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ABSTRACT
 

This paper presents statistical model parameter 
identification using Bayesian inference when parameters are 
correlated and observed data have noise and bias. The 
method is explained using the Paris model that describes 
crack growth in a plate under mode I loading. It is assumed 
the observed data are obtained through structural health 
monitoring systems, which may have random noise and 
deterministic bias. It was found that strong correlation exists 
(a) between two model parameters of the Paris model, and 
(b) between initially measured crack size and bias. As the 
level of noise increases, the Bayesian inference was not able 
to identify the correlated parameters. However, the 
remaining useful life was predicted accurately because the 
identification errors in correlated parameters were 
compensated by each other. 

1. INTRODUCTION 

Condition-based maintenance (CBM) provides a cost 
effective maintenance strategy by providing an accurate 
quantification of degradation and damage at an early stage 
without intrusive and time consuming inspections 
(Giurgiutiu, 2008). Structural health monitoring (SHM) has 
the potential to facilitate CBM. Most proposed SHM 
systems utilize on-board sensors/actuators to detect damage, 
to find the location of damage, and to estimate the 
significance of damage (Mohanty et al., 2011). Since the 
SHM systems can assess damage frequently, they can also 
be used to predict the future behavior of the system, which 
is critically important for maintenance scheduling and fleet 
management. SHM systems can have a significant impact 
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on increasing safety by allowing predictions of the 
structure's health status and remaining useful life (RUL), 
which is called prognostics. 

In general, prognostics methods can be categorized into 
data-driven (Schwabacher, 2005), physical model-based 
(Luo et al., 2008), and hybrid (Yan and Lee, 2007) 
approaches, based on the usage of information. The data-
driven method uses information from collected data to 
predict future status of the system without using any 
particular physical model. It includes least-square regression 
and Gaussian process regression, etc. The physical model-
based method assumes that a physics model that describes 
the behavior of the system is available. This method 
combines the physics model with measured data to identify 
model parameters and predicts future behavior. Modeling 
the physical behavior can be accomplished at different 
levels, for example, micro- and macro-levels. Crack growth 
model (Paris and Erdogan, 1963) or fatigue life model (Yu 
and Harris, 2001) are often used for macro-level damage, 
and first principle models (Jaw et al., 1999) are used for 
micro-level damage. The hybrid method combines the 
abovementioned two methods, and includes particle filters 
(Orchard and Vachtsevanos, 2007; Orchard et al., 2008; Zio 
and Peloni, 2011) and Bayesian techniques (Sheppard  et al., 
2005; Saha and Goebel, 2008; Sankararaman et al., 2010; 
Ling et al., 2010). Since the data-driven method identifies 
abnormality based on the trend of data, it is powerful in 
predicting near-future behaviors, while the physical model-
based method has advantages in predicting long-term 
behaviors of the system. It is noted that in the physical 
model-based method for fatigue applications, the history of 
load is required in addition to the measured crack data.  

In this paper, a physics-based model for structural 
degradation due to damage is applied for prognostics since 
damage grows slowly and the physics governing its 
behavior is relatively well-known. The main purpose of 
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prognostics is to identify and repair those damages that 
threaten the system safety (condition-based maintenance) 
and to predict an appropriate maintenance schedule. Paris-
family models are commonly used in describing the growth 
of cracks in aircraft panels under fatigue loading (Paris et al., 
2008). In this paper, the original Paris model (Paris and 
Erdogan, 1963) is used because it has the least number of 
parameters. The main purpose of the paper is to present the 
usage of Bayesian inference in identifying model parameters 
and predicting the RUL—the remaining cycles before 
maintenance. The study focuses on crack growth in a 
fuselage panel under repeated pressurization loading, which 
can be considered regular loading cycles. In this type of 
application, the uncertainty in applied loading is small 
compared to other uncertainties. The improved accuracy in 
these model parameters allows more accurate prediction of 
the RUL of the monitored structural component.  

Identifying the model parameters and predicting damage 
growth, however, is not a simple task due to the noise and 
bias of data from SHM systems and the correlation between 
parameters, which is prevalent in practical problems. The 
noise comes from variability of random environments, while 
the bias comes from systematic departures of measurement 
data, such as calibration error. However, there are not many 
research results for identifying model parameters under 
noise and bias, without mentioning correlated parameters 
(Orchard et al., 2008; Bechhoefer, 2008). 

