Investigation on the opportunity to introduce progrostic techniques in
railways axles maintenance

Mattia Vismara

"Hupac SA, Chiasso, Switzerland
mvismara@hupac.ch

ABSTRACT

In this study the opportunity to introduce PHM (gmnostic
and health monitoring) concepts into a crackedviagjl axle
management is investigated.

The performances of two different prognostic altyon are
assessed on the basis of their RUL (remaining Uié)

destructive testing (NDT) technique or, alterndfiyein
defining the needed NDT specifications given
programmed inspection interval.

The negligible number of axle failures is reachieahks to
role played by inspections carried out with the aifn
keeping developing fatigue problems at bay. As rggbby

predictions accuracy: a prognostic model based ten t (R-A. Smith, 2004) in the United Kingdom there hdeen
Bayesian theory and a physica| prognostic modelthBo about 1.6 axle failures per year over the |aSt@'$/, out of

models rely on the measured crack size. The mehsuaek
growth measure has been built from simulated pridibtt

a population of about 180,000 axles. (A similar emof
new axles are introduced every year in PR Chinagravh

a

crack growth path by addmg measurements errorg Thsome 2.5 x 1(bWheelsetS are in fleet SerVice.) These Iarge

effect of monitoring frequency and the measuremntéwt

numbers of axles are subjected to inspectionsderdo try

and SW infrastructure size error to RUL predictions to identify cracks before failures occur. In gemethe
accuracy is assessed as well, trying to evaluae teXaminations are expensive, time consuming and not

hypothetical measuring infrastructure capabilitiésnsors
+ layout) effect on the overall PHM predictions.

Furthermore the PHM approach is compared to thesidal
preventive maintenance approach to

particularly effective in finding cracks. Furthermo the
dismantling needed to examine axles, such as thwiwmg-
off of bearings, can cause scratching damage that

railway axiesufficiently severe to cause an axle to be retiréde

maintenance management based on expensive andareguiationale behind the frequency of testing is theat kargest

NDT.

1. INTRODUCTION

Railway axles are designed to have an infinitetitife

(EN13103, 2001). However occasional failures hagenb
and are observed in service. The typical failursitmns are
the press-fits for wheels, gears, and brakes oextes body
close to notches and transitions. Such failuresygvwoccur
as fatigue crack propagations whose nucleationbeadue
to different causes (U. Zerbst M. V., 2005). In ttese of
railway  axles, the presence of
corrosion(Hoddinot, 2004)(C.P. Lonsdale, 2004) be t
possible damage due to the ballast impacts (M. @érb
2007) may constitute such causes.

This kind of failures is usually tackled by emplogithe
‘damage tolerance’ methodology,
consists (U. Zerbst M. V., 2005)(U. Zerbst K. MQ0®) in
determining the most opportune inspection interyigen
the ‘probability of detection’ (PoD) of the adoptesn-

M.Vismara. This is an opesecess article distributed under the tern
the Creative Commons Attribution 3.0 Uni0074ed &tdticensewhich
permits unrestricted use, distribution, and repotidn in any mediun
provided the original author and source are cre

widespread

whose philosophy

crack that would not be detected in an inspectimukd not
grow to failure during the service interval to tmext
inspection. This implies that crack propagatiorcekitions
should be performed with sufficient accuracy to Het
inspection interval. However, as stated by (R.A.itBm
2004) some difficulties arises:

¢ Due to the difficulty in determining the reliabjtitand
sensitivity of the inspection techniques, the atitrack
length chosen for the life calculation must be lagger,
leading to shorter intervals between inspectiors tare
really necessary.

* The service loads are much more stochastic in @atur

than the well-defined hypothetical loads used foe t
initial design rule suggest. In many cases, inahgence
of experimental measurement,

cycle-by-cycle crack growth predictions unreliable.

* Important inputs to fatigue calculations are maleri
properties such as crack growth data, fatigue diraitd
fatigue thresholds, which are very sensitive to emak
condition, manufacturing route, surface
orientation and load sequence. In many cases tiegse

the magnitudes and
frequencies of these events are unknown, thus makin

treatment,
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are lacking, particularly from large specimensand only the most complex algorithms are able to
representative of axles. adequately describe crack propagation under variabl
« Abnormal conditions may arise in service. There isamplitude loading in railway axles (S. Beretta M, Z006).
debate about the best means of protecting axles fro
corrosion and the extent to which coatings may éind
inspection. The interactions between fatigue an
corrosion mechanisms in extending defects are st andom loadings are involved, since it takes imwoant the

!nadequately understood. Higher speeds have Ieo_l toplasticity-induced crack closure” phenomen@®BN13103,
increased examples of damage of axles from flymg2

ballast which mav be of the form of cracklike 001) Moreover, NASGRO has been used in several papers
. " y o addressing the propagation of fractures in raihagles (U.
indentations on axle surfaces that initiate premeatu Zerbst M. V., 2005) (S.Beretta M. , Simulation atigue
failure. crack propagation in railway axles, 2005)(S. Baratt C.,
These considerations can lead to think that maiytstead 2004).
(r:]fa:JnsEer?a r?c é:)re;/;;rté\;i hmzz;;ir&angr? ?)?gg;%ig?icz Fgﬁl'g %’(?m considered software adopts the Paris-basedk crac
convenient. Several aspects has to be consideredién to opagation law called "NASGRO equation’
assess the technical and economical feasibilitytio$
approach. The first and the most important is gsessment

In the present work the NASGRO algorithm (Anonymus,
006)will be considered. This FCG model has been chosen
pecause it is the reference algorithms in analysksre

p
of the prognostic algorithm predictions accuracy ats da 1—f n (1—AAKI§‘)
sensibility to the goodness of the diagnostic amitoring an-© [(1 - R) AK] AK 7 21
equipment used. (1 - m)

This section constitute the first attempt to answeethis

question through an explanatory assessment of two e i i,
prognostic algorithms. The first one is based amisttcal ~ Where "C”, “ n”, “ p” and "¢ are empirical constants,
method, the second one exploit the good understgrofi R’ IS the stress ratio, AKy," is the threshold SIF range
the crack propagation physical process to estintaaime ~ and “AKerie” the critical SIF.

to fail of a cracked axle. Moreover, the predictiveTo analyze cracked bodies under combined loadihg, t
maintenance approach is qualitatively compared he t stress intensity factor is expressed as:

classical preventive approach.

6 .
a 1
2. PROBLEM FORMULATION Anom = Zai (5) +B|A-R)S+enma 2.2
2.1 Simulation of the crack growth paths — The Wherea; and p are empirical constants, is the applied
stochastic crack growth algorithm bending stressa is the crack size andis a random

. ) ) coefficient (introduced later in the paragraph)eTdending
In this paragraph the stochastic crack growth modet in  ¢iress is considered plane since NASGRO is not @ble

this work is presented. The non-powered railwayeaxl consjder rotating bending conditions. This assuamptias
considered in the present study is manufacturedIN ot 5 significant influence on estimated life pogidins as
steel and used in Y25 bogie with a diaméezqual to 160  gemonstrated in (S.Beretta M. , Rotating vs. plaeeding
mm. for crack growth in railway axles, 2005)(S.Berdlfa M.,

Service loads acting on railway axles are the tesfil 2006).
vertical and lateral forces (EN13103, 2001) duetheir  The closure function is defined as:
normal functioning, and the maximum bending moments
can be found in the area of the wheels press-fit4&ibst
M. V., 2005)(M. Carboni, 2007). On the basis of sithe

. . . f = AO + AlR 2.3
considerations, fatigue crack growth has here beatyzed
at the typical T-transition between the axle bodyl ahe Where
press-fits. 1
- - R Ao = 0.825 — 0340 + 0.0597 [cos (55, ) |”
Different algorithms for simulating the crack growbf 0 =0 : : Cos {50
cracked components are available in literature. &Sah 24

