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ABSTRACT 

Maintenance is crucial to all repairable engineering systems 

as they will degrade and fail.  The cost of maintenance for a 

manufacturing plant can occupy up to 30% of the total 

operating cost. If maintenance is not scheduled properly, 

unexpected equipment failure can induce significant cost 

due to reduced productivity and sub-standard products 

produced, both of which may result in customer penalty.   

Various maintenance policies have been proposed in the 

past.  Among the various policies, age-dependent and 

periodic maintenances are the common policies employed in 

industries.  Recently, predictive maintenance or condition 

based maintenance policies are also proposed owing to the 

advancement in the sensor technology.  In this work, we 

compare the age-dependent and periodic maintenance 

policies as well as the predictive maintenance policies from 

the perspective of cost using Markov multi-state 

maintenance modeling and Monte Carlo simulation.  To be 

realistic, imperfect maintenance is included, and both the 

sequential and continuous inspections are considered and 

compared. 

1. INTRODUCTION 

All industrial systems suffer from deterioration due to usage 

and age, which may leads to system failures. To some 

industry, system failures cause serious consequences, 

especially in industries such as transportation, construction, 

or energy sectors. These deterioration and failure can be 

controlled through a proper maintenance plan.  

The cost of maintenance as a fraction of the total operating 

budget varies across industry sectors.  In the mining 

industry, it can be as high as 50% and in transportation 

industry it varies in the range of 20-30 % (Murthy, Atrens, 

& Eccleston, 2002), which accounts only for the actions to 

keep the system in operating state. The consequential cost of 

failure could be much higher. Hence, it is vital to have a 

good maintenance policy so as to reduce the possibility of 

failure to the least while preserves a low maintenance cost.  

Maintenance problems have been extensively investigated 

in the literature, and a number of maintenance policies have 

been proposed. These policies span from the most basic one 

as corrective maintenance (CM) to more advanced policy as 

preventive maintenance (PM). CM is carried out only when 

a system fails. PM is performed when the system is still 

operating, in attempt to preserve the system in its good 

condition, and the most popular PM policy is age-dependent 

PM policy (Barlow, Proschan, & Hunter, 1996). Under this 

maintenance policy, the system is preventively replaced at 

its age of 𝑇 or at failure, whichever occurs first, where 𝑇 is a 

constant. The extension of this maintenance policy includes 

considering the effect of imperfect maintenance or minimal 

repair at failure (Kijima, 1989; Nakagawa, 1984; SHEU, 

KUO, & NAGAGAWA, 1993). Another common 

maintenance policy is periodic PM (Barlow, et al., 1996). 

Under this maintenance policy, a system is preventively 

maintained at fixed time interval 𝑇 regardless of the failure 

history of the system and at intervening failures. This policy 

is often applied to a group of units where the failure’s 

history of one unit is often neglected. There are several 

modifications of this periodic PM policy. In (Nakagawa, 

1986), minimal repair is performed at failure and the system 

is replaced at planned time 𝑘𝑇  if the number of failure 

exceeds  𝑛 . Age-dependent PM and periodic PM can be 

combined as in (Berg & Epstein, 1976), in which the system 

is periodically replaced only if its age exceeds 𝑇0. Although 

being common and popular, age-dependent PM and periodic 

PM do not account for the actual condition of the system, 

thus these policies may result in unnecessary replacement of 

good units and cost expenditure.  

Recently, condition-based maintenance (CBM), which is a 

subset of Predictive Maintenance (PdM), is proposed in 

order to improve the cost effectiveness of existing PM 
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policies. CBM is to make maintenance decisions based on 

the actual system’s health condition (Lu, Tu, & Lu, 2007; 

Ming Tan & Raghavan, 2008). CBM is often applied to 

system with degradable performance, which can be 

represented by different states. A CBM policy assigns a 

maintenance action to each system state. By its definition, 

CBM must be carried out based on the observation of the 

system’s health, which is obtained using either sequential or 

continuous inspection. With the advancement of sensor 

technology, the system’s health condition can be observed 

continuously. In (Moustafa, Maksoud, & Sadek, 2004), a 

CBM policy is developed for continuous inspection, and 

two maintenance options are considered, namely 

replacement and minimal repair. Although continuous 

inspection is commonly used in detecting system’s 

degradation, it usually swarms with unnecessary and 

excessive data.  Also, the inspection process can be costly, 

especially with complex systems which requires huge 

number of monitoring devices. Hence, there are several 

works on maintenance policies in which the system is 

inspected only at specific time (sequential inspection) and 

replaced with a new identical one only when the degradation 

reaches a predefined threshold (Grall, Dieulle, Bérenguer, & 

Roussignol, 2002; Lam & Yeh, 1994; Ohnishi, Kawai, & 

Mine, 1986). In the formulation of such polices, they 

considered the cost of operation in different states of 

degradation, cost of inspection, and maintenance. 