The main objective of this paper is to demonstrate how 
Bayesian inference can be used to identify model 
parameters and to predict RUL using them, especially when 
the model parameters are correlated. In order to find the 
effects of noise and bias on the identified parameters, 
numerical studies utilize synthetic data; i.e., the 
measurement data are produced from the assumed model of 
noise and bias. The key interest is how the Bayesian 
inference identifies the correlated parameters under noise 
and bias in data. 

The paper is organized as follows. In Section 2, a simple 
damage growth based on Paris model is presented in 
addition to the uncertainty model of noise and bias. In 
Section 3, parameter identification and RUL prediction 
using Bayesian inference and MCMC simulation method 
(Andrieu et al., 2003) is presented with different levels of 
noise and bias. Conclusions are presented in Section 4. 

2. DAMAGE GROWTH AND MEASUREMENT UNCERTAINTY 

MODELS 

2.1 Damage growth model 

In this paper, a simple damage growth model is used to 
demonstrate the main idea of characterizing damage growth 
parameters. Although some experimental data on fatigue 
damage growth are available in the literature (Virkler et al., 
1979), they are not measured using SHM systems. 

Therefore, the level of noise and bias is much smaller than 
the actual data that will be available in SHM systems. In this 
paper, synthetic damage growth data are used in order to 
perform statistical study on the effect of various levels of 
noise and bias. It is assumed that a through-the-thickness 
center crack exists in an infinite plate under the mode I 
loading condition. In aircraft structure, this corresponds to a 
fuselage panel under repeated pressurization loadings (see 
Figure 1). In this approximation, the effect of finite plate 
size and the curvature of the plate are ignored. When the 
stress range due to the pressure differential is sD , the rate 
of damage growth can be written using the Paris model 
(Paris and Erdogan, 1963) as 

 ( )d
,

d

ma
C K K a

N
s p= D D = D                (1) 

where a  is the half crack size, N  is the number of cycles, 
which is close to real time when the cycle is very short, 
KD  is the range of stress intensity factor, and other 

parameters are shown in Table 1 for 7075-T651 aluminum 
alloy. Although the number of cycles, N , is an integer, it is 
treated as a real number in this model. The above model has 
two damage growth parameters, C  and m , which are 
estimated to predict damage propagation and RUL. In Table 
1, these two parameters are assumed to be uniformly 
distributed. The lower- and upper-bounds of these 
parameters were obtained from the scatter of experimental 
data (Newman et al., 1999). They can be considered as the 
damage growth parameters of generic 7075-T651 material. 
In general, it is well-known that the two Paris parameters 
are strongly correlated (Sinclair and Pierie, 1990, but it is 
assumed initially that they are uncorrelated because there is 
no prior knowledge on the level of correlation. Using 
measured data of crack sizes, the Bayesian inference will 
show the correlation structure between these two parameters. 
Since the scatter is so wide, the prediction of RUL using 
these distributions of parameters is meaningless. The 
specific panel being monitored using SHM systems may 
have much narrower distributions of the parameters, or even 
deterministic values. 

The half crack size 
i
a  after 

i
N  cycles (flights) of fatigue 

loading can be obtained by integrating Eq. (1) and solving 

for 
i
a  as  

 ( )
2
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2
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1
2

m mm
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m
a N C as p
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            (2) 

where 
0
a  is the initial half crack size. In SHM, the initial 

crack size does not have to be the micro-crack in the panel 
before applying any fatigue loading. This can be the crack 
size that is detected by SHM systems the first time. In such 

a case, 
i
N  should be interpreted as the number of cycles 
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since detected. It is assumed that the panel fails when 
i
a  

reaches a critical half crack size, 
C
a . Here we assume that 

this critical crack size is when the stress intensity factor 

exceeds the fracture toughness 
IC
K . This leads to the 

following expression for the critical crack size: 

2

IC
C

K
a

s p

æ ö÷ç ÷ç= ÷ç ÷ç ÷è øD
                               (3) 

Even if the above crack growth model is the simplest form, 
it requires identifying various parameters. First, the damage 
growth parameters, C  and m , need to be identified, which 
can be estimated from specimen-level fatigue tests0. 
However, due to material variability, these parameters show 
different values for different batches of panels. In addition, 

the initial crack size, 
0
a , needs to be found. Liu and 

Mahadevan (2009) used an equivalent initial flaw size, but it 
is still challenging to find the initial crack size. In addition, 

the fracture toughness, 
IC
K , also shows randomness due to 

variability in manufacturing. 