. . . A; =(0.415 - 0.0719)S
them consider the crack growth modeling as sto@hast 1= ( S0

process, see for example (K.Ortiza, 1988),(D.A.kMéir,
1979).(J.L Bogdanoff, 1985). However, the likelikdoof

o - X 9 is a plane stress/strain constraint 8pds the ratio of the
lifetime calculations depends on the adopted FQ@@rahm

maximum applied stress to the flow stress.
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Since NASGRO does not consider the geometry of th
typical transitions of axles, equation 2.5 is migdifin terms

of the maximum SIF present at the notch root ahcltzted

as

AK = KAKpom 2.6

K. represents the experimental stress concentratiin (
Beretta M. C., 2004).

As demonstrated by (S. Beretta M. C., 2006), theclcr
growth randomness can be described consideringtthes
intensity factor threshold as a random variableti@adarly,

it is demonstrated th#K, can be considered as belonging
indifferently to a lognormal distribution or normal
distribution. In this work is considered as a ndrrexiable
with meanAK, and standard deviatian,, . The empirical
calibration of all the other parameters is carrimat by
means of dedicated fracture mechanic experimertgir T
values are listed in Appendix. Another relevantrseuof
uncertainty is the randomness of the applied ldhdZerbst
M. V., 2005)(M. Carboni, 2007). Therefore servioads
have been considered derived from experimentaltsesn

a high speed train. Next, the service stress gpectras
been approximated with a simple block loading cstirgj
of twelve blocks (Table 1). To take into accourg thithin
block variability a random termis added in the EQq.2.9. It is
assumed to be uniformly distributed with mean edoad
and with a span (fe.

The so defined block loadings were then appliedrtwth
calculations with a time sequence in accordandggassner
suggestions (Gassner, 1956). Starting from theretisc
spectrum in Table 1, the random history loads secpiés
built by permutations of the whole set of the bkckach

load sequence is 3.222.887 km long, composed of 20

consecutive complete permutations. Some simulatadkc
growth path, considering all the uncertainties dbsd
(load history AKy;, ande) are shown in Figure 1.

Cycles Load [MPa]
1 145
8 135
75 125
825 115
15,000 105
110,025 95
357,675 85
678,900 75
1,621,725 65
3,046,500 55
8,165,775 45

e 39,718,275 35

Table 1 The 12 service time blocks
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Figure 1 Examples of simulated crack growth paths

Eventually, once determined an initial crack sized ea
limiting crack depth value at failure, through tMonte
Carlo technique is possible to estimate the TTF pdich
simulation run is characterized by a randdi,; and a
random load history. Considering an initial crackesof 2
mm and a limiting crack size of 60 mm, the TTF pslf
shown in Figure 2.
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Figure 2 TTF probability distribution

The TTF pdf for the purposes of this work is coes@d as a
lognormal distribution as can be observed in Figurk can

be noticed how a lognormal distribution fits wellet TTF

data for almost the whole TTF variability range/yothe

right hand tail significantly diverge for the TTHhis is

demonstrated also by Beretta et al. (S. Berett& M2006)

and Schijve (Schijve, 2001).
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Figure 3 Lognormal fit plot for TTF pdf

2.2 Design of the preventive maintenance approach

The preventive maintenance approach is designextding
to the damage tolerant approach well described Wy (

Zerbst M. V., 2005) (U. Zerbst K. M., 2009)he steps that
have to be followed to design a design an axle girive
maintenance plan are:

1. establishment of the initial crack shape and sime f
further analysis

2. within a damage tolerance concept the initial crsizk,
a,, is not identical to the size of a real flaw, efgom
the manufacturing process but is a fictitious sizieich
usually refers to the detection limit of the NDI
technique. The basic idea is that the largest cthak
could escape detection is presupposed as existent.

3. simulation of sub-critical crack extension,
This kind of crack growth is designated as subeait
since it will not lead to immediate failure unticatical
length of the crack is reached. For railway appitce
the common mechanism is fatigue.

4. determination of critical crack size for componen
failure. The sub-critical crack extension is teratad

by the failure of the component. This may occur as

brittle fracture or as unstable ductile fractureiti€al

states may, however, also be defined by other svent

such as stable ductile crack initiation or the krea
through of a surface crack through the wall orisgta
maximum allowable crack size threshold.

5. determination of residual lifetime of the component
The residual lifetime is that time or number ofdowy
ycles which a crack needs for extending from tlitgain

crack sizea,, (step 1) up to the allowable crack size,

Amax, €Stablished in step (3).
6. specification of requirements

testing.

for

non-destructive

The constitution of an inspection plan is the aifnao
damage tolerance analysis. From the requiremert aha
potential defect must be detected before it reaithesitical
size it follows immediately that the time intervdaétween
two inspections has to be smaller than the resilifetime.
Sometimes inspection intervals are chosen to bdlama
than half this time span. The idea is to have ars&chance
for detecting the crack prior to failure if it isissed in the
first inspection. It is, however, also obvious thraquently
even two or more inspections cannot guarantee thekc
being detected since this would require a 100% aiviiby
of detection.

The procedure described by (U. Zerbst M. V., 204B)s to
define the NDT specifications following the ‘lashance’
approach introduce in (M. Carboni, 2007). In thise, the
PoD is not a variable to be optimized but is givEimerefore
the maximum inspection interval was defined instetithe
requirements for non destructive testing. The steps 1 to

4 has already been done in the previous paragraph.

2.2.1 The PoD curve

The PoD can be derived from the calibration funcod the
particular NDE equipment used that relates theckcra
dimension (length,depth or area) to the outputhis case,
the NDE method considered is the ultrasonic inspect
Since output from an NDE measurement process is a
continuous response, the calibration curve is neztels a
linear function in which the measurement (dB of signal)

is given by a linear combination of two parametamnsl the
crack aread [mm?]) plus a normal zero mean error with
constant variance (Eq.2.7).

Y(@) = Bo + B1logioa+e€(0,0,)

The parameterg, , 8;, g, are estimated through the LSE or
through the MLE methods. Is assumed that 1000 dB-an

1000dB are respectively the saturation and obs&vab
limits.

2.7

The data provided from which the parameters aienastd

thave been obtained from real inspections of railegs.

The parameters’ values are reported in Table 2

Parameter Valie
Bo Xxo
b1 Yyo
o, Zz0

Table 2: Calibration Curve Parameters

In order to use the calibration curve in the foliogv
analysis, the crack size has to be expressedrmdardepth
instead of surface area. The crack geometry isnasd to

" Values are omitted for confidentiality reasons
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be semicircular (M. Carboni, 2007). Therefore, tbsulting
calibration curve function becomes:

2

na
Y = By + Bilogyg N +€(0,0,) 2.8

In order to derive the PoD function, a thresholfixed that
represents the measure’s bound that if it's oveegaine
presence of a crack is diagnosed. This limit isat&t0.6 dB
that corresponds to a crack depth of 5.492 mm.

The reference limit and the final calibration cuwih the
constanBa, confidence limits is shown in Figure 4.

[¢B]

Madian

——-3a
— —a3g
reeeeees Thieshold

— L =

Crack Depth [mm]

Figure 4: Final Calibration Curve

At this point the PoD curve can be derived as firesents
the probability that a crack of sizecan be detected, given
that the threshold is set af;,,. According to this statement
and making the hypothesis of a normal distributedrethe
PoD of a crack depth is:

PoD(a) = P[Y(a) >Y(aw)] =

(0 Ao (25)

Oy

=1-0

2.9

50.6 — (ﬁo + P1logyo (n’Taz))

Or

=1-0

where® is the standard normal cdf. In Figure 5 is sholen t
resulting PoD curve.

PQD

i i
0.03 0.04

Crack Size [m]

i i
0 0.01 0.02

Figure 5: PoD

The PoD as discussed above in paragraph 2.2 is tesed
determine the maximum inspection interval in order
detect with a probabilit the maximum allowed crack size
anax- IN the following paragraph, according to the peob
defined in paragraph 2.2, the maximum inspectimarval

is determined.

2.2.2 Identification of the maximum inspection interval

The maximum safe inspection interval is determined
through examining the effect of the interval ofgastion on
the overall probability of detection in the case affast
growing crack. The inspection interval is therefdahe
maximum interval of inspection that allows the déten of
the maximum allowable crack size with a definedhatslity.
The worst case is when the time (or distance) leetbe
failure occurs (TTF) is minimum. This happen whence
the maximum defect present in the system is setcthck
growth rate is the highest. The inspection interigl
therefore dependent on the largest defect presenhe
system, that is the defect that will eventuallysmtailure.

