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ABSTRACT 
 
The Southeast National Marine Renewable Energy Center 
at Florida Atlantic University, which supersedes the Center 
for Ocean Energy Technology (Driscoll et al., 2008), is 
conducting research and development to support the 
implementation of ocean current and ocean thermal energy 
technologies for a low environmental-impact extraction of 
energy.  

Fault detection capability is needed for these offshore ocean 
turbines (and other systems) because access to these 
machines for maintenance is difficult and costly. 
Techniques that offer reliable and early (incipient) detection 
allow for preventive maintenance to prevent the 
development of secondary faults that may be generated by 
the primary faults.  Several methods for processing and 
displaying vibration data are compared and evaluated 
relative to synergistic detection utilizing data from a 
prototype (dynamometer) of an ocean current turbine.  The 
results may generically apply to other machines, such as 
wind turbines.1 

1. INTRODUCTION 

An ocean turbine (OT) is subject to high and varying loads, 
locations that are difficult to access and extreme 
environment conditions; therefore, it requires special 
predictive monitoring strategies (Sloan et al., 2009; 
Beaujean et al., 2009).  For many machines, a vibration 
condition monitoring program is considered as one of the 
most important tools to detect the presence of anomalous 
behavior, thus allowing for early remedial actions to reduce 
both maintenance costs and premature breakdown.  Since 
access is difficult and costly, monitoring techniques that 
detect these faults reliably (and early) for machines like 
offshore ocean turbines offer an advantage over the more 

                                                           

1 This is an open-access article distributed under the terms of the 
Creative Commons Attribution 3.0 United States License, which 
permits unrestricted use, distribution, and reproduction in any 
medium, provided the original author and source are credited. 

standard techniques (e.g. vibration level trending), allowing 
for preventive maintenance and to prevent the development 
of secondary faults that may be initiated by the primary 
faults. 

This paper discusses several approaches, procedures and 
techniques considered to detect and diagnose the faults of 
an ocean turbine, utilizing vibration data.  Specifically, 
modulation detection techniques utilizing the Cepstrum or 
the Hilbert transform and transient detection techniques 
(Short Time Fourier Transform (STFT) and kurtosis) are 
considered.  Such methods have shown to be efficient, 
(Fernandez et al., 2005; Kim et al., 2006), for detecting 
faults that affect the component health of machines (e.g. 
motors, gearboxes, fans and generators) generically similar 
to those that may be considered subsystems of an OT 
(Figure 1).     

A LabVIEW model for on-line vibration condition 
monitoring was developed (Mjit, 2009; Mjit et al., 2010).  It 
contains the advanced fault detection techniques mentioned 
above as well as diagnostic techniques that provide 
information about the type, severity and identification of the 
fault.   The principal monitoring method utilizes the Power 
Spectral Density (PSD) for in-depth analysis of the 
vibration signal and for vibration level trending, assuming 
acceptable stationary of the vibration signal. The model was 
exercised using data acquired from a rotor end of a 
dynamometer (Figure 2), which is representative of the 
electrical and mechanical equipment of the actual OT 
(Figure 1).  The data were processed in several different 
ways to evaluate the relative ability of the detection 
techniques to detect the types of incipient faults expected of 
the OT.  Actual turbine data may differ because of the 
presence of the dynamometer’s motor drive and additional 
gearbox. Varying loads and structural fluid loading of the 
OT may affect the frequency of structural resonances; 
however the types of mechanical faults should be 
generically the same.  The purpose of this effort was to 
determine if the conclusions and recommendations made in 
(Fernandez et al., 2005; Kim et al., 2006) apply to the 
dynamometer and, possibly, the OT. 
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Most machines display some non-stationary behavior, 
mainly because of varying loads or structural variations. 
This affects the vibration data (Fernandez et al., 2005), 
mainly by causing frequency shifts.  Because of the 
additional variations caused by changes in the water current 
velocity, it is expected that the vibration data collected from 
the ocean turbine will be even less stationary in nature than 
those from the dynamometer. Therefore, the use of 
wavelets, possibly combined with other algorithms, such as 
the Hilbert transform, may be necessary to assess changes 
in the vibration levels, (Fernandez et al., 2005; Fan et al., 
2006; Tyagi et al., 2003; Wald et al., 2010).  Such a 
combination is under development and will be evaluated 
with the in-water turbine data. 

