. Another relevant source of 
uncertainty is the randomness of the applied load (U. Zerbst 
M. V., 2005)(M. Carboni, 2007). Therefore service loads 
have been considered derived from experimental results on 
a high speed train. Next, the service stress spectrum has 
been approximated with a simple block loading consisting 
of twelve blocks (Table 1). To take into account the within 
block variability a random term ε is added in the Eq.2.9. It is 
assumed to be uniformly distributed with mean equal to 0 
and with a span of 2ε. 

The so defined block loadings were then applied to growth 
calculations with a time sequence in accordance to Gassner 
suggestions (Gassner, 1956). Starting from the discrete 
spectrum in Table 1, the random history loads sequence is 
built by permutations of the whole set of the blocks. Each 
load sequence is 3.222.887 km long, composed of 20 
consecutive complete permutations. Some simulated crack 
growth path, considering all the uncertainties described 
(load history, ∆K�� and ε) are shown in  Figure 1. 

 

Cycles Load [MPa] 
1 145 

8 135 

75 125 

825 115 

15,000 105 

110,025 95 

357,675 85 

678,900 75 

1,621,725 65 

3,046,500 55 

8,165,775 45 

39,718,275 35 

Table 1 The 12 service time blocks 

 

Figure 1 Examples of simulated crack growth paths 

Eventually, once determined an initial crack size and a 
limiting crack depth value at failure, through the Monte 
Carlo technique is possible to estimate the TTF pdf. Each 
simulation run is characterized by a random ∆K�� and a 
random load history. Considering an initial crack size of 2 
mm and a limiting crack size of 60 mm, the TTF pdf is 
shown in Figure 2. 

 

Figure 2 TTF probability distribution 

The TTF pdf for the purposes of this work is considered as a 
lognormal distribution as can be observed in Figure 3. It can 
be noticed how a lognormal distribution fits well the TTF 
data for almost the whole TTF variability range, only the 
right hand tail significantly diverge for the TTF. This is 
demonstrated also by Beretta et al. (S. Beretta M. C., 2006) 
and Schijve (Schijve, 2001). 
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Figure 3 Lognormal fit plot for TTF pdf 

2.2 Design of the preventive maintenance approach  

The preventive maintenance approach is designed according 
to the damage tolerant approach well described by (U. 
Zerbst M. V., 2005) (U. Zerbst K. M., 2005). The steps that 
have to be followed to design a design an axle preventive 
maintenance plan are: 

1. establishment of the initial crack shape and size for 
further analysis 

2. within a damage tolerance concept the initial crack size, ��, is not identical to the size of a real flaw, e.g., from 
the manufacturing process but is a fictitious size, which 
usually refers to the detection limit of the NDI 
technique. The basic idea is that the largest crack that 
could escape detection is presupposed as existent. 

3. simulation of sub-critical crack extension, 
This kind of crack growth is designated as sub-critical 
since it will not lead to immediate failure until a critical 
length of the crack is reached. For railway applications 
the common mechanism is fatigue. 

4. determination of critical crack size for component 
failure. The sub-critical crack extension is terminated 
by the failure of the component. This may occur as 
brittle fracture or as unstable ductile fracture. Critical 
states may, however, also be defined by other events 
such as stable ductile crack initiation or the break-
through of a surface crack through the wall or setting a 
maximum allowable crack size threshold. 

5. determination of residual lifetime of the component, 
The residual lifetime is that time or number of loading 
ycles which a crack needs for extending from the initial 
crack size, ��, (step 1) up to the allowable crack size, ��
� , established in step (3). 

6. specification of requirements for non-destructive 
testing. 

The constitution of an inspection plan is the aim of a 
damage tolerance analysis. From the requirement that a 
potential defect must be detected before it reaches its critical 
size it follows immediately that the time interval between 
two inspections has to be smaller than the residual lifetime. 
Sometimes inspection intervals are chosen to be smaller 
than half this time span. The idea is to have a second chance 
for detecting the crack prior to failure if it is missed in the 
first inspection. It is, however, also obvious that frequently 
even two or more inspections cannot guarantee the crack 
being detected since this would require a 100% probability 
of detection. 
The procedure described by (U. Zerbst M. V., 2005) aims to 
define the NDT specifications following the ‘last chance’ 
approach introduce in (M. Carboni, 2007). In this case, the 
PoD is not a variable to be optimized but is given. Therefore 
the maximum inspection interval was defined instead of the 
requirements for non destructive testing. The steps from 1 to 
4 has already been done in the previous paragraph. 

2.2.1 The PoD curve 

The PoD can be derived from the calibration function of the 
particular NDE equipment used  that relates the crack 
dimension (length,depth or area) to the output. In this case, 
the NDE method considered is the ultrasonic inspection. 
Since output from an NDE measurement process is a 
continuous response, the calibration curve is modeled as a 
linear function in which the measurement (dB of the signal) 
is given by a linear combination of two parameters and the 
crack area (�� [���]) plus a normal zero mean error with 
constant variance (Eq.2.7). 

 �	��
 =  �� +  �� log�� �� + � 	0, ��
 2.7 

The parameters �� , ��, �� are estimated through the LSE or 
through the MLE methods. Is assumed that 1000 dB and -
1000dB are respectively the saturation and observable 
limits. 

The data provided from which the parameters are estimated 
have been obtained from real inspections of railway axles.  
The parameters’ values are reported in Table 2. 

Parameter Value* 

�� Xxo �� Yyo �� Zzo 

Table 2: Calibration Curve Parameters 

In order to use the calibration curve in the following 
analysis, the crack size has to be expressed in term on depth 
instead of  surface area. The crack geometry is assumed  to 

                                                 
* Values are omitted for confidentiality reasons 
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be semicircular (M. Carboni, 2007). Therefore, the resulting 
calibration curve function becomes: 

 � =  �� +  �� log�� 
���
2

� + � 	0, ��
 2.8 

In order to derive the PoD function, a threshold is fixed that 
represents the measure’s bound that if it’s overcame, the 
presence of a crack is diagnosed. This limit is set at 50.6 dB 
that corresponds to a crack depth of 5.492 mm.  

The reference limit and the final calibration curve with the 
constant 3��  confidence limits is shown in Figure 4. 

 

Figure 4: Final Calibration Curve 

At this point the PoD curve can be derived as it represents 
the probability that a crack of size � can be detected, given 
that the threshold is set at ���. According to this statement 
and making the hypothesis of a normal distributed error, the 
PoD of a crack depth � is: 

 ������ =  ������ > ������� = 

= 1 − Φ������� − ��� +  �
 log
� ����2
���� � 

= 1 − Φ�50.6 − ��� +  �
 log
� ����2
���� � 

2.9 

 

where Φ is the standard normal cdf. In Figure 5 is shown the 
resulting PoD curve.  

 
Figure 5: PoD 

The PoD as discussed above in paragraph 2.2 is used to 
determine the maximum inspection interval in order to 
detect with a probability � the maximum allowed crack size ��
� . In the following paragraph, according to the problem 
defined in paragraph 2.2, the  maximum inspection interval 
is determined. 