The maximum defect size is set at 2 mm as suggéstéie
literature reviewed(M. Carboni, 2007)(U. Zerbst M.,
2005) and as set in the crack growth simulationsthds
point the fastest growth crack has to be choserihas
reference upon which the maximum allowable inspecti
interval has to defined.

Starting from the TTF distribution shown in Figue the
fastest growth crack has been chosen. It is thek@eowth
path with the minimum TTF in 300 simulations andctth
falls in the first bin of the TTF distribution. IRigure 6 is
shown the path selected and its relative positiith mespect
to the TTF distribution (blue line). As can be séefalls in
the left tail of TTF pdf.
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Since a 100%PCyg, is impossible to reach theoretically, a
PCper threshold was set at 0.99.

0.06

In order to determine the inspection interval tnalfPCp g,

is evaluated at different intervals of inspectiBaurticularly,
the final PCpgr was evaluated starting from 1 to 60
inspections that result in the same number of valer

005

o
I

Crack Size [m]

The final PCpgr is the Pppr that results from the last
inspection. Figure 8 shows the results of the assest, it

002 shows thePCprr as a function of the inspection interval.
The figure confirm what stated previously: as thenber of
inspection increases and the inspection intervaredses
= PCppr increases. The optimal inspection interval is the
0 0 o o g 10 o 10 largest that guaranteeP& ),z = 0.99.

Cycles

=
=

0.01

From Table 3, can be seen that the inspection viateat
0.99 falls between 34,988 km and 32,297 km. Bydine
interpolation we can find that the interval at 9%yt is
33,663km.

Figure 6 Fastest growth crack

Once the worst case is chosen and the referenceh@eD
been defined, the maximum inspection interval can b
found. Ne Inspection

. . PC
. . . . . Int I [k DET
Given an inspection interval,l *, the cumulative PoD inspections _ Interval fkm
PGyet of a defect, potentially observable in a given bem 1 419,856 0.000000
of inspections|, is calculated from the PoD curve of the
’ ) . 3 209,928 0.000014
adopted NDT technique. Figure 7 shows how the
cumulative probability of detection is calculatetiat in 5 139,952 0.003680
formulae results. 7 104,964 0.003694
I 9 83,971 0.007346
PCDET = 1_HPOnDl
! 11 69,976 0.007360
. 210 13 59,979 0.010992
PonD; =1 — Pod, ' :
15 52,482 0.011006
. . . 17 46,651 0.026369
Here,PCppr is the theoretical cumulativoD andPonD
(‘probability of non-detection’) represents the pability of 19 41,986 0.026967
failing to detect in a given inspection. 21 38,169 0.397817
23 34,988 0.834808
From detection
25 32,207 0.999981

Table 3 PGgr with different inspection interval

Crack Size

Failed |1

Failed I,

| Failedl, |

Detection Limit

(@ (b)

Figure 7 Calculation of the cumulative probabitity
detection (a) and the fault tree of the inspec{mnadopted
from (M. Carboni, 200%)

The PoD; depends on the actual crack size that
corresponds to the cycle according to the Eq. 2.9. The
more the inspections the more &, will be.
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Figure 8PCpgr as function of the inspection intervals

The literature reviewed (U. Zerbst M. V., 2005)(M.
Carboni, 2007) (S. Beretta M. C., 2006) suggests tc

determine the inspection intervals referring to #werage
crack growth path, i.e whose TTF is equal to tham&TF.

In this case, once selected the right crack prdpaga
lifetime, the maximum inspection interval is comgulitas

well. The result is that the optimal inspectioremal should
be performed each 153,197.8 km. It is worth notimaf in

case of the fast crack growth crack, with an inspec
interval equal t0153,197.8km the PGgr is equal to
0.2986%.

2.3 Prognostic Modeling of the Crack Size Growth

In this section two methods able to predict the RbfL
cracked railway axles are introduced and companetgrm
of their prediction performances.

The first model uses a statistical approach basedhe
Bayesian probabilistic theory and the second ores tise
physical model introduced in the paragraph 2.1, ghme
used to generate the crack growth paths. Sincemibael
accurately describe the real crack growth in rajhazles(S.
Beretta M. C., 2006), it can be used both to stiisti
experimental tests and to generate the databaskedde
support a statistical approach to evaluate thesaXi€F and
RUL.

The aim of the section is to introduce and givederice of
the capability of a prognostic approach based aseh
algorithms to reduce the uncertainties associatedhée
prediction of the TTF of a continuously monitoredaked
axle meanwhile it operates. This approach canelgfui to
increase the inspection interval and, as a besltréasspects

the axle only when the wheels have to be maintained

without reducing the system’s safety.

2.3.1 Setting the threshold

clearly determined. In this case it is triviallyried since
the axle is considered faulty when the maximumvediole
crack size is reached. Obviously, the thresholdtbdixed
considering the errors that affects the whole nuwitig and
prognostic system. Figure 10 shows a scheme of
different types of errors that has to be considémesktting
the threshold. A safety margin has to be introduagainst
the errors that affect the estimation. The firstoerwas
introduced in the paragraph 2.2.1.

(48]

Median

——.3
— —+30
strssssses Thrashold

_,_______________
ey e e e it

Crack Depth [mm]
Figure 9 lllustration of the meaning of the sizeoer

It is the error associated with the calibrationveupf the
ultrasonic inspection. This error introduces anautanty in
the determination of the crack size given thatutiesonic
probe measures x dB.

Figure 9 illustrates what is meant for the sizeertGiven
the calibration curve in Eq.2.8, the size ergpris defined
as:

€
& = ﬁ_
1
2.11
O-T'
& =N (O, —)
B
RUL
J \‘ [ | } Probe } }grsa(::rﬁas(lezde} } Model }
L Crack

Model error
(RESIDUALS)

Measure errors
NOISE }—47 (SIZE ERROR) 4 Threshold

Figure 10 The errors affecting the monitoring and
prognostic system

The other errors that are present are those assdaoidth
the model describing the crack growth, that areréiseluals
between the actual crack size and the that onegeeldby

the

In order to design a prognostic algorithm capabfe othe model and eventually the noise that affects the

updating the axle’s TTF the concept of failure hasbe

measurements process.



Annual Conference of the Prognostics and Healthddament Society, 2011

In this case the size error is only consideredesing data
are available about the other error sources. Ther er
considered can be considered as the sum of thokmgna
the hypothesis that the
performances are better.

Given a crack depth,,, as the maximum crack size
allowed, the threshold that will be used as a esfee for
estimating the axle TTF is that one that guaran&ée39%
of confidence that,,,, won't be missed.

Starting from the calibration function in Eq.2.8 Wwave to
find d,, that corresponds ®(a,,q, < d.) = 0.99.

Starting from Eq.2.9, given the measitehe related crack
size is:

Y—-PBo £

310 B1 1081 2.12
T

2.13

Given thatY corresponds to the measurement of the cracl

Sizea .., We have:

-B
. 2.14

2
Anax = ;10

The crack size that corresponds to the measurefient

c 2 Y-Bo
a= ;10 B1 10%s

a=an., 107 2.15

From EQ.2.15 we have that given a real crack depth,,,

the crack size associatedr (estimated from the
measurement) is a random variable distributed as
lognormal with an associated meanlog,,(a.,) and a

standard deviation %i;—.
1

&
log;o a = logyo (amax 10 2)

€
logio @ = 1081 (Amax) + 10810 35 2.16

& (0,5
l0g1o5 =N (O' 2,31)

Now we can define the threshdig,:

used diagnostic system’s

P(@h — Gmax < 0) = 0.99

logyo @n — 10810 Amax 2.17

5 >1-0.99
2p

The result ifi,;, = 0.044.

If we let vary botho, and a,,, and calculate the
correspondingi,, we obtain a surface plotted in Figure 11.
As we can see the relation is not linear and astiedard
error increases, given a maximum crack size,
corresponding crack depth threshold decreases.

the

3, [mm]

Figure 11 Crack size threshold as a function,cfinda,, .

2.3.2 Bayesian updating algorithm

This section develops methods that combine twocasuof
information, the reliability characteristics of axl&s
population and real-time sensor information from a
functioning axle, to periodically update the distrion of
the axles’s residual life.