 
 

Figure 1. Ocean Turbine, Conceptual. 
   

 
 

Figure 2. Dynamometer. 
 

2. LISTING AND DESCRIPTION OF THE FAULT 
DETECTION TECHNIQUES  

2.1 Power Spectral Density and Fractional Octave 
Analysis 

The PSD is derived from the vibration time waveform by 
performing a Fast Fourier Transform (FFT).  The PSD is 
well-suited to analysis and diagnosis as it shows more 

clearly the forcing frequencies of the rotating components. 
This technique is very accurate for stationary machines.  
The PSD is averaged over fractional octave bands, and is 
used for trending and detection as it covers a large 
frequency range. The trending of fractional octave spectra is 
very accurate especially if there is small speed variation.  
The PSD is also very accurate for stationary machine where 
the forcing frequencies of the components do not vary with 
time. The PSD can also be used for (slightly) non-stationary 
machines if one is only interested in the spectral 
components that exist in the signal, but not interested in 
what time each spectral component occurs.  Most of the 
peaks in the PSD are directly proportional to the running 
speed of the machine. The PSD may be normalized during 
each iteration before the averaging process to avoid 
smearing in the case of non stationary machine speeds.  

2.2 Cepstrum Analysis  

The power cepstrum is the inverse FFT of the logarithm of 
the power spectrum of a signal; it is used to highlight 
periodicities in the vibrations spectrum, in the same way 
that the spectrum is used to highlight periodicities in the 
time waveform.  Thus, harmonics and sidebands in the 
spectrum are summed into one peak in the cepstrum (called 
rahmonic), allowing identification and trending of 
modulation frequencies associated with a specific fault. 

 2 2 /( ) log { ( )} .j s fC f F x t e ds






   (1) 

F is the Fourier transform operator; x(t) is the time signal 
and f  is the frequency in hertz.  

2.3 Kurtosis  

Kurtosis is a statistical parameter, derived from the fourth 
statistical moment about the mean of the probability 
distribution function of the vibration signal and is an 
indicator of the non-normality of that function. The kurtosis 
technique has the major advantage that the calculated value 
is independent of load or speed variations. The kurtosis 
analysis is good for faults and transient effect detection, but 
it does not give an indication of the specific source of the 
problem (Reimche et al., 2003); however, the kurtosis will 
diminish with increased distance from the source of the 
transients.  The kurtosis will be equal to 3 for a healthy 
machine and greater than 3 if the machine‘s vibrations 
contain transients. The general definition of the kurtosis is, 
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The variables 1x , 2x .. nx represent the population data of 

the signal, x  is the mean of x ,   is the variance of x and 
n  is the number of samples.       

2.4 Hilbert Transform Analysis 

The Hilbert transform of a real signal is defined as the 
convolution of the signal with the function 1/πt, 
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The complex analytic signal is: 

 ˆ( ) ( ) ( ).x t x t jx t   (4) 

The envelope of the original signal is defined as follow: 

 2( ) ( ) .j fte t x t e    (5) 

f  is the frequency of the modulated signal. 

The Hilbert transform is used to demodulate the signal so as 
to obtain the low frequency variations (faulty signal) in a 
higher frequency signal (forcing or resonance frequency).  
When a fault starts developing, the vibrations caused by a 
bearing or gear fault is obscured (especially at low 
frequency) by the noise or the vibrations from other rotating 
parts like shafts, gears, etc. In this case, the bearing or gear 
frequencies cannot be seen in either the time waveform or 
the spectrum of the vibration.  The Hilbert transform can be 
used to highlight and extract the modulating signal (faulty 
signal) from the modulated signal (characteristic frequency 
of the machine). The Hilbert transform technique removes 
the carrier signals which are of no interest for fault 
detection.  Amplitude modulation occurs for example when 
a gear rides on a bent or misaligned shaft, while frequency 
modulation occurs for example when the shaft speed varies 
with time.  In the case of a narrow-band detection process, a 
band-pass filter (whose pass band includes the fault 
frequencies) filters out the selected part of the spectrum.  
The output is shifted (heterodyned) to low frequency and 
subjected to envelope detection.
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BSP is the bispectrum of the analytical signal x~ , f and f’ are 

the modulated and modulating frequencies respectively. 1w  

is a time window. 