2.2 Measurement uncertainty model 

In SHM-based inspection, the sensors installed on the panel 
are used to detect the location and size of damage. Even if 
the on-line inspection can be performed continuously, it 
would not be much different from on-ground inspection 
because the structural damage will not grow quickly. In 
addition, the on-ground inspection will have much smaller 
levels of noise than on-line. The on-ground inspection may 
provide a significant weight advantage because only sensors, 
not measurement equipment, are on-board. Our preliminary 
study showed that there is no need to inspect at every flight 
because the damage growth at each flight is extremely small. 

A crack in the fuselage panel grows according to the applied 
loading, pressurizations in this case. Then the structural 
health monitoring (SHM) systems detect the crack. In 
general, the SHM system cannot detect a crack when it is 
small. Many SHM systems can detect a crack between the 
sizes of 5~10mm (Jerome and Kenneth, 2006). Therefore, 
the necessity of identifying the initial crack size becomes 

unimportant by setting 
0
a  to be the initially detected crack 

size. However, 
0
a  may still include noise and bias from the 

measurement. In addition, the fracture toughness, 
IC
K , is 

also unimportant because airliners may want to send the 
airplane for maintenance before the crack becomes critical. 

The main objective of this paper is to show that the 
measured data can be used to identify crack growth 
parameters, and then, to predict the future behavior of the 
cracks. Since no airplanes are equipped with SHM systems 

yet, we simulate the measured crack sizes from SHM. In 
general, the measured damage includes the effect of bias 
and noise of the sensor measurement. The former is 
deterministic and represents a calibration error, while the 
latter is random and represents a noise in the measurement 
environment. The synthetic measurement data are useful for 
parameter study, that is, the different noise and bias levels 
show how the identification process is affected. In this 
context, bias is considered as two different levels, ±2mm, 
and noise is uniformly distributed between u- mm and 
u+ mm. Four different levels of u  are considered: 0mm, 

0.1mm, 1mm, 5mm. The different levels of noise represent 
the quality of SHM systems. 

The synthetic measurement data are generated by (a) 

assuming that the true parameters, 
true
m  and 

true
C , and the 

initial half crack size, 
0
a , are known; (b) calculating the 

true crack sizes according to Eq. (2) for a given 
i
N  and 

sD ; and (c) adding a deterministic bias and random noise 
to the true crack size data including the initial crack size. 
Once the synthetic data are obtained, the true values of 
crack sizes as well as the true values of parameters are not 
used in the prognostics process. In this paper, the following 
true values of parameters are used for all numerical 

examples: 
true

3.8m = , 10

true
1.5 10C -= ´ , and 

0
10mma = . 

Table 1 shows three different levels of loading; the first two 
( sD = 86.5 and 78.6MPa) are used for estimating model 

σ

σ

sensor

Bayesian
inference

damage 
size

Paris 
model

damage 
growth 

parameter

RUL

Figure 1. Through-the-thickness crack in a fuselage panel 

Propert
y 

Nominal 
stress 
∆σ (MPa)

Fracture 
toughness 

KIC 

(MPa m ) 

Damage 
parameter

m 

Damage 
parameter

log(C) 

Distribu
tion 
type

case 1: 86.5
case 2: 78.6
case 3: 70.8

Deterministic 
30 

Uniform
(3.3, 4.3)

Uniform 
(log(5E-11), 
log(5E-10))

Table 1 Loading and fracture parameters of 7075-T651 
Aluminum alloy 
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parameters, while the last ( sD = 70.8) is used for validation 
purposes. The reason for using two sets of data for 
estimating damage growth parameters is to utilize more data 
having damage propagation information at an early stage. 
Theoretically, the true values of parameters can be identified 
using a single set of data because the Paris model is a 
nonlinear function of parameters. However, random noise 
can make the identification process slow, especially when 
parameters are correlated; i.e., many different combinations 
of correlated parameters can achieve the same crack size. 
This property delays the convergence of Bayesian process 
such that meaningful parameters can only be obtained 
toward the end of RUL. Based on preliminary study, two 
sets of data at different loadings can help the Bayesian 
process converge quickly. 