Tomasevicz (Tomasevicz & Asgarpoor, 2009) extended 

their works by considering the effect of imperfect 

maintenance and by introducing maintenance states, from 

which the system can be recovered to a better operating 

state. Their comprehensive cost analysis showed that an 

optimal choice of inspection date and replacement threshold 

can improve the cost effectiveness of the maintenance 

policy.  

It is widely assumed that the imperfect maintenance restores 

a system to a state between as good as new (replacement) 

and as bad as old (minimal repair). The two extreme cases 

are investigated thoroughly in early works. In general, these 

assumptions are not true in many applications. In practice, 

imperfection can arise due to the maintenance engineering 

skills, quality of the replaced parts and complexity of the 

degraded systems.  Several theoretical models are developed 

that taking into account the imperfect maintenance 

(Nakagawa & Yasui, 1987; Pham & Wang, 1996). They can 

be broadly classified into four classes, namely the 

probabilistic approach (Nakagawa & Yasui, 1987), 

improvement factor (Chan & Shaw, 1993; Malik, 1979), 

virtual age (Kijima, 1989; Kijima, Morimura, & Suzuki, 

1988), and the final class which is based on the cumulative 

system degradation model (Martorell, Sanchez, & Serradell, 

1999). For detailed discussion on the various maintenance 

models, one can refer to (Brown & Proschan, 1983; Levitin 

& Lisnianski, 2000; Wang & Pham, 1996).  

In this work, we will compare the age-dependent and 

periodic maintenance policies as well as the predictive 

maintenance policies from the perspective of cost using 

Markov multi-state system modeling and Monte Carlo 

simulation.  To be realistic, imperfect maintenance is 

included, and both the sequential and continuous inspections 

are considered and compared. The novelty of this work lies 

in the introduction of imperfect maintenance in the 

optimization of CBM policy for Markov multi-state system. 

A clear comparison between age-dependent PM, periodic 

PM and condition-based maintenance under different cost-

related conditions will be shown, and the advantages and 

disadvantages of each maintenance policy will be discussed. 

2. MAINTENANCE POLICIES 

2.1. System Description 

The system under study is a multi-state system, and each 

state represents a system’s health condition. These states can 

be defined by either a degradation index such as vibration’s 

intensity, temperature, etc, or simply the system’s 

performance. The system is assumed to be in a finite 

number of states 1,2,3 …𝑁 where state 1 is the as-good-as-

new state and state 𝑁  is the completely failed state. The 

states are in ascending deteriorating order.  

The degradation process is represented by the transition 

from one state to another state. In normal operation, the 

failures of a complex system have been shown (Drenick, 

1960) to follow the exponential distribution despite the fact 

that the individual components in the system may follow 

different distributions. Hence, the system’s deterioration 

process can be modeled as a continuous-time Markov 

process. From state 𝑖, (1 ≤ 𝑖 ≤ 𝑁 − 1) the system can only 

transit to the more degraded state 𝑗, ( 𝑖 ≤ 𝑗 ≤ 𝑁)  with a 

transition rate of 𝜆𝑖𝑗 . In this work, for the sake of simplicity, 

we assume that the transition rates are constant for a given 𝑖 
and 𝑗. From the values of 𝜆𝑖𝑗 , the probability 𝑃𝑖𝑗  𝑡  that the 

system is at state 𝑗 after a time 𝑡 given that the system is 

originally at state 𝑖 can be calculated. In actual cases, the 

transition rate can be changed after the system is 

maintained. 

The state of the system is not known unless it is inspected. 

In the case of sequential inspection, the cost for each 

successive inspection is fixed at  𝐶𝑆𝐼 . During the time of 

inspection, the system state is unchanged. In the case of 

continuous inspection, since the system is continuously 

monitored, the state can be instantly detected and the cost is 

represented as a cost per unit time 𝑐𝐶𝐼 . The system’s failure 

(system at state 𝑁) is detected without inspection and not 

recoverable by maintenance. The system upon replacement 

is recovered to the initial state 1 with a cost of 𝐶𝑅 . However, 

the failure also results in a secondary consequential damage 

such as unplanned delay in production, lost of physical 
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assets etc, which is represented by a cost of  𝐶𝑓 . The value 

of 𝐶𝑓  depends on the nature of the failures. 

Upon maintenance, the system’s state is improved to a 

better state  𝑗, 𝑖 ≥ 𝑗 ≥ 1 , with probability  𝑃𝑖𝑗
𝑀 . The 

probability that the system is recovered to as-good-as-new 

state is getting smaller as the system state is approaching N, 

and the maintenance cost and time varies with different 

states. 𝐶𝑖𝑗
𝑀  is denoted as the cost of maintenance to repair the 

system from state  𝑖  to a less degraded state  𝑗 . The 

maintenance cost includes the cost due to system 

unavailability.   

The illustration of all the different quantities is as shown in 

Figure 1. 