2.2.2 Identification of the maximum inspection interval 

The maximum safe inspection interval is determined 
through examining the effect of the interval of inspection on 
the overall probability of detection in the case of a fast 
growing crack. The inspection interval is therefore the 
maximum interval of inspection that allows the detection of 
the maximum allowable crack size with a defined reliability. 
The worst case is when the time (or distance) before the 
failure occurs (TTF) is minimum. This happen when, once 
the maximum defect present in the system is set, the crack 
growth rate is the highest. The inspection interval is 
therefore dependent on the largest defect present in the 
system, that is the defect that will eventually cause failure.  

The maximum defect size is set at 2 mm as suggested by the 
literature reviewed(M. Carboni, 2007)(U. Zerbst M. V., 
2005) and as set in the crack growth simulations. At this 
point the fastest growth crack has to be chosen as the 
reference upon which the maximum allowable inspection 
interval has to defined. 

Starting from the TTF distribution shown in Figure 2, the 
fastest growth crack has been chosen. It is the crack growth 
path with the minimum TTF in 300 simulations and that 
falls in the first bin of the TTF distribution. In Figure 6 is 
shown the path selected and its relative position with respect 
to the TTF distribution (blue line). As can be seen it falls in 
the left tail of TTF pdf. 
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Figure 6 Fastest growth crack 

Once the worst case is chosen and the reference PoD has 
been defined, the maximum inspection interval can be 
found.  

Given an inspection interval, ‘� ’, the cumulative PoD 
PCDET of a defect, potentially observable in a given number 
of inspections, �, is calculated from the PoD curve of the 
adopted NDT technique. Figure 7 shows how the 
cumulative probability of detection is calculated, that in 
formulae results. 

 ����� = 1 – �������

���

 

����� = 1 − ����  
 

2.10 

Here, �����   is the theoretical cumulative ��� and ���� 
(‘probability of non-detection’) represents the probability of 
failing to detect in a given inspection.  

(a) 

 

(b) 

Figure 7 Calculation of the cumulative probability of 
detection (a) and the fault tree of the inspection (b) (adopted 

from (M. Carboni, 2007)) 

The ���� depends on the actual crack size � that 
corresponds to the cycle � according to the Eq. 2.9. The 
more the  inspections the more the �����  will be. 

Since a 100% ����� is impossible to reach theoretically, a ����� threshold was set at 0.99. 

In order to determine the inspection interval the final ����� 
is evaluated at different intervals of inspection. Particularly, 
the final ����� was evaluated starting from 1 to 60 
inspections that result in the same number of intervals. 

The final �����  is the ���� that results from the last 
inspection. Figure 8 shows the results of the assessment, it 
shows the �����  as a function of the inspection interval. 
The figure confirm what stated previously: as the number of 
inspection increases and the inspection interval decreases ����� increases. The optimal inspection interval is the 
largest that guarantee a ����� = 0.99.  

From Table 3, can be seen that the inspection interval at 
0.99 falls between 34,988 km and 32,297 km. By linear 
interpolation we can find that the interval at 99% PCDET is 
33,663 km. 

N° 
inspections 

Inspection 
Interval [km] ����� 

1 419,856 0.000000 

3 209,928 0.000014 

5 139,952 0.003680 

7 104,964 0.003694 

9 83,971 0.007346 

11 69,976 0.007360 

13 59,979 0.010992 

15 52,482 0.011006 

17 46,651 0.026369 

19 41,986 0.026967 

21 38,169 0.397817 

23 34,988 0.834808 

25 32,297 0.999981 

Table 3 PCDET with different inspection interval  
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Figure 8 �����  as function of the inspection intervals 

The literature reviewed (U. Zerbst M. V., 2005)(M. 
Carboni, 2007) (S. Beretta M. C., 2006) suggests to 
determine the inspection intervals referring to the average  
crack growth path, i.e whose TTF is equal to the mean TTF. 
In this case, once selected the right crack propagation 
lifetime, the maximum inspection interval is computed as 
well. The result is that the optimal inspection interval should 
be performed each 153,197.8 km. It is worth noting that in 
case of the fast crack growth crack, with an inspection 
interval equal to 153,197.8 km the PCDET is equal to 
0.2986%. 

2.3 Prognostic Modeling of the Crack Size Growth 

In this section two methods able to predict the RUL of 
cracked railway axles  are introduced and compared  in term 
of their prediction performances. 

The first model uses a statistical approach based on the 
Bayesian probabilistic theory and the second one uses the 
physical model introduced in the paragraph 2.1, the same 
used to generate the crack growth paths. Since the model 
accurately describe the real crack growth in railway axles(S. 
Beretta M. C., 2006), it can be used both to substitute 
experimental tests and to generate the database needed to 
support a statistical approach to evaluate the axles’ TTF and 
RUL. 

The aim of the section is to introduce and give evidence of 
the capability of a prognostic approach based on these 
algorithms to reduce the uncertainties associated to the 
prediction of the TTF of a continuously monitored cracked 
axle meanwhile  it operates. This approach can be helpful to 
increase the inspection interval and, as a best result, inspects 
the axle only when the wheels have to be maintained 
without reducing the system’s safety.  

2.3.1 Setting the threshold 

In order to design a prognostic algorithm capable of 
updating the axle’s TTF the concept of failure has to be 

clearly determined. In this case it is trivially derived since 
the axle is considered faulty when the maximum allowable 
crack size is reached. Obviously, the threshold has to fixed 
considering the errors that affects the whole monitoring and 
prognostic system. Figure 10 shows a scheme of the 
different types of errors that has to be considered in setting 
the threshold. A safety margin has to be introduced against 
the errors that affect the estimation. The first error was 
introduced in the paragraph 2.2.1.  

 

Figure 9 Illustration of the meaning of the size error 

It is the error associated with the calibration curve of the 
ultrasonic inspection. This error introduces an uncertainty in 
the determination of the crack size given that the ultrasonic 
probe measures x dB. 

Figure 9 illustrates what is meant for the size error. Given 
the calibration curve in Eq.2.8, the size error �� is defined 
as: 

 �� =
��� 

�� = � �0,
����� 

2.11 

 

Figure 10 The errors affecting the monitoring and 
prognostic system 

The other errors that are present are those associated with 
the model describing the crack growth, that are the residuals 
between the actual crack size and the that one predicted by 
the model and eventually the noise that affects the 
measurements process.  
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In this case the size error is only considered since no data 
are available about the other error sources. The error 
considered can be considered as the sum of those making 
the hypothesis that the used diagnostic system’s 
performances are better.  

Given a crack depth ��
� as the maximum crack size 
allowed, the threshold that will be used as a reference for 
estimating the axle TTF is that one that guarantees at 99% 
of confidence that ��
� won’t be missed.  

Starting from the calibration function in Eq.2.8 we have to 
find ���� that corresponds to �	��
� ≤ ����
 = 0.99. 