Figure 2 shows the true crack growth curves for three 
different levels of loading (solid curves) and synthetic 

measurement data meas

i
a (triangles) that generated in two 

levels of loading including noise and bias. It is noted that 
the positive bias shifts the data above the true crack growth. 
On the other hand, the noises are randomly distributed 
between measurement cycles. It is assumed that the 
measurements are performed at every 100 cycles. Let there 

be n  measurement data. Then the measured crack sizes and 
corresponding cycles are represented by  

 

meas meas meas meas meas

0 1 2

0 1 2

{ , , , , }

{ 0, 100, 200, , }

n

n

a a a a

N N N N

=

= = = =

a

N




     (4) 

It is assumed that after 
n
N , the crack size becomes larger 

than the threshold and the crack is repaired. 

3. BAYESIAN INFERENCE FOR CHARACTERIZATION OF 

DAMAGE PROPERTIES 

3.1 Damage growth parameters estimation 

Once the synthetic data (damage sizes vs. cycles) are 
generated, they can be used to identify unknown damage 

growth parameters. As mentioned before, m , C , and 
0
a  

can be considered as unknown damage growth parameters. 
In addition, the bias and noise are used in generating the 
synthetic data are also unknown because they are only 
assumed to be known in generating crack size data. In the 
case of noise, the standard deviation, s , of the noise is 
considered as an unknown parameter. The identification of 
s  will be important as the likelihood function depends on it. 
Therefore, the objective is to identify (or, improve) these 
five parameters using the measured crack size data. The 
vector of unknown parameters is defined by 

0
{ , , , , }m C a b s=y . 

Parameter identification can be done in various ways. The 
least-squares method is a traditional way of identifying 
deterministic parameters. For crack propagation, Coppe et al. 
(2010) used the least-square method to identify unknown 
damage growth parameter along with bias. However, in the 
least-squares method, it is non-trivial to estimate the 
uncertainty in the identified parameters. In this paper, 
Bayesian inference is used to identify the unknown 
parameters as well as the level of noise and bias. Coppe at al. 
(2010) used Bayesian inference in identifying damage 
growth parameter, C  or m . They used the grid method to 
calculate the posterior distribution of one variable and 
discussed that updating multi-dimensional variables can be 
computationally expensive. The grid method computes the 
values of PDF at a grid of points after identifying the 
effective range, and calculates the value of the posterior 
distribution at each grid point. This method, however, has 
several drawbacks such as the difficulty in finding correct 
location and scale of the grid points, spacing of the grid, and 
so on. In addition, it becomes computationally expensive 
when the number of updating parameters increases. Markov 
Chain Monte Carlo (MCMC) simulation is a 
computationally efficient alternative to obtain the PDF by 
generating a chain of samples (Andrieu et al., 2003). 

0 500 1000 1500 2000 2500

10

20

30

40

50

60

Cycles

C
ra

ck
 s

iz
e 

(m
m

)

 

 

True model
Synthetic data

data set 1:
 =86.5

data set 2:
 =78.6

 =70.8

 
(a) bias = +2mm and noise = 0mm 

0 500 1000 1500 2000 2500

10

20

30

40

50

60

Cycles

C
ra

ck
 s

iz
e 

(m
m

)

 

 

True model
Synthetic data

data set 1:
 =86.5

data set 2:
 =78.6

 =70.8

 
(b) bias = +2mm and noise = 5mm 

Figure 2. Crack growth of three different loading conditions 
and two sets of synthetic data 
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In Baye’s theorem (Bayes, 1763), the knowledge of a 
system can be improved with additional observation of the 
system. More specifically, the joint probability density 
function (PDF) of y  will be improved using the measured 

crack sizes measa . The joint posterior PDF is obtained by 
multiplying the prior PDF with the likelihood as 

 meas meas1
( | ) ( | ) ( )