 

Figure 1.Schematic view of the system state degradation and 

its maintenance-operation cost 

To proceed to the determination of the optimal maintenance 

policies, let us define the following terms: 

𝛿: A policy which determines the action at each state, either 

replacement, maintenance or continue the inspection.  

𝐷(𝑖) : Decision at state 𝑖.  They can be either to inspect the 

system after time interval 𝑡𝑖  (𝐼(𝑡𝑖)), maintain (𝑀), replace 

(𝑅) or keep monitoring in the case of employing continuous 

inspection (𝐶). 

𝑋𝛿 𝑖 : Mean operating time from the moment the system is 

detected to be at state  𝑖  to the time where the system is 

replaced (at state N) for a given policy 𝛿.  Hence, 𝑋𝛿 1  is 

the mean time from a new/newly replaced system till it is 

replaced. 

𝑌𝛿 𝑖  : Mean cost from the moment the system is detected to 

be at state 𝑖 to the time where the system is replaced (at state 

N), for a given policy  𝛿 .  Hence,  𝑌𝛿 1  is the mean cost 

from a new/newly replaced system till it is replaced. 

𝐹𝑖 𝑡 : Probability that the system will fail in the interval 

 0, 𝑡  given that the system is at state 𝑖. 

𝑎𝑖  : operating cost at state  𝑖 . The cost of operation is 

increasing with the degradation in order to accounts for the 

loss in profit due to the degradation in the system’s 

performance.  

The mean operating cost, given that the system initially at 

state 𝑖, after a time 𝑡 is (Ohnishi, et al., 1986): 

𝐴𝑖 𝑡 ≜   𝑃𝑖𝑗  𝑢 𝑎𝑗𝑑𝑢
𝑡

0
𝑁
𝑗 =𝑖     (1) 

𝑃𝑖𝑗 (𝑡): Probability that the system will is at state 𝑗 after a 

time 𝑡 given that the system is at state 𝑖.  

2.2. Maintenance Policies 

In this work, we compare four different maintenance 

policies for a multi-state system, namely age-dependent PM, 

periodic PM, sequential and continuous inspection CBM. 

The optimal maintenance policy refers to minimum overall 

operation cost rate 𝑔∗ ≡ min
𝛿

 𝑌𝛿 1 /𝑋𝛿 1 . Let us now look 

at the formulation of the optimization for each maintenance 

policy.  

a. Age-dependent PM:  

In this study, we only consider the most basic Age-

dependent PM, which does not utilize maintenance. The 

system is preventively replaced at its age of  𝑇𝑎  or at failure, 

whichever occurs first. 𝑇𝑎  is chosen so that the cost rate is 

minimized. 

The mean cost and operating time until system replacement 

can be expressed as: 
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𝑌𝐴 = 𝐴1 𝑇𝑎 + 𝐶𝑅 + 𝐹1 𝑇𝑎 𝐶
𝑓    (2) 

𝑋𝐴 =  𝐹 1 𝑢 𝑑𝑢
𝑇𝐴

0
    (3) 

In (2), the terms   𝐴1 𝑇𝑎 , 𝐶𝑅  and  𝐹1 𝑇𝑎 𝐶
𝑓  represent the 

mean operation cost in the interval  0, 𝑇𝑎 , replacement cost 

and mean failure-induced cost respectively. In (3), 

 𝐹 1 𝑢 𝑑𝑢
𝑇𝑎

0
 is the expected operating time in the 

interval   0, 𝑇𝑎 . This can be derived by considering two 

possibility of the system’s operation, i.e. the system can 

either work up to 𝑡𝑎  with the expected operating time of 

𝑡1 = 𝑡𝑎𝐹 1 𝑡𝑎 , or the system fails at  𝑢 within the interval 
 0, 𝑡𝑎  with the expected operating time of 𝑡2 =

 𝑢𝑑𝐹 𝑢 
𝑡𝑎

0
. We thus have 𝑋𝐴 = 𝑡1 + 𝑡2. 

b. Periodic PM:  

The system is preventively replaced at fixed time interval 𝑇𝑏  

or at intervening failures regardless of the failure history of 

the system. Here 𝑇𝑏  is a constant, and it is chosen so that the 

cost rate is minimized.  

The mean cost until system replacement can be expressed as 

(4). 

𝑌 𝑇𝑏 = 𝐶𝑅 +  𝐶𝑅 + 𝐶𝑓 𝑀 𝑇𝑏 + 𝐶𝑜𝑝𝑒  𝑇𝑏   (4) 

In (4), 𝑀 𝑡  is the mean number of failure and is given in 

(5) (Barlow, et al., 1996).  