Starting from Eq.2.9, given the measure �, the related crack 
size is: 

 � = �2� 10
����
�� 10

�

�� 2.12 

Remembering that �� =
�

 �
, we have: 

 � = �2� 10
����
�� 10�� 2.13 

Given that �  corresponds to the measurement of the crack 
size ��
�, we have: 

 ��
� = !�

!
10

��	
�

�   2.14 

The crack size that corresponds to the measurement �  is: 

" � = !�

!
10

��	
�

� 10��  

� = ��
�  10
��
�  2.15 

 

From Eq.2.15 we have that given a real crack depth of ��
� 
the crack size associated � (estimated from the 
measurement) is a random variable distributed as a 
lognormal with an associated mean of log��	��
�
 and a 
standard deviation of 

"


���
. 

 
log�� � = log�� #��
�10

��
� $ 

log�� � = log��	��
�
 + log��
��
2

 

log��
��
2

= � �0,
��

2��� 

2.16 

Now we can define the threshold ����: 

 �	���� − ��
� ≤ 0
 ≥ 0.99 

%& log�� ���� − log�� ��
���
2�� ' ≥ 1 − 0.99 

2.17 

 

The result is ���� = (. ()). 

If we let vary both �� and ��
�  and calculate the 
corresponding ���� we obtain a surface plotted in Figure 11. 
As we can see the relation is not linear and as the standard 
error increases, given a maximum crack size, the 
corresponding crack depth threshold decreases. 

 

Figure 11 Crack size threshold as a function of �� and ��
�  

2.3.2 Bayesian updating algorithm 

This section develops methods that combine two sources of 
information, the reliability characteristics of a axle’s 
population and real-time sensor information from a 
functioning axle, to periodically update the distribution of 
the axles’s residual life. 

We first model the degradation signal for a population of 
axles with an appropriate model assuming error terms from 
an iid random error process. A Bayesian updating method is 
used to estimate the unknown stochastic parameters of the 
model for an individual component. Once we have 
determined the posterior distribution for these unknown 
parameters, we derive the residual-life distribution for the 
individual component. 

In this case there is not simple functional form that fit well 
the simulated crack growth pattern. Nevertheless, an 
approximation of the paths can be performed by splitting the 
signal in two parts, that can be modeled as two exponential 
functions as shown in Figure 12. 
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Figure 12 The two exponential models 

The shift from the first model to the second is based on a 
crack depth threshold that is plotted in Figure 12 as a black 
dash dotted line. The TTF of the axle monitored is therefore 
defined as: 

 **+ = *� + *� 2.18 

Where *�is a random variable that express the predicted 
time to reach the threshold ,-�� and *�is a random variable as 
well that denote the time that takes the crack to grow from 
the threshold to ����.  

Let ,(.) denote the degradation signal as a continuous 
stochastic process, continuous with respect to cycle �. We 
observe the degradation signal at some discrete points in 
cycles, ��, ��, . . ., where �� ≥ 0. Therefore, we can model 
the degradation signal at cycles �� = ��, ��, . . ., as follows: 

 ������ =  
 + !
exp��
�� + "
�
����� =  � + !�exp����� + "�� � ≤ ���� 

���� ≤ � ≤ ���� 
2.19 

 

If we redefine /�	��
 =  ,	��
 − 0� for  , ≤ ,-�� and /�	��
 =  ,	��
 − 0� for ,-�� ≤ , ≤ ���� we obtain: 

 

 

1/�	��
 = 2�exp3���� + ��	��
4
/�	��
 = 2�exp3���� + ��	��
45 

� ≤ ���� 

 

���� ≤ � ≤ 
���� 

2.20 

The choice of threshold ,-�� has to be based on an 
optimization rule. In this case, the threshold is that one that 
bound the maximum residual of the first fitted model to 
0.0012. Obviously the rule can be changed, for example the 
threshold could be that one that minimize the overall fitting 
error. The value 0.0012 at which the first residual error is 

bounded is chosen upon that willingness to prefer a better fit 
in the first part of the signal in order to achieve better 
predictions in the first stage of the degradation process. The 
reason is that good predictions (more precise) in the first 
part of the degradation path can restrict the uncertainties on 
the final RUL estimation form the beginning. As matter of 
facts, the main part of the uncertainty on the TTF comes 
from the uncertainty associated with the variable *�. In other 
words, the variance of the cycles taken by the crack to grow 
from the initial size to ,-�� is much greater that the number 
of cycles taken by the crack to grow from ,-�� to ����. 

After several simulations, the threshold that bound the 
maximum residual error of the first part of , is a random 
variable as shown in Figure 13. 

 

Figure 13 Threshold ,-�� distribution 

Eventually the final threshold chosen is the mean value of  
distribution, that is 67#$ = 8, 9 ::. 

Once determined the threshold, through an appropriate 
number of crack growth simulations, we can build our a 
priori information on the crack growth behavior. Our a 
priori information, a part form the a priori TTF distribution 
shown in Figure 2, is composed of the random parameters 2�, 2�, ��and �� probability distributions. Their values are 
obtained through the LSE technique though fitting the crack 
growth functions with the models in Eq.2.19. The final 
distribution PDFs are plotted in Figure 14.  
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 (a) (b)

(c) (d)

Figure 14 (a) log 2� PDF, (c) log 2� PDF, (b) �� PDF, (d) �� 
PDF 

As can be noted from the figure above, 2�,2�,  �� and �� can 
be approximated by lognormal distributions† with 
parameters: 2� = /�(;%�, �%�) 2� = /�(;%�, �%�) �� = /�(;��, ���) �� = /�(;��, ���) 

The probability charts of those distributions can be found in 
the Appendix. 

For these exponential models, it will be convenient to work 
with the logged signal ,. We can then define the logged 
signal at cycle ��  as follows: 

 1/,�	��
 = log 2� +���� + ��	��

/,�	��
 = log 2� +���� + ��	��
5 

� ≤ ����

���� ≤ � ≤ ����
2.21

We will use the observations /,�,� , /,�,�‡, ..., obtained at 
cycles ��, �� , ..., as our data.  Next, suppose we have 
observed  /,�,� , ..., /,�,& at cycles ��, ..., �'. 
Since the error terms, ∈� 	��
, � =  1, 2 and . = 1, … <, are 
assumed to be iid normal random variables, if we know 2�,� 
and ��,�, then the likelihood function of /,�,� , ..., /,�,&, 
given  2�,� and ��,�, is: 

                                                 
† In the Appendix can be found the probability charts of 
those distributions. 
‡ � is used to denote the belongings of /, to the first (� = 1) 
or second model ( � = 2) in Eq 2.19. 