A
p p p

K
= =

Y Y
y a a Y y y         (5) 

where ( )p
Y
y  is the prior PDF of parameters, 

meas( | )
A
p =a Y y  is the likelihood or the PDF values of 

crack size at measa  given parameter value of y , and K  is a 
normalizing constant. It is noted that the likelihood is 
constructed using n  measured crack size data. For prior 
distribution, the uniform distributions are used for the 
damage growth parameters, m  and C , as described in 
Table 1. For other parameters, no prior distribution is used; 
i.e., non-informative. The likelihood is the probability of 

obtaining the observed crack sizes measa  given values of 
parameters. For the likelihood, it is assumed to be a normal 
distribution for given parameters: 

 

( )
( )

meas

2
meas

2
1

|

( )1 1
exp

22

A

n
n

i i

i

p

a a

sps =

=
é ù

-æ ö ê ú÷ç ê ú÷çµ -÷ç ê ú÷÷çè ø ê ú
ë û

å

a Y y

y  (6) 

where 

 ( )
2

21
2

0
( ) 1

2

m mm

i i

m
a N C a bs p

--é ùæ ö÷çê ú÷= - D + +ç ÷ê úç ÷çè øê úë û
y     (7) 

is the crack size from the Paris model and meas

i
a  is the 

measurement crack size at cycle 
i
N . In general, it is 

possible that the normal distribution in Eq. (6) may have a 
negative crack size, which is physically impossible; 
therefore, the normal distribution is truncated at zero. 

A primitive way of computing the posterior PDF is to 
evaluate Eq. (5) at a grid of points after identifying the 
effective range. This method, however, has several 
drawbacks such as the difficulty in finding correct location 
and scale of the grid points, the spacing of the grid, and so 
on. Especially when a multi-variable joint PDF is required, 
which is the case in this paper, the computational cost is 

proportional to 5M , where M  is the number of grids in 
one-dimension. On the other hand, the MCMC simulation 
can be an effective solution as it is less sensitive to the 
number of variables (Andrieu et al., 2003). Using the 
expression of posterior PDF in Eq. (5), the samples of 
parameters are drawn by using MCMC simulation method. 

The Metropolis-Hastings (M-H) algorithm is a typical 
method of MCMC and used in this paper. 

3.2 The effect of correlation between parameters 

Since the original data of crack sizes are generated from the 
assumed true values of parameters, the objective of 
Bayesian inference is to make the posterior joint PDF to 
converge to the true values. Therefore, it is expected that the 
PDF becomes narrower as n  increases; i.e., more data are 
used. This process seems straightforward, but preliminary 
study shows that the posterior joint PDF may converge to 
values different from the true ones. It is found that this 
phenomenon is related to the correlation between 
parameters. For example, let the initially detected crack size 

be meas

0
a  and let the measurement environment have no 

noise. This measured size is the outcome of the initial crack 
size and bias: 

meas

0 0
a a b= +                                (8) 

Therefore, there exist infinite possible combinations of 
0
a  

and b  to obtain the measured crack size. It is generally 
infeasible to identify the initial crack size and bias with a 
single measurement when the measured data is linearly 
dependent on multiple parameters. It was also well known 
that the two Paris model parameters, m  and C , are 
strongly correlated (Carpinteri and Paggi, 2007). This can 
be viewed from the crack growth rate curve, as illustrated in 
Figure 3. In this graph, the parameter m  is the slope of the 
curve, while C  corresponds to the y-intercept at 1KD = . 
If a specific value of crack growth rate d / da N  is 

observed, this can be achieved by different combinations of 
these two parameters. However, in the case of Paris model 
parameters, it is feasible to identify them because the stress 
intensity factor gradually increases as the crack grows. 
However, the embedded noise can make it difficult to 
identify the two model parameters because the crack growth 

 

Figure 3. Illustration of showing the same crack growth rate 
with different combinations of parameters 
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rate may not be consistent with the noisy data. In addition, 
this can slow down the convergence in the posterior 
distribution because when the crack is small, there is no 
significant crack growth rate. The effect of noise becomes 
relatively diminished as the crack growth rate increases, 
which occurs toward the end of life.  