𝑀 𝑡 =   1 + 𝑀 𝑡 − 𝑥  𝑑𝐹1 𝑥 
𝑡

0
=  𝐹1

𝑛 𝑡 ∞
𝑛=1  (5) 

𝐹1
𝑛+1 𝑡 =  𝐹1

𝑛 𝑡 − 𝑥 𝑑𝐹1 𝑥 
𝑡

0
, 𝐹1

1 𝑡 = 𝐹1 𝑡   

𝐶𝑜𝑝𝑒  𝑡  is the mean operation cost in the duration  0, 𝑡 , and 

they are given in (6). The term 𝐶𝑘 𝑡  represents the mean 

operation cost given that exactly 𝑘 failures occur and can be 

calculated recursively as shown in (7). In (7), 𝑥 is the time 

of the first failure occurs in the interval  (0, 𝑡). Thus, the 

𝐶𝑘 𝑡  can be computed by integrating the summation of the 

operation cost before and after  𝑥 for all 𝑥 in  0, 𝑡 . 

𝐶𝑜𝑝𝑒  𝑡 =  𝐶𝑘 𝑡 
∞
𝑘=1      (6) 

𝐶𝑛 𝑡 =   𝐶0 𝑥 + 𝐶𝑛−1 𝑡 − 𝑥  𝑑𝐹1 𝑥 
𝑡

0
  (7) 

 𝐶0 𝑡 = 𝐴1 𝑡   

The mean operating time until system replacement can be 

expressed as (8). 

𝑋 𝑇𝑏 = 𝑇𝑏      (8) 

c. Sequential Inspection CBM (SI-CBM):  

The system is inspected at a planned time. The decision 

depends on the indicated system state  𝑖 , which is either 

preventively replaced  𝐷 𝑖 = 𝑅 , maintained  𝐷 𝑖 = 𝑀 , or 

to leave the system operating until the next planned 

inspection time 𝐷 𝑖 = 𝐼 𝑡𝑖 . Maintenance is considered to 

be imperfect. If  𝑖 = 𝑁 , the system fails and needs to be 

replaced. In that case, we have  𝑋𝛿 𝑁 = 𝑇𝑅 , 𝑌𝛿 𝑁 = 𝐶𝑅 +
𝐶𝑓 . The decision 𝐷 𝑖  at each state is chosen so that the cost 

rate is minimized.    

1. If  𝐷 𝑖 = 𝐼 𝑡𝑖  

Under this decision, the system is left to degrade until the 

next inspection after an interval  𝑡𝑖 . If the system fails at 

𝑢 < 𝑡𝑖 , it is replaced. If the system passes the time interval 

𝑡𝑖  without failure, the time to replacement will be 𝑡𝑖  plus the 

mean time to replacement of the arrived state 𝑗. Once the 

planned inspection time  𝑡𝑖  is reached, the system is 

inspected. The mean cost and operating time until renewal 

under the decision 𝐷 𝑖 = 𝐼(𝑡𝑖) can be expressed as: 

𝑌𝛿 𝑖 = 𝐴𝑖 𝑡𝑖 + 𝐶𝑆𝐼𝐹 𝑖 𝑡𝑖 +  𝑃𝑖𝑗  𝑡𝑖 𝑌𝛿 𝑗 
𝑁
𝑗=𝑖   (9) 

𝑋𝛿 𝑖 =  𝐹 𝑖 𝑢 𝑑𝑢
𝑡𝑖

0
+  𝑃𝑖𝑗  𝑡𝑖 𝑋𝛿 𝑗 

𝑁
𝑗 =𝑖   (10) 

In (9), 𝐴𝑖 𝑡𝑖  is the mean operating time in the 

interval   0, 𝑡𝑖 , 𝐶𝑆𝐼𝐹 𝑖 𝑡𝑖  is the mean inspection cost and 

 𝑃𝑖𝑗  𝑡𝑖 𝑌𝛿 𝑗 
𝑁
𝑗=𝑖  is the expected cost until replacement 

given that the system is in the degraded state 𝑗. 

In (10),  𝐹 𝑖 𝑢 𝑑𝑢
𝑡𝑖

0
 is the expected time to replacement in 

the interval   0, 𝑡𝑖  and  𝑃𝑖𝑗  𝑡𝑖 𝑋𝛿 𝑗 
𝑁
𝑗 =𝑖  is the expected 

operating time given that the system is in the degraded 

state 𝑗. 

2. If  𝐷 𝑖 = 𝑀 

The system is maintained with a maintenance cost 𝐶𝑖𝑗
𝑀 , and 

the system is thus improved from the current state 𝑖 to a less 

degraded state  𝑗  with an improvement probability of  𝑃𝑖𝑗
𝑀 . 