2.5 Short Time Fourier Transform 

For non-stationary machines, the Short Time Fourier 
Transform (STFT) of the signal should be used to clearly 
identify non-stationary vibration data related to speed 
variation, from vibrations caused by the inception of 
anomalies, Indeed, the PSD may not provide sufficient 
information about the presence of transient effect, since 
abrupt change in the time signal is spread out over the entire 
frequency range.  Time-frequency Analysis results are 
displayed in a spectrogram, which shows how the power of 
a signal is distributed in the time-frequency domain. 
Narrow-band, periodic signals, transients and noise appear 
very distinctly on a spectrogram.  The STFT is based on the 
following mathematical operations, 

'

2

' ' 2 '
2( , ) ( ) ( ) j ftPS t f x t w t t e dt



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PS is the power spectrogram of the signal )(ts  and 

2 ( )w t  is a real and symmetric window translated by t. t  

and f are the instantaneous time and frequency.  

3. DATA ACQUISITION  

Vibration data were acquired from the dynamometer 
running at various RPM with simulated faults to evaluate 
the ability of the detection algorithms to detect the presence 
of incipient faults.  Processing features such as stationary 
assumptions and smoothing windows were also evaluated to 
insure a high quality for the data.  The faults were simulated 
for selected levels of severity to determine whether the 
conclusions depended on existing signal-to-noise levels.  
Note that the motor and second gearbox (simulated rotor) 
section of the dynamometer were detached and 
instrumented (Figure 3).  The motor was operated at 
selected speeds with and without several weights that 
increased the rotor shaft imbalance.  These tests were 
performed to evaluate the envelope analysis using Hilbert, 
the PSD and cepstrum techniques.  Additionally, a hammer 
was used to introduce impact transients.  The response of 
the monitoring system to such impacts was evaluated using 
the kurtosis and the STFT. The anomaly detection 
techniques were implemented and assessed relative to their 
detection capabilities. 

In this paper, the motor was operated at 1,144 RPM under 
normal and augmented imbalance condition.  The shaft 
rotated at 52.47 RPM due to the reduction ratio (1:21.8) of 
the two stages reduction planetary gearbox.  The expected 
mechanical forcing frequencies (Singleton, 2006) relative to 
the motor speed of 1,144 RPM are summarized in Tables 1 
and 2.  These forcing frequencies are calculated 



Annual Conference of the Prognostics and Health Management Society, 2011 

 

4 

 

automatically in the LabVIEW program. Note that Tables 1 
and 2 show only the fundamental forcing frequencies and 
not their harmonics. 

The experiment was performed on the rotor section of the 
dynamometer in three different situations: without any 
weight added to the shaft, with a light weight (two magnets, 
0.5 lbs total) and with a large weight (two magnets and two 
blocks, 2.875 lbs total) attached to the very end of the 
output shaft.  The distance from the shaft axis to the 
location of the weights was 3.7 inches.  Changes in third 
octave bands, power spectral density, envelope and kurtosis 
were measured.  The acceleration data were collected using 
a Low Frequency (0.2 to 3000 Hz) piezoelectric 
accelerometer with a sensitivity of 500 mv/g mounted on 
the torque meter.  The sampling frequency Fs was 5,000 Hz 
or 20,000 Hz. The number of data points in each sample 
was 20,000.  The corresponding frequency resolution was 
0.25 Hz (at Fs = 5,000 Hz) or 1 Hz (at Fs = 20,000 Hz).  A 
total of 500,000 points were acquired (25 samples).  A 
Hanning window was used to smooth the data. 