#$ %�
,
 , . . . ,%�
,�&!
,�
'
= ( 1)2���
�*exp+−
(%�
,� − log!
 − �
��

2��
� *�

��


, 

� ≤ �-�� 

2.22 

#$ %��,
 , . . . , %��,�&!�,��'
= ( 1)2�����*exp+−
(%��,� − log!� − ����

2���� *�

��


, 

�-�� ≤ � ≤ �.�� 

2.23 

Assumed that 2�,2�,  �� and �� are lognormal random 
variables with parameters defined above, their a posteriori 
joint distributions, according to the Bayes theorem are: 

=>2�, �� ?/,�,� , … , /,�,&@
=  

=> /,�,� , . . . , /,�,&?2�, ��@A	2�
A	��
B => /,�,� , . . . , /,�,&?2�, ��@A	2�
A	��
(∞

�)
�2���

, ≤ ,-�� =>2�, �� ?/,�,� , … , /,�,&@
=  

=> /,�,� , . . . , /,�,&?2�, ��@A	2�
A	��
B => /,�,� , . . . , /,�,&?2�, ��@A	2�
A	��
(∞

�)
�2���,-�� ≤ , ≤ ���� 

2.24 

Where => /,�,� , . . . , /,�,&?2�, ��@ and => /,�,� , . . . , /,�,&?2�, ��@ are defined in Eq.2.22 and 
Eq.2.23 respectively and: 

A	2�
 =

C
D 1

!2�2���%��E
F exp
1

2
�log 2� − ;%��%� ��� 

A	��
 =

C
D 1

!2��������E
FexpG1

2

log �� − ;����� ��H 

A	2�
 =

C
D 1

!2�2���%��E
F exp
1

2
�log 2� − ;%��%� ��� 

A	��
 =

C
D 1

!2��������E
F expG1

2

log �� − ;����� ��H 

2.25 

The a posteriori mean of the parameters can be obtained 
from: 
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/̂�
 = 1 !
1 #$!
 ,�
 &%�
,
 , … , %�
,�'2�
2!
��

��

��

��

 

/̂�
 = 1 �
1 #$!
 ,�
 &%�
,
 , … , %�
,�'2�
2!
��

��

��

��

 

/̂�� = 1 !�1 #$!�,�� &%��,
 , … , %��,�'2��2!���

��

��

��

 

/̂�� = 1 ��1 #$!�,�� &%��,
 , … , %��,�'2��2!���

��

��

��

 

2.26 

And their a posteriori variances from: 

���� = � 	
� − �̂��
�� ��
�,�� ����,� , … , ���,������
�
��

	�

��

	�

 

��
� = � ��� − �̂
���� ��
�,�� ����,� , … , ���,������
�
��

	�

��

	�

 

���� = � 	
� − �̂��
�� ��
�,�� ����,� , … , ���,������
�
��

	�

��

	�

 

��
� = � ��� − �̂
���� ��
�,�� ����,� , … , ���,������
�
��

	�

��

	�

 

2.27 

Since the solution to the problem stated has not been found 
in the statistical literature and recognizing the computation 
problem associated with solving the equations numerically, 
we have to make other assumptions on the parameters’ pdf 
functional forms. In order to reduce problem complexity the 
assumption of  �� and �� as normal distributed parameters is 
reasonable. This assumption let us to exploit the problem 
solution proposed by Lindley (D. V. Lindley, 1972) and  
Gebraeel (N. Gebraeel J. P., 2008). Therefore, 
log 2�,log 2�,  �� and �� are assumed to be normal random 
variables with parameters: 

log 2� = I� = �(;*�, �*�) log 2� = I� = �(;*�, �*�) 

�� = �(;��, ���) �� = �(;��, ���) 

Before proceeding to the formal definition of the problem 
statement, an assessment of the errors computed after 
relaxing the hypothesis of lognormal distributed  �� and �� 
can be done through a comparison of the a priori TTF 
calculated by the model with  �� and �� as normal random 
variables with the true TTF computed through the crack 
growth simulations. 

The a priori TTF probability distribution, given the model 
described by the Eq.2.20, can be computed as the 
probability that the degradation signal (crack size) /, is 
smaller than the crack maximum size allowed for each cycle �� > 0, given the a priori model parameters pdfs. The 
statement, remembering the Eq.2.18, can be formally 
written as, 

 **+	�' = 0
 = *�J + *�J  2.28 

Where *�J and *�J  are the a priori pdf distributions of *� and *�. They can be expressed as: 

 *�J 	��|n' = 0

= P>LS�	��
 ≥ ,-�� ?ωL�, β �@ 2.29 

 *�J >�+?n' = 0@
= P>LS�>�+@ ≥ ����?ωL�, β �@ 2.30 

Where  ωL�, β �, ωL� and β � are the a priori pdf of  I�,I�,  �� 
and �� respectively. 

Given that ωL�, , ωL�, β �and β � are normal random variables, 
the degradation signal LS� and LS� computed at cycles �� 
and �+ respectively, are normal variables as well (N. 
Gebraeel J. P., 2008)(N. Gebraeel M. L., 2005)(C.J. Lu, 
1993) with mean variance given by: 

 μ,-�	��
 = ;*� + ;���� 
 

σ�,-�	��
 = ��*� + �������
+ 2M��*���� + ���� 

2.31 

 μ,-�>�+@ = ;*� + ;���+ 
 

σ�,-�>�+@ = ��*� + �����+�
+ 2M��*���� + ���� 

2.32 

Remembering the Eq.2.29 and 2.30, we can write for *�J : 

 *�J 	��|n' = 0
 =

1 − P>LS�	��
 ≤ ,-�� ?ωL�, β �@= 

= 1 − �
C
DN <

,-�� − μ,-�	��
!σ�,-�	��
 E
F 

= Φ

C
D,-�� − μ,-�	��
!σ�,-�	��
 E

F 

 

 

 

 

2.33 

And for *�J : 
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 *�J >�+?n' = 0@ =

1 − P>LS�>�+@ ≤ ���� ?ωL�, β �@= 

= 1 − �
C
DN <

���� − μ,-�	��
!σ�,-�	��
 E
F 

= Φ

C
D���� − μ,-�>�+@!σ�,-�>�+@ E

F 

 

 

 

 

2.34 

Where Φ stands for the standard normal cdf. The domain of  *�J and *�J ,  is ≤ 0 , thus can take on negative values, which 
is practically impossible from an implementation 
standpoint. Consequently, we use the truncated cdf for *�J  
and *�J  with the constraint *.J ≥ 0,  i=1,2  which is given as: 

 *�J =
*�J − *�J 	�� = 0
*�J 	�� = 0
  

 

*�J =
*�J − *�J >�+ = 0@*�J >�+ = 0@  

 

2.35 

As observed by (N. Gebraeel M. L., 2005),  *�J  and *�J  are 
three parameter truncated Bernstein distributed random 
variables for which the first and second moment closed form 
don’t exist(A.K Sheikh, 1983). As suggested by (N. 
Gebraeel M. L., 2005) the median is taken as the central 
moment. This can be justified, from one side by the not-
existence of a closed form for the mean, and for the other 
hand, considering that the *� pdfs  are skewed and therefore 
the use of the median is more appropriate and conservative. 

To compute the sum of the two random variables the Monte 
Carlo technique is followed, given the *�J  and *�J  numerical 
pdfs shown in Figure 15. The ωL�, β �, ωL� and β � a priori 
pdfs parameters are reported in Table 4. 

 OL/ PJ/ OL0 PJ0 Q/ Q0 

R -10.35 6.95e-009 -8.85 1.07e-007 0 0 

S0 0.69 6.92e-035 47.65 3.55e-029 
1.76e-
008 

  1.5e-
005 T -0.1421 -0.2039   

Table 4  ωL�, β �, ωL� and β � a priori pdfs parameters 

The pdfs are simply obtained differentiating the two cdfs 
with respect to �. 