The mean cost and operating time until replacement can be 

expressed as 

𝑌𝛿 𝑖 =  𝑃𝑖𝑗
𝑀  𝐶𝑖𝑗

𝑀 + 𝑌𝛿 𝑗  
𝑁
𝑗=1     (11) 

𝑋𝛿 𝑖 =  𝑃𝑖𝑗
𝑀𝑋𝛿 𝑗 

𝑁
𝑗 =1      (12) 

3. If  𝐷 𝑖 = 𝑅, 𝑖 ≠ 𝑁 
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Except the failure case  𝑖 = 𝑁 , the system can be 

preventively replaced. Thus, the mean operating time and 

cost until replacement can be expressed as 

𝑌𝛿 𝑖 = 𝐶𝑅      (13) 

𝑋𝛿 𝑖 = 0     (14) 

Overall, we have 

𝑌𝛿 𝑖 =

 
 
 

 
 
𝐴𝑖 𝑡𝑖 + 𝐶𝑆𝐼𝐹 𝑖 𝑡𝑖 +  𝑃𝑖𝑗  𝑡𝑖 𝑌𝛿 𝑗 

𝑁
𝑗 =𝑖 , 𝑖𝑓 𝐷 𝑖 = 𝐼 𝑡 

 𝑃𝑖𝑗
𝑀  𝐶𝑖𝑗

𝑀 + 𝑌𝛿  𝑗  
𝑁
𝑗 =1 , 𝑖𝑓 𝐷 𝑖 = 𝑀

𝐶𝑅 , 𝑖𝑓 𝐷 𝑖 = 𝑅

 (15) 

𝑋𝛿 𝑖 =

 
 
 

 
  𝐹 𝑖 𝑢 𝑑𝑢

𝑡𝑖
0

+  𝑃𝑖𝑗  𝑡𝑖 𝑋𝛿 𝑗 
𝑁
𝑗=𝑖 , 𝑖𝑓 𝐷 𝑖 = 𝐼 𝑡𝑖 

 𝑃𝑖𝑗
𝑀𝑋𝛿 𝑗 

𝑁
𝑗=1 , 𝑖𝑓 𝐷 𝑖 = 𝑀

0, 𝑖𝑓 𝐷 𝑖 = 𝑅

 (16) 

d. Continuous Inspection CBM (CI-CBM):  

The system is inspected continuously. The decision depends 

on the indicated system state, which is either preventively 

replaced  𝐷 𝑖 = 𝑅 , maintained  𝐷 𝑖 = 𝑀 , or to leave the 

system operating while keep monitoring the system’s 

condition  𝐷 𝑖 = 𝐶 . Maintenance is considered to be 

imperfect. The decision 𝐷 𝑖  at each state is chosen so that 

the cost rate is minimized.  

For the first two decisions, the analysis is the same with SI-

CBM case. Under the decision of continuous inspection, the 

system is operating at state 𝑖 until it changes its state to a 

more degraded state 𝑗. The mean cost and operating time 

until renewal under the decision 𝐷 𝑖 = 𝐶 can be expressed 

as: 

𝑌𝛿 𝑖 =  𝑐𝐶𝐼 + 𝑎𝑖  𝑃𝑖𝑖 𝑢 𝑑
∞

0
𝑢 +  

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑌𝛿 𝑗 
𝑁
𝑖=1        

(17) 

𝑋𝛿 𝑖 =  𝑃𝑖𝑖 𝑢 𝑑
∞

0
𝑢 +  

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑋𝛿 𝑗 
𝑁
𝑖=1   (18) 

In (17) and (18),  𝑃𝑖𝑖 𝑢 𝑑
∞

0
𝑢  is the mean time the system 

operate at state 𝑖, 
𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

  is the probability that the system 

transit from state  𝑖  to state 𝑗  at any instant given that the 

system has to change its state. Thus, 

 𝑐𝐶𝐼 + 𝑎𝑖  𝑃𝑖𝑖 𝑢 𝑑
∞

0
𝑢  is the mean operation plus 

inspection cost when the system is at state  𝑖 , 

 
𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑌𝛿 𝑗 
𝑁
𝑖=1  and   

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑋𝛿 𝑗 
𝑁
𝑖=1  are the mean 

cost and operating time until replacement averaging on the 

degraded state 𝑗. 

Overall, we have 

𝑌𝛿 𝑖 =

 
 
 

 
  𝑐𝐶𝐼 + 𝑎𝑖  𝑃𝑖𝑖 𝑢 𝑑

∞

0
𝑢 +  

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑌𝛿 𝑗 
𝑁
𝑖=1 , 𝑖𝑓 𝐷 𝑖 = 𝐶

 𝑃𝑖𝑗
𝑀  𝐶𝑖𝑗

𝑀 + 𝑌𝛿 𝑗  
𝑁
𝑗=1 , 𝑖𝑓 𝐷 𝑖 = 𝑀

𝐶𝑅 , 𝑖𝑓 𝐷 𝑖 = 𝑅

 

 (19) 

𝑋𝛿 𝑖 =

 
 
 

 
  𝑃𝑖𝑖 𝑢 𝑑

∞

0
𝑢 +  

𝜆𝑖𝑗

 𝜆𝑖𝑘
𝑁
𝑘=1

 𝑋𝛿 𝑗 
𝑁
𝑖=1 , 𝑖𝑓 𝐷 𝑖 = 𝐶

 𝑃𝑖𝑗
𝑀𝑋𝛿 𝑗 

𝑖
𝑗 =1 , 𝑖𝑓 𝐷 𝑖 = 𝑀

0, 𝑖𝑓 𝐷 𝑖 = 𝑅

 (20) 