4. PSD, HILBERT AND CEPSTRUM ANALYSES 

Figures 4 to 6 show the baseline (without imbalance 
condition introduced) PSD, in three different frequency 
regions, of the data acquired at 1,144 RPM of the motor. 
The major frequency components (derived from the known 
forcing frequencies) are identified in these figures. These 
forcing frequencies are tabulated in Table 3.  In figure 4, the 
average of the PSD (25 samples) in the low frequency 
region (0.5 to 50 Hz) was calculated using 500,000 data 
points (20,000 for each sample) for a sampling rate of 5,000 
Hz to achieve a frequency resolution of 0.25 Hz.  High 
frequency resolution was needed in the low frequency 
region (below 50 Hz) as the forcing frequencies are closer 

to each other. In Figures 5 and 6, the average of the PSD 
(25 samples) in medium and high frequency region - 
calculated using 500,000 data point for a sampling rate of 
20,000 Hz (20,000 points per sample) and a frequency 
resolution of 1 Hz - are shown.  Figure 7 shows the baseline 
PSD of the motor running at two different speeds (not 
harmonically related), 1,144 RPM and 1,593 RPM; this 
allows for the identification of the resonant frequencies of 
the system as both PSD should display the same peaks at 
these frequencies. 

 1st stage 
planetary gear 

2nd stage 
planetary gear 

Carrier speed 3.57 RPS 0.87 RPS 
Planet speed 9.62 RPS 2.70 RPS 

Planet absolute 
speed 

6.04 RPS 1.82 RPS 

Planet gear mesh 
frequency 

279.02 Hz 59.47 Hz 

Sun gear mesh 
frequency 

343.2 Hz 78.69 Hz 

Planet passing 
frequency 

10.73 Hz 2.62 Hz 

Sun gear side 
band defect 
frequency 

46.46 Hz 8.10 Hz 

Planet gear side 
band defect 
frequency 

19.24 Hz 5.40 Hz 

 
Table 1. Expected forcing frequencies from planetary 

gears of the rotor side of the dynamometer, motor speed 
1,144 RPM (19.06 Hz). 
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Figure 3. Rotor end of the Dynamometer. 

 
 Bearing 1 Bearing 2 Bearing 3 

Outer ring 
frequency 

58.58 58.26 7.69 

Inner ring 
frequency 

93.95 94.26 13.29 

Roller bearing 
frequency 

77.80 76.29 3.03 

Cage frequency 7.32 7.28 0.32 
 

Table 2. Expected forcing frequencies (in Hz) from bearings 
of the rotor side of the dynamometer, motor speed 1,144 

RPM (19.06 Hz). 
 

 

Figure 4. Forcing frequencies identification on the PSD 
plot (0.5 Hz to 50 Hz). 

 

Figure 5.  Forcing frequencies identification on the PSD 
plot (50 Hz to 250 Hz). 

 

Figure 6. Forcing frequencies identification on the PSD 
plot (250 Hz to 500 Hz). 
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Figure 7. The PSD at 1,144 RPM and 1,593 RPM show 
the same peaks at resonance frequencies. 

In Figure 8, the difference in levels between the imbalance 
and baseline in the third octave bands (63 Hz, 125 Hz, 160 
Hz, 200 Hz, 250 Hz and 315 Hz) exceed the threshold (level 
increase allowance) of 5dB, causing the alarm for each of 
those third octave bands to switch on.  In figure 9, the PSD 
and the spectrograms clearly show peaks at about 60 Hz and 
120 Hz relative to the modulation in the case of extreme 
imbalance. The increase in level is due to the imbalance of 
the shaft that causes the planet gear meshing frequency 
(59.5 Hz) and its harmonics (119 Hz, 178.5 Hz) to be 
modulated by the rotational frequency (0.88 Hz) and its 
harmonics (1.76 Hz, 2.64 Hz, 3.52 Hz) (Figure 11); for 
brevity, only the modulation of the fundamental planet gear 
meshing frequency is shown.  Similar conclusions were 
made from data acquired with the motor running at 1,593 
RPM.  Figure 10 shows comparisons between imbalance 
effect on the PSD and Hilbert envelope analyses. 