(a)

 

(b)

 

Figure 15 (a) *�J  pdf (b) *�J  pdf 

Eventually the modeled a priori TTF is shown in Figure 16 
compared to the simulated a priori TTF on a lognormal 
probability plot. The green circles belong to the simulated a 
priori TTF, while the black ones belong to the modeled a 
priori TTF. 

 

Figure 16 Simulated a priori TTF and a priori modeled  TTF 
comparison – probability plot 
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A further comparison is between the two TTF pdfs is shown 
in Figure 17 in which both the cdfs are plotted. From the 
two figures can be observed that the left hand distributions’ 
tail are similar, while for large values of  TTF the two 
distributions differs. The modeled TTF has the right hand 
tail longer than the simulated one. However, for our 
purposes the left hand tail is much more important than the 
right one. For this reason the β � and β �  normality 
assumption can be acceptable. 

 

Figure 17 Simulated a priori TTF and a priori modeled  TTF 
comparison – cdf 

It is worth noting that if the two model’s parameters are 
somehow correlated, It would be possible to update the 
second model’s parameter instead of using the a priori 
information to compute the **+ till the threshold  ,-�� is 
reached. This situation would be valuable to exploit because 
better predictions could be performed since the beginning of 
the crack growth. Unfortunately this is not the case since the 
two pairs of coefficients are not significantly correlated as 
can be observed  from Figure 18. 

 !3
 − !3� !3
 − β3�

−�4
 − θ3� �4
 − β3�

Figure 18 Correlations between the couple of model 
parameters 

Now, once we have computed the a priori parameters’ pdfs, 
we can write the equations that update these pdfs’ 
parameters once obtained the signals /,�,� , … , /,�,&  or  /,�,� , … , /,�,& from the monitoring system, depending in 
which  , interval the signals are. Below is just reported the 
final formulas form which the updated pdfs parameters are 
obtained.  

The models can be rewritten as: 

 

1/,� = U�3V4�
/,� = U�3V4� 5 

, ≤ ,-��  

 ,-�� ≤ , ≤����  

2.36 

Where: 3V4�
= Wω�

β�

X 
U�
= W1 ��

⋮ ⋮
1 ��X 

3V4�
= Wω�

β�

X 
U�
= Y1 ��,�

⋮ ⋮

1 ��,�

Z 
At a cycle ��, given the measures /,�,�,   /,�,�, … , /,�,�, � = 1,2 the updated ω�,β�, ω�, β�  pdfs parameters are: 

 ;��� = 
[>U��U�@��U��/,�\� U��U�����
+ ;̂��  ̂

�

��� 
U��U�����
+  ̂

�

����� 
2.37 

 7̂
� = 
U��U����� +  ̂

�

����� 2.38 

 ;��� = 
[>U��U�@��U��/,�\�� U��U�����
+ ;̂��  ̂

�

���
U��U�����
+  ̂

�

����� 

2.39 
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 7̂
� = 
U��U����� +  ̂

�

����� 2.40 

Where: 

;̂� = [;*� ;��] ;̂� = [;*� ;��] 

 ̂
� = [ �*� �*�,���*�,�� ��� \  ̂

� = [ �*� �*�,��*�,�� ��� \ 
are the vectors of the a priori pdfs means and the covariance 
matrixes while: 

;�� = [;�*� ;���] ;�� = [;�*� ;���] 

7̂
� = _ ��*� ��*�,����*�,�� ���� ` 7̂

� = _ ��*� ��*�,���*�,�� ���� ` 
are the vectors of the a a posteriori pdfs means and the 
covariance matrixes. 
Now, given the a posteriori pdfs’ parameters the  *� or *� 
distribution can be computed.  

Remembering Eq.2.31 and 2.32 the updated mean and the 
variance of the degradation signal at a cycle �� or �+ will be: 

 μ�,-�	��
 = ;�*� + ;����� 
 

σa�,-�	��
 = ���*� + ��������
+ 2M���*����� + ���� 

2.41 

 μ�,-�>�+@ = ;�*� + ;����+ 
 

σa�,-�>�+@ = ���*� + ������+�
+ 2M����*����� + ���� 

2.42 

And therefore from Eq.2.33 and 2.34 the updated *� or *� 
pdf will be: 

 *�b >��? /,�,�   /,�,�, … , /,�,�@
= Φ

C
D,-�� − μ,-�	��
!σ�,-�	��
 E

F 

��12�cde   
*7� − *7�	0
*7�	0
  

2.43 

And for *7�: 

 *�b >�+?/,�,�   /,�,�, … , /,�,�@
= Φ

C
D���� − μ,-�>�+@!σ�,-�>�+@ E

F 

��12�cde   
*7� − *7�	0
*7�	0
  

2.44 

An Example: 
Given a crack growth path shown in Figure 19, at each time 
step we can update the a priori **+ given in Figure 2, 
exploiting the information gained form monitoring the crack 
growth.  

Using Eq.2.37, 2.38 for the first part of the degradation 
pattern (*� in Figure 19) and the Eq.2.39 and 2.40 for the 
second part, we can compute the a posteriori 
ωL�, β �, ωL� and β � pdfs’ parameters, that are the means and 
the standard deviations. 

 
���ℎ  

 ���ℎ  

Figure 19 Crack growth path 

From the initial cycle to that one that corresponds to a crack 
size of 5.1 mm the updated  **+ is given by Eq.2.7 where *� is given by Eq.2.35, that is the a priori modeled *�. 
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a)

b)

Figure 20 a) updated  ;�*� and b) updated ;��� 
b) shows the updated ;�*� as a function of cycles, while the 

plot b)  shows the updated ;���. 
At each time step, given the updated ;�*� and ;��� we can 
compute the a actual **+ where *�b  is given by the Eq.2.43. 
For each time step the  **+  median and the 1st percentile is 
stored. These two values are plotted in Figure 21. As can be 
observed, cycle after cycle the predictions converge to the 
true TTF even before the second degradation phase. In this 
case, both the 1st percentile and the mean fall within the 5% 
error interval. The interval in which the **+ median and its 
1st percentile lines are interrupted means that the predicted  **+ falls beyond the timescale. 

 

Figure 21 Predicted TTF - 1st phase 

Once the threshold ,-�� is passed, the **+ is equal to the 
cycle *�, that is no more a random variable (it is 
deterministic), plus the predicted  *7�.  *7� is given by Eq.2.44, once computed the updated ;�� , ;*� 
and the related variances given by  Eq.2.39 and 2.40.  

Figure 22  shows the  updated  ;�� and ;*� respectively.  

a)
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b)

Figure 22 a) updated  ;�*� and b) updated ;��� 
As previously done for the first degradation phase, the **+ 
pdf can be computed using Eq.2.39, 2.40, 2.42 and 
eventually 2.44. The updated **+  median and its 1st 
percentile are shown in Figure 23. 