\?Ve first model the degradation signal for a popaofatof
axles with an appropriate model assuming error gefinom

an iid random error process. A Bayesian updatinthotkis
used to estimate the unknown stochastic paramefeise
model for an individual component. Once we have
determined the posterior distribution for these nown
parameters, we derive the residual-life distributfor the
individual component.

In this case there is not simple functional forrattfit well
the simulated crack growth pattern. Nevertheless, a
approximation of the paths can be performed bytspiithe
signal in two parts, that can be modeled as twameaptial
functions as shown in Figure 12.
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Figure 12 The two exponential models

The shift from the first model to the second isdshen a
crack depth threshold that is plotted in Figurea$2a black
dash dotted line. The TTF of the axle monitoretherefore
defined as:

Where T,is a random variable that express the predictec

time to reach the threshaf{l, andT,is a random variable as
well that denote the time that takes the crackrawgrom
the threshold t@i,.

Let S(t) denote the degradation signal as a continuout

stochastic process, continuous with respect toeaycWe
observe the degradation signal at some discretetai
cycles,ny, n,, . . , wheren; = 0. Therefore, we can model
the degradation signal at cycles= n,, n,, . . , as follows:

{5(711') = @1 + 01exp[fin; + € .
S < S

S(y) = @2 + O28xplfon; + €21 5, <S < ay,

If we redefine L;(n;)) = S(n;) —¢, for S§S<§,, and
L,(n;) = S(n) — ¢, for S, < S < a,, we obtain:

S$<Smn
Li(ny) = 6,exp[fin; + €,(n;)]
2.20
L,(ny) = 6,expfn; + €,(n;)] %h =S=

Aen

The choice of threshold,, has to be based on an
optimization rule. In this case, the thresholdhiattone that
bound the maximum residual of the first fitted miotte
0.0012. Obviously the rule can be changed, for gtarhe
threshold could be that one that minimize the di/éiting
error. The value 0.0012 at which the first resideabr is

bounded is chosen upon that willingness to prefestter fit
in the first part of the signal in order to achiebetter
predictions in the first stage of the degradatioocpss. The
reason is that good predictions (more precisehn first
part of the degradation path can restrict the uagdes on
the final RUL estimation form the beginning. As teatof
facts, the main part of the uncertainty on the Tcfes
from the uncertainty associated with the varidhlen other
words, the variance of the cycles taken by thelkctagrow
from the initial size tc,;, is much greater that the number
of cycles taken by the crack to grow frém to d,.

After several simulations, the threshold that bouthé
maximum residual error of the first part 8fis a random
variable as shown in Figure 13.

30

Frequency

Threshold [m] -3

Figure 13 Threshol§,, distribution

Eventually the final threshold chosen is the mealues of
distribution, that isS,, = 5,1 mm.

Once determined the threshold, through an apprpria
number of crack growth simulations, we can build au
priori information on the crack growth behavior. rOa
priori information, a part form the a priori TTFstlibution
shown in Figure 2, is composed of the random patense
0,,0, piandp, probability distributions. Their values are
obtained through the LSE technique though fitting ¢rack
growth functions with the models in Eq.2.19. Theafi
distribution PDFs are plotted in Figure 14.
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Figure 14 (a)og 6; PDF, (c)log 6, PDF, (b)3; PDF, (d)B,
PDF

As can be noted from the figure abog®gg,, §; andg, can
be approximated by lognormal distributibnswith
parameters:

01 = LN (ugy1, 091) 8, = LN (o2, 092)

B = LN(#BI' Uﬁl) p1 = LN(Hﬁz, 032)

The probability charts of those distributions canfbund in
the Appendix.

For these exponential models, it will be conveniemvork

with the logged signab. We can then define the logged

f(LSy1,...,LS1k|64,B1)

< 1 > S (1S, — log 6,
= exp| — Z >
\21mo,4? ¢ 20,1

j=1

1“’)) 2.22

S$<S

F(LSz1 0. LS3|02,B2)

_ <\/%r22> exp(—i <L52.j

—log6,

- 52”}))
2 2.23

Assumed that6,,6,, f; andp, are lognormal random
variables with parameters defined above, their stgviri
joint distributions, according to the Bayes theoamex

20y,

Stn S < Ay

f(61,B1 |LS11 s LS1x)
F(LSy1,.. LSy |64, B1) (6T (By)
T F( LSy ) LS1| 01, B1)TT(0)T(B,) 46, dfs
s<S
" 2.24
f(62,B2 |LS1 ) LSo i)
F(LSz1 ..., LS |02, B2 )T (8:)11(B,)
T F(LSp1 e LSk |62 B2)T(6)TT(B,) d6,dY
Sen €8S <y
Where F(LSy1,..., LS |01, B1) and
f(LSy1,..., LS, |62,8,) are defined in Eq.2.22 and

Eq.2.23 respectively and:

2
signal at cycley; as follows: mnee,) = ; xp(% (logel—“m) )
0,
. f2n9120912 o
LS, (n;) =log 0y +B1n; + €1(n;) €= Sm
2.21
LS,(n) = log 8, +homi + &,(n) 5, <s<a, 1Gg,) = logﬁl ﬂﬁl) )
Znﬁl 031 %1
We will use the observationiss; ,LSi_Z*, .., Obtained at 2.25
cyclesny,n, , ..., as our data. Next, suppose we have
observedLS;, , ...,LS; at cycles:, ...,n. e, = log 6, — “92) )
Since the error termg; (n,), i = 1,2 andt =1, ...k, are 2n92 0g5° 702
assumed to be iid normal random variables, if wavke, ,
and B, ,, then the likelihood function dfS;; , ..., LS, 1
given 6;, andp, , is: (B, = 0gf, — I‘BZ> )
27{,8 Op2 2 %2

"In the Appendix can be found the probability chaits
those distributions.

*i is used to denote the belongingd.§fto the first ( = 1)
or second modeli(= 2) in Eq 2.19.

The a posteriori mean of the parameters can benebota
from:

10
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+00 +00
= J- 91[ f(61,B1|LS 11, -, LSy x)dB1d6; TTF(n=0)=T, + T, 2.28
400 +o00 —~ -~ .. . . .
fig1 =J ﬁlj £(61, By |LS11 -, LSy 4 )dB1d6y WhereT,and T, are the a priori pdf distributions @f and
-0 -0 226 T,. They can be expressed as:
+00 +00 '
doz = J- 92[ f(ez'ﬁz |L52,1 , ...,LSz'k)dﬁdeZ fl(nilnk =0) _ R 2.29
_J:o _:om = P(LS; () = Sy @1, 84)
fpz = f_m B2 f_m f(gz,ﬁz |L52,1 ) ---rLSZ,k)d.BZdBZ T;(nﬂnk — O)

R 2.30
= P(LS;(ny) 2 dn|®2, B)

Where ®,, B;, ®, and B, are the a priori pdf ofw,,w,, £

And their a posteriori variances from:

+o0 +oo
b= [ @0 [ (008 1510 L5010, andg, respectively.

+oo , [+ Given that®,, , ®,, f;andp, are normal random variables,
Gpr = Jm (B~ fp) fm (61,81 |LSys, o, LSy )dP1 6, the degradation signdlS, andLS, computed at cycles;

o o 2.27 and n; respectively, are normal variables as well (N.
692=f (ez—ﬁgz)zf £(65,8, |LSz1 s, LS4 )dB2d6, Gebraeel J. P., 2008)(N. Gebraeel M. L., 2005)(Cu.