3. EXAMPLE THROUGH HYPOTHETIC SYSTEM 

In this section, a hypothetical system is studied to illustrate 

the impact of different policies on the system‘s total cost 

and number of maintenance. The system consists of twenty 

one states (1-21), which represents the system degradation 

levels in ascending order. State 1 is the state of no 

degradation (best performance) and state 21 is the state of 

total failure (worst performance). For simplicity, we only 

consider degradation in the sense that at any moment the 

system only degrades to the next degraded state (with a 

fixed degradation rate  𝜆𝑖 ,𝑖+1) or experienced a shock so that 

it fails immediately (with a failure rate   𝜆𝑖𝑁 ). From the 

assumption that the state transition is a continuous time 

Markov process, we have the set of Kolmogorov forward 

equations as shown in Eqn (21): 

𝑑𝑃𝑖𝑗  𝑡 

𝑑𝑡
=  𝜆𝑘𝑗 𝑃𝑖𝑘  𝑡 

𝑗−1
𝑘=𝑖 −  𝜆𝑗𝑘 𝑃𝑖𝑗  𝑡 

𝑁
𝑘=𝑗+1   (21) 

Here the first term on the right of the equation refers to the 

degradation process from state 𝑖, and the second term on the 

right refers to the further degradation process from state 𝑗. 
Eqn (21) can be re-written as follows: 

𝑑

𝑑𝑡
 

𝑃𝑖𝑖 𝑡 

𝑃𝑖 ,𝑖+1 𝑡 
…

𝑃𝑖𝑁 𝑡 

 = 𝑄𝑖  

𝑃𝑖𝑖 𝑡 

𝑃𝑖 ,𝑖+1 𝑡 
…

𝑃𝑖𝑁 𝑡 

    (22) 

where    𝑄𝑖 =  

− 𝜆𝑖𝑘
𝑁
𝑘=𝑖+1 0 ⋯ 0

𝜆𝑖 ,𝑖+1 − 𝜆𝑗𝑘
𝑁
𝑘=𝑗 +1 … 0

⋮ ⋮ ⋱ 0
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With Eqn (22), 𝑃𝑖𝑗  𝑡  can be calculated numerically given 

that the initial probability  𝑡 = 0  is   𝑃𝑖𝑖 , 𝑃𝑖 ,𝑖+1, …𝑃𝑖𝑁  
𝑇

=
 1,0, … 0 𝑇 . The system state is then randomly generated in 

Monte Carlo simulation based on the probability 𝑃𝑖𝑗  𝑡 . A 

numerical example of Markov process with detail derivation 

can be found in (Ming Tan & Raghavan, 2008).  

Due to the loss caused by degradation, namely lower 

productivity and higher recourses consumption, the cost of 

operation is increasing with the degradation levels. The 

degradation and failure rate, operation and maintenance cost 

for different states are hypothetically assumed and given in 

TABLE.I. In this study, we want to investigate the impact of 

failure-induced cost 𝐶𝑓  on the optimal maintenance policies. 

When failure occurs, it will induce a further cost such as 

production delay, human and asset lost, etc. The total cost of 

the system maintenance at failure is the summation of 

system’s replacement cost and the failure-induced cost. 

For illustration purpose on the computation of the 

conditional probability of the post-maintained 𝑗 state given 

pre-maintained state  𝑖 , we further considered a special 

system in this case study.  The system is assumed to consist 

of 𝑛  identical sub-systems in parallel, in which a system 

state  𝑖  represents the condition that  𝑖 − 1 subsystems are 

operating. With this special system, an analytical form of 

the maintenance probability 𝑃𝑖𝑗
𝑀  can be derived.  

The imperfect maintenance is characterized using the 

maintenance quality represented by a parameter 𝑝𝑚 , which 

is the probability that a subsystem can be recovered to as 

new by maintenance actions. The value of  𝑝𝑚  of a 

subsystem can be estimated using the method of 

determining the restoration factor  𝑅𝐹  described in (Ming 

Tan & Raghavan, 2008). Since our system consists of 𝑛 

identical sub-systems in parallel and all the failed sub-

systems has equal probability 𝑝𝑚  to be recovered at each 

maintenance, the probability of post-maintained state 𝑗 is the 

probability that 𝑖 − 𝑗  sub-systems are recovered and thus 

one can use the binomial distribution to compute the  𝑃𝑖𝑗
𝑀  as 

follows.  

 𝑃𝑖𝑗
𝑀 =  

𝑖 − 1
𝑗 − 1

  1 − 𝑝𝑚  𝑗−1𝑝𝑚
𝑖−𝑗

    (12) 

It follows that the expected post-maintained state and its 

variance are both linearly increasing with the pre-

maintained state  𝑖 , i.e.  𝐸 𝑗 = 𝑝𝑚 +  1 − 𝑝𝑚  𝑖 
and  𝑣𝑎𝑟 𝑗 =  𝑖 − 1 𝑝𝑚 (1 − 𝑝𝑚 ) . These indices indicate 

that as the system is more degraded, it is more difficult to 

maintain the system to the initial condition and the 

consistence of the maintenance quality decreases. For a 

general system, the optimization algorithm is still applicable 

as long as the maintenance probability  𝑃𝑖𝑗
𝑀  is given. The 

investigation for such a general system is beyond the scope 

of the present work. 