In order to handle the abovementioned difficulty in 
identifying correlated parameters, the bias is removed from 
the Bayesian identification process using Eq. (8), assuming 
that they are perfectly correlated. Once the posterior PDF of 

0
a  are obtained, Eq. (8) is used to calculate the posterior 

PDF of bias. The two Paris model parameters are kept 
because they can be identified as the crack grows. 

Figure 4 shows the posterior PDFs for the case of true bias 
of 2mm (a) when n = 13 (N13 = 1,200 cycles) and (b) when n 
= 17 (N17 = 1,600 cycles). The posterior joint PDFs are 
plotted separately by three groups for the plotting purpose. 
In this case, it is assumed that there is no noise in the crack 
size data. The true values of parameters are marked using a 
star symbol. Similar results were also obtained in the case 
with bias = -2mm. Firstly, it is clear that the two Paris 
model parameters are strongly correlated. The same is true 

for the initial crack size and bias—in fact the PDF of bias is 
calculated from that of initial crack size and Eq. (8). 
Secondly, it can be observed that the PDFs at n = 17 is 
narrower than that of n = 13, although the PDFs at n = 13 is 
quite narrow compared to the prior distribution. Lastly, the 
identified results look different from the true values due to 
the scale, but the errors between the true values and the 
median of identified results are at a maximum of around 5% 
except for bias. The error in bias looks large, but that is 
because the true value of bias is small. The error in bias is 
about 0.5mm. The same magnitude of error exists for the 
initial crack size due to the perfect correlation between them. 
Table 2 lists all six cases considered in this paper, and all of 
them show a similar level of errors. It is noted that the 
identified standard deviation of noise, s , does not converge 
to its true value of zero. This occurred because the original 
data did not include any noise. Zero noise can cause a 
problem in the likelihood calculation as the denominator 
becomes zero in Eq. (6). However, this would not happen in 
practical cases in which noise always exists. 

The next example is to investigate the effect of noise on the 
posterior PDFs of parameters. The results of identified 
posterior distributions with different levels of noise were 
shown in Figure 5 when the true bias is 2mm. Similar 
results were obtained when bias is -2mm. The black, blue 
and red colors, respectively, represent noise levels of 0.1mm, 
1mm, and 5mm. The median location is denoted by a 
symbol (a circle for 0.1mm noise, a square for 1mm noise, 
and a star for 5mm noise). Each vertical line represents a 
90% confidence interval (CI) of posterior PDF. The solid 
horizontal line is the true value of the parameter. In the case 
of noise level = 0.1mm, all parameters were identified 
accurately with very narrow CIs. In the case of noise level = 
1mm, the initial crack size and bias were identified 
accurately as the number of data increased, whereas the CIs 
of two Paris parameters were not reduced. In addition, the 
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(b) 17n =  
Figure 4. Posterior distributions of parameters with zero 

noise and true bias of 2mm 

num.
of 

data

para
meter

s 

true 
value

b=+2mm b=-2mm 

median 
error 
(%) 

median
error 
(%) 

n =
13

m 3.8 3.82 0.49 3.78 0.40 
log(C) -22.6 -22.8 0.57 -22.5 0.50 

a0 10 10.6 5.67 9.50 4.96 

b ±2 1.37 31.7 -1.44 28.0 

n =
15

m 3.8 3.81 0.32 3.78 0.40 
log(C) -22.6 -22.7 0.37 -22.5 0.48 

a0 10 10.4 4.00 9.51 4.94 

b ±2 1.53 23.6 -1.41 29.5 

n =
17

m 3.8 3.82 0.47 3.78 0.55 
log(C) -22.6 -22.7 0.44 -22.5 0.55 

a0 10 10.4 3.84 9.49 5.11 
b ±2 1.52 24.2 -1.35 32.7 

Table 2 The median of identified parameters and the errors 
with the true values 
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median values were somewhat different from the true 
parameter values. Worse results were observed in the case 
of noise level = 5mm. Therefore, it is concluded that the 
level of noise plays an important role in identifying 
correlated parameters using Bayesian inference. However, 
this does not mean that it is not able to predict RUL. Even if 
these parameters were not accurately identified because of 
correlation, the predicted RUL was relatively accurate, 
which will be discussed in detail next subsection. 