1993) with mean variance given by:

+oo +00
5/?2 = J (ﬂz - ﬁﬁz)zj f(gzvﬂz |L52,1 ’ ...,LSZ,k)dﬂdeZ
- - Hle(ni) = Up1 T UMy

Since the solution to the problem stated has nen heund 2.31
in the statistical literature and recognizing tlenputation 0’1, () = 02,1 + 02pni?

problem associated with solving .the equations nigaky, + 200,051 + 0py?

we have to make other assumptions on the pararhptifrs

functional forms. In order to reduce problem comjtiethe uLSZ(n]-) = Uz + Uy

assumption off; andg, as normal distributed parameters is

reasonable. This assumption let us to exploit tfablpm 2.32
solution proposed by Lindley (D. V. Lindley, 197apd Gstz(nj) = 0245 + 02 g

Gebraeel (N. Gebraeel J. P., 2008). Therefore,

+ 205042057 + 0y
log 6, log6,, B, andB, are assumed to be normal random P20w202 T Or2

variables with parameters: Remembering the Eq.2.29 and 2.30, we can writ&for
log8; = wy = N(le1,041) log 8, = w; = N(ly2, 042) Ty (ni|ny = 0) = R
1 —P(LS, (n-) < Sin |81, B1)=
B = N(:“Bl' Uﬁl) p1 = N(#Bz' UBZ)
Before proceeding to the formal definition of theolgem =1- Z < ~ s, O )\
statement, an assessment of the errors computed aft \ ,0 Ls. () /
relaxing the hypothesis of lognormal distributgd andg, L
can be done through a comparison of the a priod TT
calculated by the model witl#; andg, as normal random /Sth — Hle(ni)\ 2.33
variables with the true TTF computed through thackr =0| ——
growth simulations. \ o?s, ()

The a priori TTF probability distribution, givenghmodel
described by the EQ.2.20, can be computed as t
probability that the degradation signal (crack kiz§ is
smaller than the crack maximum size allowed foheacle
n; > 0, given the a priori model parameters pdfs. The
statement, remembering the EQ.2.18, can be formally
written as,

Hand for T

11



Annual Conference of the Prognostics and Healthddament Society, 2011

E(nj|nk = 0) = (a)

1= P(LS,(n) < @y |@1, B1)=

Aep — Hle(ni)

’GZle(ni)

- /dth - IJLSZ(nj)\

\ 4/0%52("]-) /

Where® stands for the standard normal cdf. The domain of
TandT,, is< 0, thus can take on negative values, Which(b)
is practically impossible from an implementation
standpoint. Consequently, we use the truncatedfardf’
andT, with the constrainf, > 0, i=1,2 which is given as:

=1-P1Z<

2.34

= =ﬁ_ﬁ(ni =0)
! Ty (n; = 0)

2.35

T, = Ty(m = 0)
Ty(ny = 0)

2 =

As observed by (N. Gebraeel M. L., 2005}, andT, are
three parameter truncated Bernstein distributeddarmn
variables for which the first and second momensetbform
don't exist(A.K Sheikh, 1983). As suggested by (N.

Density

Density

4.5
Ty = 10°

Figure 15 (aY; pdf (b)T, pdf

Gebraeel M. L., 2005) the median is taken as thgrae Eventually the modeled a priori TTF is shown inufig 16
moment. This can be justified, from one side by tioe- compared to the simulated a priori TTF on a lograirm
existence of a closed form for the mean, and ferdther ~ Probability plot. The green circles belong to tiradated a
hand, considering that tfgpdfs are skewed and therefore Priori TTF, while the black ones belong to the medea
the use of the median is more appropriate and coamtbee. ~ Priori TTF.

To compute the sum of the two random variablesMbate
Carlo technique is followed, given ttig andT, numerical
pdfs shown in Figure 15. Th&,,B,, &, and B, a priori
pdfs parameters are reported in Table 4.

o83

0,995+
0.99p

0.95[----!
09f--

~

w4 B1 ®; B> €1 €2 _ o7l
u -10.35 6.95e-009 -8.85 1.07e-007 0 0 EE 05
2 176e- 15e oz
o - - ad e :
0.69 6.92e-035 47.65 3.55e-029 008 005 04l

0.05

0.005

Table 4 ®,, B;, ®, and B, a priori pdfs parameters

The pdfs are simply obtained differentiating theo tedfs
with respect to.

oS

10°

TTF [Cycles]

Figure 16 Simulated a priori TTF and a priori madkITTF

comparison — probability plot

12
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A further comparison is between the two TTF pdfshiswn

in Figure 17 in which both the cdfs are plottedorRrthe
two figures can be observed that the left handidigions’
tail are similar, while for large values of TTFethwo
distributions differs. The modeled TTF has the tigand
tail longer than the simulated one. However, forr ou
purposes the left hand tail is much more importhah the
right one. For this reason th@,andB, normality
assumption can be acceptable.

= = = o=
= -~ -] w

=
.

Cumulative probability
=
o

=
]

=]
]

o=

TTF [Cycles] 3

Figure 17 Simulated a priori TTF and a priori medeITTF
comparison — cdf

It is worth noting that if the two model’'s parantsteare
somehow correlated, It would be possible to updhte
second model's parameter instead of using the aripri
information to compute th&TF till the threshold S, is
reached. This situation would be valuable to exfdecause
better predictions could be performed since thermégg of
the crack growth. Unfortunately this is not theecaice the
two pairs of coefficients are not significantly celated as
can be observed from Figure 18.

6, — 0, 01 — B2

Figure 18 Correlations between the couple of model
parameters

Now, once we have computed the a priori paramepelfs,

we can write the equations that update these pdfs

parameters once obtained the signgs; ,...,LS;, or
LS;1,..,LS,, from the monitoring system, depending in
which S interval the signals are. Below is just reportee t
final formulas form which the updated pdfs parametare
obtained.

The models can be rewritten as:

S < S
LS, = X1[A],
2.36
LS, = X,[A], Sp<S<
den
Where:
[A]y X [A], X,
[0)1 Il nl] [‘Dz 1 ny,
B1 1 n, B2 1 Ny,

At a cycle n,, given the measuresS;; LS;,,..,LS;;,
i = 1,2 the updated, B, w,, B, pdfs parameters are:

" -1 TX, X,
M1T = <[(X1TX1) XlTL'Sl] 2
Or1
e -1\ (XX
+0,75 )( 3 2.37
Tl
-1

+ 21'1>
XX, L\
);1=< 1 21+21 1) 2.38

Or1

_ TxTx 2.39
" = <[(X2TX2) 1X2TL52]T 2 22
O-TZ

1 1) (X2 X
+4, 5, ><—2

JrZ
-1
+ 22_1>

13
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2

(%X o\t 2.40 Ty (n|LSy1 LSy ) LSse)
22 = ( 2 z +22 1) !

Ir2 Ap — HLs, (nj)

Where: =
fostz(nj) 2.44

Ay = [Ho1  Hpi1] [, = [Hwz Hp2] B B
o o o o 220 T2 - T2 (0)
2 =[ wl wl,Bl] 2 :[ w?2 w2,2] B0 —T 0
17 [ow1p1 9p1 17 [0w2p2  0Op2 2(0)
An Example:
are the vectors of the a priori pdfs means andtivariance  Gjyen a cprack growth path shown in Figure 19, ahdame
matrixes while: step we can update the a pri@iT'F given in Figure 2,
_ _ _ _ exploiting the information gained form monitorirfgetcrack
iy = [Fwr  fpi] fy = [Hw2  Hp2] growth.
- 6w Gwipt 5 =[ Gw2 5wz,z] Using EQ.2.37, 2.38 for the first part of the delgion
2y = Gorpr  Op Ow2p2  Op2 pattern {; in Figure 19) and the Eq.2.39 and 2.40 for the

second part, we can compute the a posteriori
are the vectors of the a a posteriori pdfs meansthe  &,, B,, ®, and B, pdfs’ parameters, that are the means and
covariance matrixes. the standard deviations.
Now, given the a posteriori pdfs’ parameters tfigor T,
distribution can be computed.

Remembering Eqg.2.31 and 2.32 the updated meanhand t

Failure
variance of the degradation signal at a cygler n; will be: 0.06
il n)=1a + [dpiN; 0.05}
Hle( i) = fon Hp1Mi Threshold )
E
2.41 w MM
~2 — =2 ~2 2 73]
645, () = 6% +6%pmy ¥ -
~ ~ 2 © i
+2p,0,105, + 0y S T, I;
. o - 0.02}
fivs, (7)) = Aoz + fgany

0.01F -
242 Threshold §,,,

=2 — =2 ~2 2
(o) Lsz(n]') =0"u2 +0 an] 0
+ 2.525(02532 + 0,,°

0 2 4 5} 8 10 12 14
Cycles E

Fi 19 Crack growth path
And therefore from EQ.2.33 and 2.34 the upddtedr T, 'gure rackgro pa

pdf will be: From the initial cycle to that one that correspotuala crack

size of 5.1 mm the update®dTF is given by Eq.2.7 where

Ti("i| LSiy LSz, LS1¢) T, is given by Eqg.2.35, that is the a priori modefed

Stn = Hle(ni)\

Jorsm | 24

rz0 Ty — T1(0)
_—_ ——=
1,(0)

Lof
\

And for T,:

14
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a)

105 =

& Msp

6
Cycles % 10°

b)

0 I L 1 1
0 2 4 6 8 10 12

Cycles 10

Figure 20 a) updatei,,; and b) updatef,
b) shows the updatgi),; as a function of cycles, while the
plot b) shows the updateg, .