SS DR FR OC MC 

1 0.4966 0.0082 2.7183 31.4942 

2 0.5016 0.0091 2.8577 31.6111 

3 0.5066 0.0099 3.0042 31.7371 

4 0.5117 0.0108 3.1582 31.8736 

5 0.5169 0.0118 3.3201 32.0216 

6 0.5221 0.0129 3.4903 32.1826 

7 0.5273 0.0141 3.6693 32.3587 

8 0.5326 0.0155 3.8574 32.5531 

9 0.5379 0.0169 4.0552 32.7705 

10 0.5434 0.0185 4.2631 33.0183 

11 0.5488 0.0202 4.4817 33.3091 

12 0.5543 0.0221 4.4715 33.6631 

13 0.5599 0.0242 4.9531 34.1154 

14 0.5655 0.0265 5.207 34.7253 

15 0.5712 0.0291 5.4739 35.59511 

16 0.5769 0.0317 5.4746 36.9004 

17 0.5827 0.0347 6.0496 38.945 

18 0.5886 0.0381 6.3598 42.2541 

19 0.5945 0.0416 6.6859 47.7363 

20 0.6005 0.0455 7.0287 56.9556 

21 0.6065 0.0498 0 72.6683 

SS : System State 
DR : Degradation Rate (per month) 

FR : Failure Rate (per month) 

OC : Operation Cost Rate ($ .000/month) 
MC : Maintenance Cost ($ .000) 

Table 1.System State’s Maintenance Cost & Degradation 

Rate 

4. MONTE CARLO SIMULATION RESULT & DISCUSSION 

Using different values of the failure-induced cost  𝐶𝑓  and 

maintenance quality 𝑝𝑚 , the optimal maintenance plans are 

derived for each of the above-mentioned maintenance 

policy.   

Monte Carlo simulation is run for each derived maintenance 

policy so as to investigate the impact of failure-induced cost 

and maintenance quality on the system’s total operation-

maintenance cost, number of maintenance and number of 

failure. For each value of 𝐶𝑓  and  𝑝𝑚 , the simulation is 

repeated for 500 random samples. The total system runtime 

is assumed to be 120 months.  
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4.1. Impact of Failure-Induced Cost 

The failure-induced cost is assumed to range from 20 to 

1000 ($ .000). For SI-CBM and CI-CBM, the maintenance 

quality is kept at 𝑝𝑚 = 0.8. 

Figure 2 shows the changes of mean value of the total 

maintenance-operation cost of different maintenance 

policies vs. failure-induced cost. The total maintenance-

operation cost is the summation of all operation, 

maintenance and replacement cost: 

𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 = #𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 × 𝐶𝑅 

𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑐𝑜𝑠𝑡 =  # 𝑚𝑎𝑖𝑛𝑡𝑎𝑖𝑛 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 𝑖 × 𝐶𝑖
𝑀𝑁−1

𝑖=1   

𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 =   𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑡 𝑠𝑡𝑎𝑡𝑒 𝑖 𝑁−1
𝑖=1 × 𝑎𝑖   

It appears that the mean value of the total cost has a linear 

relation with respect to the failure-induced cost.  

 

Figure 2.Mean value of total Operation-Maintenance Cost 

of various maintenance policies vs. failure-induced cost 

One can also see that CBM policies have a clear advantage 

over traditional PM policies in term of cost reduction. At 

low failure-induced cost, utilizing CBM policies can save up 

to  1100 − 800 /1100 = 27% of the total cost under PM 

policies.  

Figure 3 shows the normalized standard deviation (NSTD) 

curve of the total cost under different maintenance policies. 

This NSTD is the standard deviation of the total cost from 

500 samples of Monte Carlo run divided by its mean 

value 𝜎 = 𝜎/𝜇.  The standard deviation appears to have a 

linear relation to the failure-induced cost. At low 𝐶𝑓 , the 

NSTD values under CBM policies are approximately equal 

to the NSTD under PM policies as 10%. However, as 𝐶𝑓  

increase, the NSTD under CBM policies increases 

dramatically up to 70% for SI-CBM and 62% for CI-CBM 

while it is less than 50% for PM policies cases. This is due 

to the increase number of imperfect maintenance under 

CBM as the failure-induced cost increases. As a result of 

rising failure-induced cost, the optimal CBM policies have 

to increase the number of maintenance in order to reduce the 

number of failure.  