 

Figure 23 Predicted TTF – 2nd phase 

Can be observed how the predictions converge to actual 
failure time. This time the prediction variances are smaller 
than those of the first phase. This is due to the fact that the 
1st phase predictions include the uncertainties related to the 
a priori *� pdf. 

2.3.3 Prognostic through the physical model 

The same problem faced by the Bayesian prognostic model 
can be pursued through a recursive application of the crack 
growth model presented in paragraph 2.1. The physical 
phenomenon analyzed in this context has been faced by 
numerous researches, therefore numerous models have been 
proposed capable of describing and highlighting the main 
variables and their relations that influence the crack growth. 
The NASGRO model used in this context is recognized to 
be the most reliable to describe crack growth in railway 

axles(S. Beretta M. C., 2006)(U. Zerbst M. V., 2005)(S. 
Beretta M. C., 2004), therefore can be used to predict 
accurately the **+. 

The main idea at the basis of this approach is that, once 
measured and estimated the actual crack size and the loads 
history, we can estimate the **+ through simulating the 
possible growth paths by using a Monte Carlo technique. 

Figure 24 TTF prediction through the NASGRO crack 
growth model 

This approach is shown in Figure 24. Let suppose that 
through the monitoring infrastructure we have measured the 
crack size at the time now, we can simulate the crack 
propagation considering as random variables the load 
applied and the SIF threshold and the initial crack size equal 
to the measured one. The functions plotted and originating 
from the time now, are some simulated crack growth paths. 
Starting from the crack growth paths set, it is possible to 
estimate the **+ pdf. In Figure 24 the black dotted line 
represents the predicted **+ pdf, while the red line 
represents the actual failure time. 

The estimated  **+ at each time step can be approximated 
by lognormal distribution, as shown in Figure 25.  
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Figure 25 The approximated TTF probability plot 

As in the Bayesian approach, at each time step, the **+ 1st 
percentile, the  median and the TTF at 98% level of 
confidence is stored. However, for computational reasons, 
the **+ up dating times are set at the 5%, to the 99% of the 
actual  **+ with a 5% gap. Figure 27 shows the **+ 
estimations at different time steps. Can be observed how the 
predictions converge to the actual failure. At the last 
updating time step all the  **+ distributions’s lower and 
upper bounds fall into the 5% error interval. 

Figure 26 The approximated TTF probability plot 

Figure 27 TTF predictions 

Figure 28 shows how the confidence interval diminish as we 
approach to the actual failure. The green dotted line 
represents the difference between the **+ median and the **+ at the 0.01 confidence level, while the red dashed 
dotted line represents the **+ pdf upper bound, at the 0.99 
confidence level.   

 
Figure 28 Estimated TTF at the 0.01 and 0.98 confidence 

level 

2.3.4 The size error and the updating frequency effect   
on TTF predictions 

In the case of the physical model, the size error and the 
updating frequency effect on the estimations can be 
approximately evaluated through simple geometrical 
considerations. The assessment of these effects on the 
predictions performances is an important issue since they 
characterize the monitoring and diagnostic equipment 
goodness. Higher size errors characterize low performance 
diagnostic, while lower updating frequency entails lower 
monitoring equipment cost.  
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In this case the effect of the updating frequency on the 
prediction performances is not relevant since the **+ 
estimation relies on just the last crack size measurement and 
not, as in the Bayesian case, on the complete set of 
measurements. The  **+ updating frequency effect can be 
considerable when maintenance scheduling decisions is 
considered. By this point of view, high frequency updating 
is preferable since the decisions can be based on an updated **+.  

In this case we can apply a predictive maintenance policy 
similar to that one proposed by Kaiser et.al. in (N.Z 
Gebraeel, 2009). The stopping rule, i.e the cycle �& at which 
the axle should be substituted, is defined as in Eq.2.45. 

 �& → **+34	�&
 − �& − g ≤ 0 2.45 

Where �& is the first cycle at which the rule is verified, **+34	�&
 is the TTF prediction computed at a 0.01 
confidence level at the cycle �&, g is the updating interval. 
From this simple rule is self-evident that the greater g the 
lower �&.  

This simple rule can be easily understood by analyzing the 
graph shown in  Figure 29. The blue line represents the 
estimated **+ at the 0.01 confidence level while the black 
dotted line represents the equality n = TTF56. The dashed 
line represents the equality � = **+34 + δ. Therefore, for 
Eq.2.45, the cycle �& is the first intersection point of the **+34 (blue line) with the black dashed line. Particularly, 
referring to what stated in the previous chapters, the 
quantity **+34	�&
 − �&  is the RUL computed at the 0.01 
confidence level (RUL_ in  Figure 29). The main idea 
associated with this rule is that the axle can be safely run till 
it reaches the last **+34 estimation. 

 Figure 29 The effect of updating frequency on TTF 
predictions 

The size error effect on the **+ predictions can be 
approximately computed making the hypothesis that the 
crack growth path can be approximated with an exponential 
function. Generally, as described in 2.3.1, the more the size 
error the lesser the threshold. The analysis framework is 
shown in Figure 30. Let us suppose that for a given size 
error , the failure threshold is set at the value ��� and that 
we are at the cycle ��  and we measure the crack size 
exp (/,�).  Through the method explained in paragraph 
2.3.3, we can compute the  **+ pdf (blue line) and 
therefore we know the **+�78�
� and the  **+���9 at the 
0.01 confidence level.  

Next, suppose that the new size error is greater to the 
previous one, consequently, from Eq.2.17 keeping ��
�  
constant, we obtain the failure threshold ���� lower than ���. This threshold shift causes a change in the **+ pdf 
parameters and therefore to the reference points  **+�78�
� 
and  **+���9. 

The new reference points  **+ ′
�78�
� and  **+ ′

���9 
computed at cycle ��, thanks to the hypothesis made, can be 
computed as follows: 

 ����
�
����  = ����
���� −

log a�� − log a���

�  2.46 

 ���′
���� = ������� −

log a�� − log a���

�  2.47 

Where: 

 h =
log a�� − LS�**+���9 − �� 2.48 

 � =
log a�� − LS�**+���9 − �� 2.49 
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Figure 30 The error size effect on TTF predictions 

The lower confidence interval �� = (**+�78�
� −**+���9), decreases when the size error increases, i.e the 
prediction is more accurate. This can be easily 
demonstrated, subtracting term by term Eq. 2.46 with Eq. 
2.47 we obtain: 

 ��′ = �� − ∆	log���
 �1� −
1h� 2.50 

Since � <  h and ∆	log ���
 > 0 for increasing size errors ��′ < ��. 
It is worth noting that, from Eq. 2.47, the ratio  

��:
����

��:�
����

 is 

not linear with respect to the ratio 
;��

;���
 and from Eq.2.17 the 

ratio 
;��

;���
 is not a linear function of the size error ratio.  

The updating frequency and size error combined effect on 
the cycle �& normalized with respect the actual failure (i.e 
% of the life exploited) on particular crack growth curve is 
shown in Figure 31. As we can see the relationship between 
the size error and the ratio 

��

������
�
. As the size error 

increases, for a given updating frequency,  the life exploited 
decreases, while the relationship between the updating 
frequency and the life exploited  for a given size error is 
linear: the more frequent the **+ updating the greater the 
life exploited. 