At each time step, given the updatgg, andfig, we can

compute the a actu@ll'F whereT; is given by the Eq.2.43.

For each time step thETF median and the®percentile is
stored. These two values are plotted in FigureA®lcan be
observed, cycle after cycle the predictions conwergthe
true TTF even before the second degradation pliaghis

case, both the®lpercentile and the mean fall within the 5%

error interval. The interval in which t&f'F median and its
1% percentile lines are interrupted means that teelipted
TTF falls beyond the timescale.

* Failure +5%
---------- Failure -5%

TTF [Cycles]

Cycles x10°

Figure 21 Predicted TTF *'phase

Once the threshold,, is passed, th&TF is equal to the
cycle T;, that is no more a random variable (it is
deterministic), plus the predicte,.

T, is given by Eq.2.44, once computed the updatedp,,
and the related variances given by EQ.2.39 an@dl 2.4

Figure 22 shows the updateg, and y,,, respectively.

a)

15
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b)

7 Cycles

Figure 22 a) updatefi,,, and b) updatefs,

As previously done for the first degradation phake ' TF
pdf can be computed using EQ.2.39, 2.40, 2.42
eventually 2.44. The updatedTF median and its ®1
percentile are shown in Figure 23.

x10°
138

median
— WFP’perc

136
------- Failure
e Failure +5%

13 e Failure -5% [

1321

o

TTF [Cycles]

1.22 1 I I I I I

Cycles

Figure 23 Predicted TTF “phase

Can be observed how the predictions converge toahct
failure time. This time the prediction variancegs amaller
than those of the first phase. This is due to #ut that the
1% phase predictions include the uncertainties réletethe
a prioriT, pdf.

2.3.3 Prognostic through the physical model

The same problem faced by the Bayesian prognosigien
can be pursued through a recursive applicatiomefcrack
growth model presented in paragraph 2.1. The phlsic
phenomenon analyzed in this context has been faged
numerous researches, therefore numerous modelsbeave
proposed capable of describing and highlighting rtiegn
variables and their relations that influence treckrgrowth.
The NASGRO model used in this context is recognitoed
be the most reliable to describe crack growth iihwesy

an(

axles(S. Beretta M. C., 2006)(U. Zerbst M. V., 2§85
Beretta M. C., 2004), therefore can be used to igred
accurately th@TF.

The main idea at the basis of this approach is, tate
measured and estimated the actual crack size anbalds
history, we can estimate tH&TF through simulating the
possible growth paths by using a Monte Carlo tegini

L] e ot

0.05F

=
=S
7

Crack size [m]
=
=4
3

0.02r

Time Now

= AR

» Cycles

0 i L il
1 2

F 4
Measured Predictions

Figure 24 TTF prediction through the NASGRO crack
growth model

This approach is shown in Figure 24. Let suppos# th
through the monitoring infrastructure we have meaguhe
crack size at the time now, we can simulate thekcra
propagation considering as random variables theal loa
applied and the SIF threshold and the initial crsizk equal
to the measured one. The functions plotted andnatigg
from the time now, are some simulated crack gropétins.
Starting from the crack growth paths set, it isgide to
estimate thel'TF pdf. In Figure 24 the black dotted line
represents the predicte@dTF pdf, while the red line
represents the actual failure time.

The estimatedTTF at each time step can be approximated
by lognormal distribution, as shown in Figure 25.
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10 - : ; - ; o T
09999 : L
09995 - o 9 L S, i
Dgse- c_1TIF @ 75% 9 .
Lognormal fit
0995 sl N
0.99 ,
o © L ~. |
0.9 e & d Failure - 5%
09 [al ure -
z o 7 S Failure + 5% 1
2 075 3 L
3 2 f
‘g O, &F Failure 2
g s i i
- oap Lo
025 T —
04 ab e i L
005 o b e - i
2 Ha
@ 1
1] s e A lower bound :
0.005 1 —— TTF redan -
000100 oo hdededecddie [ upper bound i
0.0005 - a \ | \ . | | \
10 0 05 1 15 2 25 3 35 4
TTF [Cycles] Cycles «16*

Figure 25 The approximated TTF probability plot Figure 27 TTF predictions

As in the Bayesian approach, at each time step['Tife1™
percentile, the median and the TTF at 98% level ofigure 28 shows how the confidence interval dinfirds we
confidence is stored. However, for computationalsoms, approach to the actual failure. The green dottet i
theTTF up dating times are set at the 5%, to the 99%ef threpresents the difference between TH# median and the
actual TTF with a 5% gap. Figure 27 shows tH&F TTF at the 0.01 confidence level, while the red dashed
estimations at different time steps. Can be obsenesv the ~ dotted line represents t&F pdf upper bound, at the 0.99
predictions converge to the actual failure. At tlst confidence level.

updating time step all theT'TF distributions’s lower and

upper bounds fall into the 5% error interval. "

x10°

R e e Upper Bound

===+ | ower Bound

0.9999 : T

0.9995 —----- < ¥
T c_1TIF @ 75% 10
Lognormal fit

0935
099

0.95 &

Precision [Cycles]

075

Probability

05 i 4

01 oy
0.05 )

0.01 0 05 1 15 2 25 3 35 4
0005 75 Cycles x10°

0.001
0.0005

S— o Figure 28 Estimated TTF at the 0.01 and 0.98 cenfie
Figure 26 The approximated TTF probability plot level
2.3.4 The size error and the updating frequency effect

on TTF predictions

In the case of the physical model, the size errat the
updating frequency effect on the estimations can be
approximately evaluated through simple geometrical
considerations. The assessment of these effectshen
predictions performances is an important issueesihey
characterize the monitoring and diagnostic equigmen
goodness. Higher size errors characterize low padace
diagnostic, while lower updating frequency entddsver
monitoring equipment cost.
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In this case the effect of the updating frequenaytibe The size error effect on th&TF predictions can be
prediction performances is not relevant since feF approximately computed making the hypothesis tinat t
estimation relies on just the last crack size measant and crack growth path can be approximated with an egptal
not, as in the Bayesian case, on the complete Bet &unction. Generally, as described in 2.3.1, theertbe size
measurements. Th&TF updating frequency effect can be error the lesser the threshold. The analysis fraonievis
considerable when maintenance scheduling decisisns shown in Figure 30. Let us suppose that for a gisee
considered. By this point of view, high frequengdating error , the failure threshold is set at the vadyge and that

is preferable since the decisions can be based aip@dated we are at the cycley; and we measure the crack size
TTF. exp (LS;). Through the method explained in paragraph

| . . . . 2.3.3, we can compute th&dTF pdf (blue line) and
r_l t_hls case we can apply a pred|ct|ve_ mamtenan(_:m)pol therefore we know th&TF,,qie and the TTF s, at the
similar to that one proposed by Kaiser et.al. in.Z(N p

Gebraeel, 2009). The stopping rule, i.e the cyglat which

the axle should be substituted, is defined as i2 B§. Next, suppose that the new size error is greatethéo
previous one, consequently, from EQq.2.17 keeping,

constant, we obtain the failure threshalg,, lower than
a.,. This threshold shift causes a change in & pdf

parameters and therefore to the reference pdB,,c4ian

and TTF yst,,.