 

Figure 3.Cost normalized standard deviation under different 

maintenance policies vs. Failure-induced cost 

Figure 4 shows that the mean number of failure decreases 

exponentially as the failure-induced cost rise. It is the effect 

of optimal maintenance policy, which tends to reduce the 

number of failure as the failure-induced cost increase. 

However, the mean number of failure only decreases to a 

certain value for each maintenance policy.  This lower 

bound value is lower for CBM policies than PM policies by 

25%, which proves that CBM is more advantageous than 

PM in preventing system failure. 
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Figure 4.Mean number of failure vs. Failure-induced cost 

In summary, one can see that SI-CBM and CI-CBM have a 

clear advantage in term of cost and failure reduction over 

Age-dependent and periodic PM. However, imperfect 

maintenance causes the total cost of CBM to vary 

significantly, especially at high failure-induced cost due to 

higher number of maintenance needed for the optimal 

policy. This large variation in cost may render the financial 

budgeting for using CBM difficult. 

4.2. Impact of maintenance quality 

In this case, the failure-induced cost is kept at 100 ($ .000) 

while the maintenance quality is ranging from  𝑝𝑚 = 1 

(perfect maintenance) to 𝑝𝑚 = 0.6.  

SI-CBM and CI-CBM policies are investigated to study the 

impact of maintenance quality. Figure 5 shows the total cost 

of SI-CBM and CI-CBM under two schemes: optimal 

policies and the policies assuming perfect 

maintenance   𝑝𝑚 = 1 . Under the CBM policies that 

assume perfect maintenance while the maintenance is 

actually imperfect, the total cost increase dramatically 

as  𝑝𝑚 decrease. As  𝑝𝑚  close to 1, the difference between 

optimal CBM and the one assuming perfect maintenance is 

negligible as expected. However, the difference increase 

significantly when 𝑝𝑚 = 0.6 and beyond.  At 𝑝𝑚 = 0.6, the 

optimal CI-CBM can save up to ((1500 − 1000))/1500 =
33%  of the total cost comparing to the policy assuming 

perfect maintenance. The cost under CBM policies 

assuming perfect maintenance eventually rise up to infinity 

as 𝑝𝑚  approaches zero since at 𝑝𝑚 = 0, maintenance take no 

effect. The total cost under both optimal CI-CBM and SI-

CBM also tend to saturate as 𝑝𝑚  decreases. This is due to 

the fact that maintenance is gradually ruled out due to its 

poor quality (referring to figure 6). Thus the saturated value 

is corresponding to the CBM policy that does not utilize 

maintenance.  

 

Figure 5.Total operation-Maintenance Cost vs. Maintenance 

Quality with 𝐶𝑓 = 100 

Figure 6 shows the mean number of maintenance changes 

with respect to the maintenance quality. The plots under SI-

CBM and CI-CBM follow the same trend. When the 

maintenance quality gets worse, the mean number of 

maintenance increases to cover for the imperfection. 

However, at low values of 𝑝𝑚 , the number of maintenance 

drops dramatically to zero as maintenance is too ineffective, 

and hence our optimization process for maintenance will try 

to reduce the number of maintenances.  

 

Figure 6.Mean number of maintenance vs. Maintenance 

Quality,  𝐶𝑓 = 100 

From this study, we can see that there is a threshold for 

maintenance quality, under which, the maintenance is no 

longer effective and should be changed to preventive 

replacement. The quality of maintenance must be carefully 

taken into account when making a maintenance policy since 

a poor maintenance quality can lead to a large portion in 

overall cost. 

5. CONCLUSION 

In this work, we study different maintenance policies for a 

multistate system. Four maintenance policies are 

investigated, namely age-dependent and periodic preventive 

maintenance, sequential and continuous inspection 

condition-based maintenance (CBM). The system has a state 

dependent degradation rate during its operation, and it also 

suffers shock failure which makes it fails immediately with 

a state dependent failure rate. The failure is assumed to 

induce further cost and maintenance is assumed to be 

imperfect. The maintenance policies are optimized 

correspondingly. 
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Monte Carlo simulation shows that CBM is more 

advantageous in term of cost and failure reduction than Age-

dependent and periodic PM. On the other hand, the 

maintenance cost under CBM is less consistent than under 

PM, which renders the budgeting difficult. We also illustrate 

the important of maintenance quality since a poor 

maintenance quality can lead to a large waste in 

maintenance cost. It can be proven that the maintenance 

quality must be higher than a threshold to be worth carrying 

out. 

One issue for CBM to be effectively applied is to have 

accurate inspection. Besides, CBM also need a dynamics 

logistic supply of spare parts, which may further cause some 

time delay between inspection and maintenance. Hence, for 

the future work, we will consider the inspection quality and 

time delay due to supply limit in our model. 

In our paper, the Monte-Carlo simulation is run for two 

parameters, but varying only one parameter at a time. A 

matrix of multi-variables will be studied for a future work to 

better understand the trade-offs between different quantities. 

These will permit understanding strategies based on which 

one can practice non-CBM methods on some components 

versus CBM on others.  
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