 
Figure 31 The updating frequency and size error combined 

effect 

3. RESULTS 

Our goal, as stated in paragraph 2, is to assess the predictive 
performances of both the prognostic models and eventually 
highlight the differences between the predictive and 
preventive maintenance policy.  

The probabilistic aspect of the issue has clearly arisen 
during the dissertation, therefore a reliable and a definitive 
answer to the questions proposed has to be given after 
numerous simulations that guarantee a reliable 
representation of the probabilistic aspects involved. 
However, some preliminary considerations can be outlined 
analyzing a limited number of instances.  

The method used to select the instances analyzed is based 
on the stratified sampling technique. Particularly, the TTF 
pdf represented in Figure 2 has been divided in 10 equal 
spaced intervals, that corresponds to the bins shown in the 
same figure. For each bin a crack growth path was selected 
obtaining a set of 10 possible degradation curves as shown 
in Figure 32. 
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Figure 32: The 10 crack growth paths 

For the whole set of track selected, the Bayesian prognostic 
algorithm and the physical model was applied. Moreover, 
the maximum number of inspections N��<=  and the 
expected number of inspections N>�<=

iiiiiii was computed.  

In order to evaluate the prognostic algorithms described, 
two metrics were used, one of which suggested by 
(A.Saxena, 2008). 

This metric, called Timeliness 0, exponentially weighs 
RUL prediction errors through an asymmetric weighting 
function. Penalizes the late predictions more than early 
prediction. The formula is: 

 

  

%(�) =

jkl
kmexp 
|n(�)|� �

exp 
|n(�)|o �
5 n ≥ 0

n ≤ 0

 3.1 

 0 =
1� p%(�)

?

���

 3.2 

Where n(�) = **+
@�A
3 − **+�78�
�(�) is the prediction 
error computed at cycle �, while � and o are two constants 
where � > o. In this case � = 100 and o = 10. 

Ideally the perfect score is 0=1. To be comparable, the 
updating frequency has to be the same between the two 
algorithms, therefore the TTF predictions in the physical 
model case have been linearly interpolated.   

The other metric chosen is simply the predictions 
percentage error computed at fixed time steps �& = 0.25+*,

0.5+*, 0.75+*, 0.98+* , where FT is the cycle at which 
the failure occurs. 

In the appendix the comparison of the predictions at 
different time steps and the PCDET  for each of 10 sampled 

paths can be found. Moreover, the size error and the 
updating frequency effect on the exploited life are plotted 
for each instance. 

As can be noticed form these figures, both the algorithms’ 
predictions converge to the actual failure time. The 
information about the actual degradation path increase as 
time elapses, resulting in an improved knowledge about the 
actual TTF. Better knowledge of the crack growth behavior 
allow more accurate predictions. The advantage of 
continuous monitoring with respect to the a priori 
information is clearly evident observing  Figure 33. It shows 
the TTF pdf obtained from the prognostic algorithms 
described and the a priori TTF pdf (black line). It is clearly 
noticeable how prognostics can improve the knowledge on 
the actual failure path followed by an individual axle.  

 

Figure 33 Comparison of the a priori TTF pdf and the 
updated TTF pdf obtained from the prognostics algorithms 
described (green-Bayesian, blue physical based model, 
black - a priori) 

However, substantial differences among the two prognostic 
approach exists. Particularly, what differs is the distribution 
of the prediction errors along the degradation timeline and 
the prediction confidence interval. The last statement is 
evident observing the figures in the appendix in which the 
predictions paths are compared. In all the instances selected 
the physical model confidence interval is larger than that 
one computed by the Bayesian approach.  

However, the most important differences among the two 
approaches have to be evaluated  in term of the prediction 
errors. The following graphs display the prediction errors 
for both the algorithms and for the whole crack growth track 
set at fixed residual life percentile (i.e 0.25, 0.5, 0.75, 0.98). 
The same information are displayed in a tabular form in 
Table 5. The percentage prediction error is simply calculated 
as: 
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 qrr% =
+* − **+�78�
�+* 100 3.3 

From the graphs can be concluded that: 

1. Physical model prediction errors decrease 
approaching the FT 

2. Bayesian algorithm prediction errors decreases till 
the 75° percentile of the residual lifetime, while at 
98% the errors are greater that in the 75 percentile  

3. Physical model predictions are lower for FT near 
the average (bins 3,4,5) 

4. Bayesian predictions seems to outperform the 
physical model predictions for till the 75th 
percentile, while for the 98th the physical model 
predictions are more accurate.  

 
Figure 34 Percentage prediction error @ 25% FT 

 

 
Figure 35 Percentage prediction error @ 50% FT 

 
Figure 36 Percentage prediction error @ 75% FT 
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Figure 37 Percentage prediction error @ 98% FT 

% 
Lif e 

Model c_1 c_2 c_3 c_4 c_5 

25 
Physical 
model 

-98,50% -66,59% -1,20% 
-

26,69% 
-

11,19% 

 
Bayes 44,95% -3,96% -4,85% 58,58% 62,57% 

50 
Physical 
model 

-86,08% -66,11% -0,55% 
-

32,95% 
-

20,08% 

 
Bayes 19,36% 5,77% 4,00% 30,77% 35,70% 

75 
Physical 
model 

-31,09% -39,44% 10,52% 
-

20,11% 
-

11,21% 

 
Bayes 2,31% -4,42% 7,53% 11,24% 15,22% 

98 
Physical 
model 

-5,52% -3,31% 0,84% 1,72% 0,39% 

 
Bayes 1,87% 1,81% 

-
17,90% 

-
40,00% 

-5,68% 

       % 
Life 

Model c_6 c_7 c_8 c_9 c_10 

25 
Physical 
model 

32,56% 27,98% 41,74% 28,29% 57,91% 

 
Bayes 25,64% 39,37% 40,14% 41,39% 31,19% 

50 
Physical 
model 

18,24% 11,76% 22,84% 12,63% 35,59% 

 
Bayes 15,11% 12,08% 12,15% 15,37% 19,54% 

75 
Physical 
model 

8,09% 4,64% 10,39% 6,87% 16,52% 

 
Bayes 4,38% -3,27% 2,87% 2,34% 9,91% 

98 
Physical 
model 

1,44% -0,76% -0,61% 0,48% 0,61% 

 
Bayes 1,90% -12,61% 

-
10,32% 

-9,04% -3,06% 

Table 5 Percentage prediction errors 

General considerations can be drafted form the conclusive 
graph in Figure 38 that displays the mean squared 
percentage error among the whole set for each residual life 
percentile. The statements of the list above are confirmed.  

 
Figure 38 MS of the percentage prediction errors for each 

residual life percentile 

Using the other metric chosen, expressed by Eq.3.2 the 
results displayed in Table 6 are obtained. The main 
difference between the metric defined before, is that this 
metric considers the whole set of predictions and not only 
those that corresponds to particular moments. The results 
found are very similar among the two approaches. The 
physical model index is slightly smaller than the Bayesian 
one. 