The Hilbert envelope analysis shows the major modulation 
of the gear meshing frequency much more clearly than the 
PSD do. Table 4 summarizes the amplitude change relative 
to the baseline using the third octave, PSD and Hilbert 
envelope analysis, in the case where the unbalance is caused 
either by two magnets attached to the shaft or two magnets 
and two blocks attached to the shaft.  The table shows that 
the PSD levels and the levels of the demodulating 

frequencies (envelope analysis) increased with imbalance 
condition.  Figures 11 and 12 show the PSD and the 
spectrograms with two magnets attached to the shaft, and 
two magnets and two blocks, in the frequency ranges 
130-250 Hz and 215-500 Hz, respectively.  The 
spectrograms show clearly the peaks (at the modulating 
frequencies and it harmonics) that are causing the third 
octave bands shown in figure 8 to exceed their baselines.  
The kurtosis was not affected by the imbalance at either 
speed, but would have changed significantly if the 
imbalance was causing damage to the gears or bearings – an 
example of data fusion and a potential tool for prognosis. 

Freq.  Forcing frequencies Symbol 
19.06 Motor speed - 
0.87 Shaft speed 2nd stage gear C’ 
3.57 Shaft speed 1st stage gear C 
2.62 Planet passing frequency 2nd stage P’p 
10.73 Planet passing frequency 1st stage Pp 
1.82 Planet absolute frequency 2nd stage P’a 
6.04 Planet absolute frequency 1st stage Pa 

178 
Planet gear mesh frequency 2nd 

stage 
P’g 

7.32 Cage defect frequency 1st bearing Cb1 

58.58 
Outer race defect frequency 

bearing 1 
Ob1 

58.26 
Outer race defect frequency 

bearings 2 
Ob2 

7.69 
Inter race defect frequency 

bearings 3 
Ib3 

76.29 Roller bearing frequency bearing 2 Rb2 
38.25, 

84, 
367, 
375, 
383, 
393 

Resonance frequencies - 

 
Table 3. Observed forcing frequencies (in Hz) in the PSD 

for motor running at 1,144 RPM (19.06 Hz). 
 

 

Figure 8. Relative amplitude with respect to the baseline (normal condition) using third-octave analysis; two magnets 
attached to the shaft (left) and, two magnets and two blocks (right). 
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Figure 9. Power spectral density and spectrogram in the frequency range 50-150 Hz, with two magnets attached to the shaft 
(left) and two magnets and two blocks (right). 

 

 

Figure 10. Power spectral density and its Hilbert envelope analysis; two magnets attached to the shaft (top) and two magnets 
and two blocks (bottom). 
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Table 4. Comparison of the features (PSD, envelope and third octave level) relative to the baseline (no weight added), for two 
levels of unbalance severity, one with two light magnets, and another with two magnets and two blocks. 

 

 

Figure 11. Power spectral density and the spectrogram in the frequency range 130-250 Hz, with two magnets attached to 
the shaft (left) and two magnets and two blocks (right). 

 

 

Figure 12. Power spectral density and the spectrogram in the frequency range 215-500 Hz, with two magnets attached to 
the shaft (left) and two magnets and two blocks (right). 
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Figure 13. Forcing frequencies identification on the Cepstrum plot. 
 

Figure 14. Cepstrum averaged over 25 samples (motor running at 1,144 RPM)-baseline (blue) shifted 
up by 0.5 compared to extreme imbalance case (green) 

  
Cepstrum analysis was evaluated for early detection or 
fault diagnosis.  In Figures 13 and 14, the increased 
imbalance of the shaft caused by the weight resulted in 
amplitude increases of the harmonically related 
frequencies. These changes are difficult to assess 
because the imbalance changes the dynamics of the 
system; e.g., the stress localized on a tooth due to the 
imbalance of the shaft produces modulation of the 
tooth-meshing frequencies with the shaft speed.  Also, a 
large number of sidebands around the tooth-meshing 
frequency and its harmonics in the spectrum are 
generated, which are spaced by the rotation frequency 
of the shaft. As discussed earlier, the use of the Hilbert 
transform based techniques allows for easier 
interpretations to the monitoring of the envelope at 
specific frequencies, such as bearing or gear related 
frequencies. The easier interpretation increases the 
probability of early detection.   