3.3 Damage propagation and RUL prediction 

Once the parameters are identified, they can be used to 
predict the crack growth and estimate RUL. Since the 
parameters are available in terms of joint PDF, the crack 
growth and RUL will also be estimated probabilistically. 
Then the quality of prediction can be evaluated in terms of 
how close the median is to the true crack growth and how 
large the prediction interval (PI) is. First, the results of crack 
growth calculated by Eq. (2) are shown in Figure 6 when the 
true bias is 2mm. Different colors represent the three 
different loading conditions. The solid curves are true crack 
growth, while the dashed curves are medians of predicted 
crack growth distribution. The results are obtained as a 
distribution due to the uncertainty of parameters, but the 
medians of predicted crack growth are only shown in the 
figures for visibility. In addition, the critical crack sizes with 
different loadings are using horizontal lines. 
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Figure 5. Posterior distributions with three different levels 
of noise (bias = 2mm) 
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(c) noise = 5mm, n = 13 
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Figure 6. Prediction of crack growth with bias=+2mm 
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The figures show that the results closely predicted the true 
crack growth when noise is less than 1mm. Even if the level 
of noise is 5mm, the results of predicted crack growth 
become close to the true one as the number of data increases. 
This means that if there are many data (much information 
about crack growth), the future crack growth can be 
predicted accurately even if there is much noise. However, 
when the level of noise is large, the convergence is slow 
such that the accurate prediction happened almost at the end 
of life. 

As can be seen from Figure 6, crack growth and RUL can be 
predicted with reasonable accuracy even though the true 
values of the parameters are not accurately identified. The 
reason is that the correlated parameters m  and C  work 

together to predict crack growth in Eq.(2). For example, if 
m  is underestimated, then the Bayesian process 
overestimates C  to compensate for it. In addition, if there is 
large noise in the data, the distribution of estimated 
parameters becomes wider, which can cover the risk that 
comes from the inaccuracy of the identified parameters. 
Therefore it is possible to safely predict crack growth and 
RUL. 

In order to see the effect of the noise level on the 
uncertainty of predicted RUL, Figure 7 plots the median and 
90% prediction interval (PI) of the RUL and compared them 
with the true RUL. The RUL can be calculated by solving 
Eq. (2) for N  when the crack size becomes the critical one:  

1 /2 1 /2

2
(1 )( )

m m

C i
f mm

a a
N

C s p

- --
=

- D
                    (9) 

The RUL is also expressed as a distribution due to the 
uncertainty of the parameters. In Figure 7, the solid diagonal 
lines are the true RULs at different loading conditions 
( 86.5, 78.6, 70.8)sD = . The precision and accuracy are 

fairly good when the noise is less than 1mm, which is 
consistent with the crack growth results. In the case of a 
large noise, 5mm, the medians are close to the true RUL, 
and the wide intervals are gradually reduced as more data 
are used. That is, the accuracy and precision can be better as 
more data are used in spite of large nose and bias in data. In 
the case that there are not as much data as covering large 
noise, the results also can be used to define the acceptable 
limits on system noise for useful RUL prediction. Therefore, 
it is concluded that the RULs are predicted reasonably in 
spite of nose and bias in data. 

4. CONCLUSIONS 

In this paper, Bayesian inference and the Markov Chain 
Monte Carlo (MCMC) method are used for identifying the 
Paris model parameters that govern the crack growth in an 
aircraft panel using structural health monitoring (SHM) 
systems that measure crack sizes with noise and bias. 
Focuses have been given to the effect of correlated 
parameters and the effect of noise and bias levels. The 
correlation between the initial crack size and bias was 
explicitly imposed using analytical expression, while the 
correlation between two Paris parameters was identified 
through the Bayesian inference. It is observed that the 
correlated parameter identification is sensitive to the level of 
noise, while predicting the remaining useful life is relatively 
insensitive to the level of noise. It is found that greater 
numbers of data are required to narrow the distribution of 
parameters when the level of noise is large. When 
parameters are correlated, it is difficult to identify the true 
values of the parameters, but the correlated parameters work 
together to predict accurate crack growth and RUL. 
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Figure 7. Median and 90% of prediction interval of the 
predicted RUL (bias = 2mm) 
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