0.01 confidence level.

ng — TTFlb(nk) — Ny — 6<0 2.45

Wheren,, is the first cycle at which the rule is verified,
TTF,,(n,) is the TTF prediction computed at a 0.01
confidence level at the cyclg,, § is the updating interval. The new reference points TTF pmeqian and TTF'lstp

From this simple rule is self-evident that the ¢tged the computed at cycle;, thanks to the hypothesis made, can be

lowern. computed as follows:
This simple rule can be easily understood by atradythe
graph shown in Figur@o. The blue line represents the TTF g = TTFoin — 28t ~1083thz 2.46
estimatedI'TF at the 0.01 confidence level while the black B
dotted line represents the equality= TTF,,. The dashed TTF . = TTF logay, —logawm;
v = v a 2.47

line represents the equality= TTF,;, + 8. Therefore, for

Eq.2.45, the cyclen, is the first intersection point of the

TTF,, (blue line) with the black dashed line. Particylarl Where:
referring to what stated in the previous chaptdte

quantityTTF,, (n,) — n, is the RUL computed at the 0.01 = m

confidence level (RUL_ in Figur@9). The main idea TTFysty, —my 2.48

associated with this rule is that the axle candfelg run till

it reaches the lagtTF,, estimation. _ logaw —LS; 549
TTFyt, — 1, :

TTF [Cycles]

Cycles

Figure 29 The effect of updating frequency on TTF
predictions
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A
Log(am) |
|Loglana) _ _ _ _ I
n
- 1
(Log)LS) | |
- TTF jsty——m
- TTF1stp_l—> |
-t TTF’median_|_>l
- TTFmediar} I - _
Log (n)
Figure 30 The error size effect on TTF predictions
The lower confidence intervalCl = (TTFyeqian —

TTF,st,), decreases when the size error increases, i.e ﬂb%

Life Exploited

02

1500 1000

Updating Interval [km]

Size Error

Figure 31 The updating frequency and size errorbioed
effect

3. RESULTS

Our goal, as stated in paragraph 2, is to assegrdulictive

rformances of both the prognostic models andtaadin

prediction is more accurate. This can be easilyyjghlight the differences between the predictived an

demonstrated, subtracting term by term Eq. 2.4 \Ed.
2.47 we obtain:

, 1 1
Cl = CI — A(loga.y) (— - —) 2.50

B «a

Sincep < a andA(loga,,) > 0 for increasing size errors
cl'<cl.

TTF
It is worth noting that, from Eq. 2.47, the ratiTeTF,lﬁ is
15tp

not linear with respect to the ragaéh— and from Eq.2.17 the
th2
ratio=t js not a linear function of the size error ratio.

ath2

The updating frequency and size error combinedcefia
the cyclen, normalized with respect the actual failure (i.e
% of the life exploited) on particular crack growdhrve is
shown in Figure 31. As we can see the relationsbtpreen

the size error and the ratie—*—. As the size error

Nfailure
increases, for a given updating frequency, thediploited
decreases, while the relationship between the ugpat
frequency and the life exploited for a given sereor is
linear: the more frequent tHE&T'F updating the greater the
life exploited.

preventive maintenance policy.

The probabilistic aspect of the issue has clearigea
during the dissertation, therefore a reliable ardkfinitive
answer to the questions proposed has to be givesm af
numerous simulations that guarantee a reliable
representation of the probabilistic aspects inwblve
However, some preliminary considerations can bdénmat
analyzing a limited number of instances.

The method used to select the instances analyzbdsisd
on the stratified sampling technique. Particulathe TTF
pdf represented in Figure 2 has been divided ireqal
spaced intervals, that corresponds to the bins shHovthe
same figure. For each bin a crack growth path weéscted
obtaining a set of 10 possible degradation curgeshawn
in Figure 32.
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paths can be found. Moreover, the size error aral th
updating frequency effect on the exploited life atetted
for each instance.

vils L8106 =15 s Telaa] ] As can be noticed form these figures, both therilgns’
s p— predictions converge to the actual failure time.eTh
‘ ‘ information about the actual degradation path iaseeas
1 time elapses, resulting in an improved knowledgeualthe
| | { actual TTF. Better knowledge of the crack growthdeor
‘ | | allow more accurate predictions. The advantage of
| ‘ [ continuous monitoring with respect to the a priori
| F4 information is clearly evident observing Figure 83hows
i | g| sasht] ) the TTF pdf obtained from the prognostic algorithms
L described and the a priori TTF pdf (black line)isltclearly
% =] : K] i W noticeable how prognostics can improve the knowdedg
" the actual failure path followed by an individualea

Figure 32: The 10 crack growth paths

For the whole set of track selected, the Bayesiagnmstic
algorithm and the physical model was applied. Moeep
the maximum number of inspections;,;, and the

expected number of inspectioNg,s, was computed.

In order to evaluate the prognostic algorithms dbed,
two metrics were used, one of which suggested by
(A.Saxena, 2008).

This metric, called Timelinesg, exponentially weighs
RUL prediction errors through an asymmetric weigti
function. Penalizes the late predictions more tlezmly
prediction. The formula is:

&m.

8 10 12 14
n

exp (lZ(a )|> 250 TTF [Cycles] 10

®(n) = 3.1 Figure 33 Comparison of the a priori TTF_pdf_ ane th
lz(n)] updated TTF pdf obtained from the prognostics dlgans

( b ) z<0 described (green-Bayesian, blue physical based Imode
black - a priori)
N

Q= lz @ (n) 3.2 However, substantial differences among the two postic
Nn=1 approach exists. Particularly, what differs is dhgtribution

. - of the prediction errors along the degradation limeeand
Wherez(n) = TTFocruar = TTFineqian(n) 1S the prediction prediction confidence interval. The last staeimis
error computed gt cycte, while g andb are two constants evident observing the figures in the appendix iriclvtthe
wherea > b. In this case = 100 andb = 10. predictions paths are compared. In all the instausetected
Ideally the perfect score ig=1. To be comparable, the the physical model confidence interval is largeanttthat

updating frequency has to be the same betweenwtbe t One computed by the Bayesian approach.

algorithms, therefore the TTF predictions in theypbal o ever, the most important differences among the t
model case have been linearly interpolated. approaches have to be evaluated in term of theigtien
The other metric chosen is simply the predictionserrors. The following graphs display the predictiemors
percentage error computed at fixed time stgps: 0.25FT, for both the algorithms and for the whole crackvgiotrack

0.5FT, 0.75FT, 0.98FT , where FT is the cycle at which Set at fixed residual life percentile (i.e 0.2%,®.75, 0.98).
the failure occurs. The same information are displayed in a tabulamfan

] ) o Tables. The percentage prediction error is simply calmda
In the appendix the comparison of the predictionts agq:

different time steps and the p& for each of 10 sampled
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err% = W 100 3.3
FT 80%

From the graphs can be concluded that: 60%

19,5%
40% L

1. Physical model prediction errors decrease
approaching the FT Wh g 35T%
2. Bayesian algorithm prediction errors decreases il ,, | ™% s 0%
the 75° percentile of the residual lifetime, while
98% the errors are greater that in the 75 pereentil
3. Physical model predictions are lower for FT near -4
the average (bins 3,4,5) o
4. Bayesian predictions seems to outperform the
physical model predictions for till the %5
percentile, while for the 98the physical model -100%
predictions are more accurate.

15,1% 12,2%

-20%

-80%

[ Physical model Bayes

100% Figure 35 Percentage prediction error @ 50% FT

31,2%

40,1% 30%

50% | 1 _25’6%_39,4%_

—41,4%

20% 9,9%

58,6% 62,6%
45,0%

0% 10%

-26,7% 0%

-50%

-10%

-100% -20%

-30%

-150%

-40%

-4,4%

[ Physical model Bayes

-50%

Figure 34 Percentage prediction error @ 25% FT 1 Physical Model  Bayes

Figure 36 Percentage prediction error @ 75% FT
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General considerations can be drafted form the lasive

| 1,9% 1,8%

1,9%

graph in Figure 38 that displays the mean squared
percentage error among the whole set for eachuaisiifle
percentile. The statements of the list above anéirtoed.