 Physical model Bayes NDI - max NDI - mean 

c_1 1.07595 1.02061 34 33.24 

c_2 1.05471 1.00486 40 39.49 

c_3 1.00225 1.02235 47 42.41 

c_4 1.02188 1.01337 61 58.98 

c_5 1.01014 1.01547 71 68.61 

c_6 1.00199 1.00774 75 73.04 

c_7 1.00143 1.00769 86 82.14 

c_8 1.00251 1.00787 100 96.19 

c_9 1.00163 1.00240 105 100.35 

c_10 1.00355 1.00484 115 110.70 

MS 1.01791 1.01074   

Table 6 Results – 0, ����9 and �.��9iiiiiii 
The last two columns of Table 6 reports respectively the 
maximum non destructive inspections  number and the 
expected NDI number. The last result is obtained 
multiplying the NDI cumulative number with the 
corresponding PCDET.   
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Obviously, the expected NDI number increases as the FT 
increases. The NDI number that should be performed to 
guarantee a 99% chance to detect a crack before it reaches 
the length of 6cm is relevant. As a consequence, the 
availability of the asset is highly affected from this 
maintenance policy. The loose of availability and the 
numerous maintenance activities imply a considerable 
maintenance costs build up. 

In Figure 39 the effect of an increase of the size error is 
displayed§, considering the updating frequency of 90 km. 
Can be noticed that generally, as previously stated, the 
greater the size error, the lower the life exploited. However, 
the life exploited reduction is not relevant. An increase of 3 
times of the size error causes a life exploited reduction of 
about 5% on average. For the figures in appendix can be 
noticed that the effect of the updating frequency is lower 
with respect to the error size effect.  

The scarce effect of this important variables to the exploited 
life is due to the fact that an increase of the size error cause 
a reduction of the threshold ��� that however corresponds to 
a negligible life loss reduction thanks to the high crack 
growth rate that characterize the last part of the degradation 
phase. Greater effects shall be noticed when the size error is 
large enough to force the threshold ��� to be set at crack 
sizes at which the growth rate is lower (i.e at the end of the 
first degradation phase). 

 

Figure 39 The size error effect on life exploited given g = 90 <�** 

                                                 
§ Computed considering the physical model predictions only 

**  Life exploited is normalized with respect to the life 
exploited that corresponds to the first size error considered 

4. CONCLUSIONS 

The objective of this research was to propose an approach to 
a condition based maintenance policy assessment in order to 
preliminary evaluate its benefits and to understand the main 
variables that influence the overall approach performance. 
Particularly, an explanatory study was carried out to 
evaluate the possibility to introduce prognostic concepts 
into railway axle maintenance management.  

Through a reliable probabilistic crack growth model a 
comparison between a prognostic maintenance approach 
based on Bayesian probabilistic theory, a prognostic 
maintenance approach based on the same crack growth 
physical model and the classical preventive maintenance 
policy based on regular NDT was carried out. The 
probabilistic crack growth model considers the SIF as a 
random normal variable and a random load history derived 
from measured load spectra. The diagnostic-monitoring 
infrastructure precision was described by a size error, 
directly derived from the calibration curve of an ultrasonic 
NDT. Assuming the hypothesis introduced in paragraph 
2.3.4, the results suggests that further research should be 
conducted validating the approach proposed on a real case 
study. As matter of facts both the prognostic algorithms 
described guarantee an average absolute predictions errors 
lower than 50 % at 25% of the actual axle life. The later 
predictions guarantees lower prediction errors, approaching 
the 7% on average. Earlier predictions errors are generally 
lower for the Bayesian prognostic algorithm than those 
computed through the physical model. Whereas, for later 
predictions the physical model seem to provide more 
accurate RUL estimations. However, the gap between 
predictions error computed by the two models are, on 
average, comparable. The effect of the updating frequency 
and the size error on predictions errors in case of prognostic 
physical model algorithm scenario and therefore, on the 
overall approach performance (life exploited with a 
determined reliability threshold) is assessed as well. The 
results show that the higher the size error and the lower 
updating frequency the lower life exploited. However the 
effect of updating frequency and size error in terms of life 
exploited is limited till the maximum crack size threshold, 
derived from the error size of the diagnostic infrastructure, 
becomes lower than about 5 mm, i.e the crack size at which 
the crack growth rate significantly increases. 

Generally speaking, a PHM approach needs a deep 
system/component knowledge. This need implies high 
investment costs to perform experimental tests (high fixed 
costs). System/component knowledge in high safety 
requirement environments, such as in the aviation industry, 
has to be known before commissioning for obvious safety 
reasons. Low Accuracy PHM May Be Worse Than No 
PHM. Costs and the benefits resulting from a prognostic 
approach could be distributed differently across the actors 
involved, therefore  an “integrator” that manages all the 
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process is suggested or partnership between  the main actors 
involved  committed to  share the  investment  costs. 
Moreover it is worth noting that a trade off exists between  
system usage pattern and the resulting benefits, higher usage 
allows  a better return on investment but  lowers tADV , i.e 
the main prognostic benefits driver. 

After all these considerations, it is possible to sum up the 
results in the matrix displayed in Figure 40. Profitability of 
a PHM approach can be thought as a function of two 
variables: 

• Component  criticality  
• Easiness to acquire data of component’s failure 

modes 

 

Figure 40: PHM applicability 

Difficulties to describe and acquire data on the component’ 
failure behavior imply high R&D costs while the 
components criticality and value can boos the benefits 
allowed by a PHM approach. The case in which a PHM 
approach is suggested is the case in which it is easy to 
acquire and data and knowledge on the component failure 
behavior and in which the component monitored and 
maintained is critical for the whole system availability 
and/or it has a very high value. In the other two situations 
further investigation aimed to better estimate the costs and 
the benefits involved is suggested. 
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APPENDIX 

In this paragraph graphs related to the first simulated crack 
growth path. They represent respectively: 

• The predictions (lower bound, median and upper 
bound) on the TTF for  

o the prognostic physical model (blu lines) 
o the bayesan model (green lines) 

• The probability of detection at each inspection 

• The effect of the updating  interval in km and the size 
error on the % of life exploited (physical model only) 

The first four probability plots represent the coefficients of 
the two exponential models used in the bayesan prognostic 
model. 
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†† 

 

 

                                                 
†† Blue line: Physical model TTF estimation with 

confidence bounds (dotted) 
Green Line: Bayesian model TTF estimations with lower 

confidence bound (dotted) 

DATA  

∆K�� = N (11.32,0.857) MPa√m � =1.9966 

∆K��� =5.96 MPa√m C�� = −0.02 

R = −1 α� = −194.024 

∆K���� = 24  MPa√m α� = 322.544 

� = 1.3 α� = −177.24 

� = 0.001 α� = 41.957 

α� = −1.916 D = 160 mm 

α� = −0.3927 K� = 1.2 

β = 0.656  

ε = 10 ���  

ϑ = 2.5  

S� = 0.2  

 