5. TRANSIENT ANALYSIS 

A transient analysis utilizing kurtosis and STFT was 
performed using a calibrated hammer.  The hammer hit 
the structure every second with increasing intensity 
over 96 seconds; a significant increase in the kurtosis 

and spikes on the spectrograms were observed.  Figure 
15 shows the time waveforms (green curve in normal 
operating condition and yellow curve with hammer 
tests) and the hammer forces (red curve) recorded 
during 96 seconds, the kurtosis and the short time 
Fourier transforms for several different conditions.  
Spectrograms on the top of the figure show the STFT 
resulting from normal operating condition; the kurtosis 
was 3.32 for each stage. Spectrograms on the bottom 
show the STFT for the extra light hammer hits (4 to 36 
s), for light hammer hits (36 to 68 s) and strong hammer 
test (68 to 100 s), respectively. The time step and 
frequency resolution of the STFT were set to 0.125 s 
and 8 Hz, respectively. 

The hammer hits experiment was performed on the 
coupled dynamometer (Figure 2). As the vibration level 
increases with the RPM, the hammer hits should be 
larger in high speed than in lower speed (to avoid being 
masked by the vibration level). The speed of the drive 
motor was selected to be 300 RPM (low speed) to avoid 
damage to the gearbox. Table 5 shows the amplitude 
change relative to the baseline (no hammer hits) of the 
kurtosis in the case of extra light, light and strong 
hammer hits. 
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Figure 15. Spectrogram and kurtosis of the time waveform, for extra light (4-32 s), light (36-68 s) and strong hammer hit 
(68-100 s) at 300 RPM. Curve in red represents the hammer force. Yellow and green curves are the time waveform, with 

hammer test and in normal operating condition respectively.
  

 Relative Kurtosis 
Extra light hammer hits 1.42 

Light hammer hits 28.98 
Strong hammer hits 49.18 

 
Table 5. Relative kurtosis to the baseline for increasingly 

stronger hammer hits. 

6. CONCLUSION 

During the process of data acquisition and processing, 
several findings were made that are believed noteworthy: 
(1) Augmenting the imbalance caused the planet gear 
meshing frequency to be modulated by the output shaft 
speed of the second stage reduction gearbox (0.88 Hz for 
1,144 RPM and 1.25Hz for 1595).  The modulation level 
increased with increased imbalance. 
(2) The PSD was a better indicator of level change than 
the cepstrum, although the cepstrum is a better tool to 
identify harmonic relationships. 
(3) Envelope analysis using Hilbert transform techniques 
is a better indicator of modulation content than the PSD 

and the cepstrum; this is consistent with reference 
(Fernandez et al., 2005). It may outperform the kurtosis 
analysis in the presence of transients. 
(4) The kurtosis seems to be a good indicator for transient 
effects; the kurtosis had similar values with and without 
imbalance. However, had the imbalance been introduced 
while the shaft was rotating (transient), the value of the 
kurtosis would have changed significantly. Also, the 
kurtosis would have been increased if the imbalance had 
caused gear or bearing damages. 
(5) The envelop analysis was performed on the planet 
gear meshing frequency. The results were similar to those 
found in (Fernandez et al., 2005; Yong-Han Kim et al., 
2006) using bearing frequencies. 
(6) The data comparisons indicate that the use of more 
than one technique for fault detection and identification 
increases the reliability of the conclusions. This might 
decrease the false alarms rate and the use of lower alarms 
levels, allowing for earlier fault detection.  
In the light of these findings, the use of envelop and 
kurtosis analyses for detection of bearing and gear related 
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faults should be considered in addition to PSD levels.  
This allows for more reliable of fault identification and 
for evaluation of the severity of the problem. 
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