1,7% 0,4%

1,4%

3 4 5 6 7 8 9

—5,7%

17,9%

—
-0,8% -0,

! -3,1%
L 0,25

-9,0%
10,3%
12,6%

0,20

0,15

Index

0,10

0,05

0,00

Physical model

Bayes

25%

50%

75%

98%

Bayes

0,1591

0,0379

0,0058

0,0232

PM

0,2272

0,1569

0,0368

0,0005

Figure 37 Percentage prediction error @ 98% FT

%

Figure 38 MS of the percentage prediction errorefch

Life  Model c1 c2 c3 c4 €5 residual life percentile
Physical - -
25 -9850%  -66,59%  -1,20% . .
model 26,69% 11,19% sing the other metric chosen, expressed by Eqge2
Bayes 4495%  -396%  -4,85% 5858% 62,57%esults displayed in Table 6 are obtained. The main
Physical - - difference between the metric defined before, &t tinis
50 -86,08%  -66,11%  -0,55% ; ; g
model 32,95% 20,08% Mmetric considers the whole set of predictions aadanly
Bayes 10.36% 577%  4.00%  30.77% 35’700%?hose that corresponds to particular moments. Eselts
ound are very similar among the two approachess Th
Physical 51 0906 -39 449 % - hysical model index is slightly smaller than thayBsian
75 model 31,09%  -39,44%  10.52% 541104 19 2104 gn)e/ ghtly y!
Bayes 2,31% -4,42%  7,53% 11,24% 15,22% :
S Physical model ~ Bayes Npj-max NDI - mean
98 m)(;(Sjlgla -5,52% -3,31% 0,84% 1,72% 0,39% c 1 1.07595 1.02061 34 33.24
5 L7 L81% _ . 5 68% c2 1.05471  1.00486 40 39.49
ayes ,87% ,81% -5,68%
17.90% 40,00% c3 1.00225 1.02235 47 42.41
L°i/foe Model 6 7 c8 co ¢ 10 c 4 1.02188 1.01337 61 58.98
c5 1.01014 1.01547 71 68.61
25 P:])(;ZIZ?I 32,56% 27,98%  41,74% 28,29% 57,91% c_6 1.00199 1.00774 75 73.04
Bayes 2564%  39,37%  40,14% 41,39% 31,19% ¢/ 1.00143  1.00769 86 82.14
Bhveical c8 1.00251  1.00787 100 96.19
50 Y 18,24%  11,76%  22,84% 12,63% 35,59%
model c9 1.00163  1.00240 105 100.35
Bayes 15,11% 12,08% 12,15% 15,37% 19,54% ¢ 10 1.00355 1.00484 115 110.70
75 Pr%f"gf" 8,09%  4,64%  10,39% 687% 1652% MS 101791 1.01074
Bayes 438%  327%  2,87% 234%  991% Table 6 Results ¢, Ninsp andN;ng,
98 Pr%ﬂgf" 144%  -076%  -0,61% 048% 061% The last two columns of Table 6 reports respectitae
maximum non destructive inspections number and the
Bayes 190%  -1261% 0300, 904%  -3,06% expected NDI number. The last result is obtained
' multiplying the NDI cumulative number with the

Table 5Percentage prediction errors

corresponding Pgzr.

22



Annual Conference of the Prognostics and Healthddament Society, 2011

Obviously, the expected NDI number increases asFhe
increases. The NDI number that should be perforteed
guarantee a 99% chance to detect a crack befoeadhes

the length of 6cm is relevant. As a consequence, th

availability of the asset is highly affected fronmist
maintenance policy. The loose of availability are t

numerous maintenance activities imply a considerabl

maintenance costs build up.

In Figure 39 the effect of an increase of the ®m®r is

displayed, considering the updating frequency of 90 km.

Can be noticed that generally, as previously statkd
greater the size error, the lower the life expbbitdowever,
the life exploited reduction is not relevant. Arriease of 3
times of the size error causes a life exploiteducddn of
about 5% on average. For the figures in appendix
noticed that the effect of the updating frequersyower
with respect to the error size effect.

The scarce effect of this important variables ® dRploited
life is due to the fact that an increase of the siror cause
a reduction of the thresholdg,, that however corresponds to
a negligible life loss reduction thanks to the higlack
growth rate that characterize the last part ofdbgradation
phase. Greater effects shall be noticed when #eeesior is
large enough to force the threshalg, to be set at crack
sizes at which the growth rate is lower (i.e at¢hd of the
first degradation phase).

%ggﬁggﬁ%ﬁ%ﬁ%ﬁgﬁ'f%éﬁ:
I SUUUUU = CD 0@@%% o
3] ; %g%%%
........................ 2 o

H ]
0O5L e :L,,,,,,,,,,,l,,,,,,,,,,,i,,,?9,@,@,@9%,@@,@”,

Life exploited norm

|
0.2
Size error

Figure 39 The size error effect on life exploitéden
6 =90 km™

$ Computed considering the physical model predistionly

" Life exploited is normalized with respect to tffe |
exploited that corresponds to the first size ecamrsidered

4. CONCLUSIONS

The objective of this research was to propose anoagh to
a condition based maintenance policy assessmemtér to
preliminary evaluate its benefits and to understidwedmain
variables that influence the overall approach perémce.
Particularly, an explanatory study was carried daot
evaluate the possibility to introduce prognosticnaepts
into railway axle maintenance management.

Through a reliable probabilistic crack growth modkel
comparison between a prognostic maintenance apgproac
based on Bayesian probabilistic theory, a progoosti
maintenance approach based on the same crack growth
physical model and the classical preventive maaries
policy based on regular NDT was carried out. The
probabilistic crack growth model considers the S a
random normal variable and a random load historivee

from measured load spectra. The diagnostic-moniori
infrastructure precision was described by a sizerer
directly derived from the calibration curve of altrasonic
NDT. Assuming the hypothesis introduced in paralgrap
2.3.4, the results suggests that further resednchld be
conducted validating the approach proposed on laceesz
study. As matter of facts both the prognostic atbors
described guarantee an average absolute predictivoss
lower than 50 % at 25% of the actual axle life. Taeer
predictions guarantees lower prediction errors r@gghing

the 7% on average. Earlier predictions errors amerally
lower for the Bayesian prognostic algorithm thamsth
computed through the physical model. Whereas, dter|
predictions the physical model seem to provide more
accurate RUL estimations. However, the gap between
predictions error computed by the two models ane, o
average, comparable. The effect of the updatinguiacy
and the size error on predictions errors in caggragnostic
physical model algorithm scenario and therefore, tlom
overall approach performance (life exploited with
determined reliability threshold) is assessed aB. Wée
results show that the higher the size error andldieer
updating frequency the lower life exploited. Howevee
effect of updating frequency and size error in e life
exploited is limited till the maximum crack sizeré¢bhold,
derived from the error size of the diagnostic isfracture,
becomes lower than about 5 mm, i.e the crack sizehizh
the crack growth rate significantly increases.

Generally speaking, a PHM approach needs a deep
system/component knowledge. This need implies high
investment costs to perform experimental testsh(tiged
costs). System/component knowledge in high safety
requirement environments, such as in the aviatioliustry,

has to be known before commissioning for obviouetga
reasons. Low Accuracy PHM May Be Worse Than No
PHM. Costs and the benefits resulting from a pragino
approach could be distributed differently across #ictors
involved, therefore an “integrator” that managdisttae
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process is suggested or partnership between threaceors
involved committed to share the investment <ost
Moreover it is worth noting that a trade off existstween
system usage pattern and the resulting benefghehiusage
allows a better return on investment but lowggs t i.e
the main prognostic benefits driver.

After all these considerations, it is possible tmsup the
results in the matrix displayed in Figure 40. Redfility of

degree in Mechanical Engineering at Polytechnididéan
and Turin, ASP diploma (High Polytechnic School).

Maintenance Engineer at Hupac SA in Chiasso, Svlétzeé
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APPENDIX

In this paragraph graphs related to the first satad crack 0.595 H
growth path. They represent respectively:

e The predictions (lower bound, median and upper
bound) on the TTF for
o the prognostic physical model (blu lines)
o the bayesan model (green lines)
» The probability of detection at each inspection
» The effect of the updating interval in km and Hiee
error on the % of life exploited (physical modely)n

Probability
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The first four probability plots represent the dméénts of
the two exponential models used in the bayesannosig
model.
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" Blue line: Physical model TTF estimation with
confidence bounds (dotted)
Green Line: Bayesian model TTF estimations withdow
confidence bound (dotted)
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