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ABSTRACT 

There are many facets of a prognostics and health 

management system.  Facets include data collection systems 

that monitor machine parameters; signal processing 
facilities that sort, analyze and extract features from 

collected data; pattern matching algorithms that work to 

identify machine degradation modes; database systems that 

organize, trend, compare and report information; 

communications that synchronize prognostic system 

information with business functions including plant 

operations; and finally visualization features that allow 

interested personnel the ability to view data, reports, and 

information from within the intranet or across the internet. 

A prognostic system includes all of these facets, with details 

of each varying to match specific needs of specific 
machinery.  To profitably commercialize a prognostic 

system, a generic yet flexible framework is adopted which 

allows customization of individual facets.  Customization of 

one facet does not materially impact another.   

This paper describes the framework, and provides case 

studies of successful implementation. 

1. INTRODUCTION 

The objective of a prognostic system is to predict the need 

for maintenance before serious equipment breakdown 

occurs and to predict the remaining useful life of the 

equipment components.  A prognostics system should 

operate where possible on its own, to lessen the need for 
human involvement.  This is a tall order for the prognostics 

systems developer.  To ease the required efforts, 

commercial off the shelf (COTS) components can be used to 

allow more focus on prognostics algorithms and 

recommendation reporting.   

 

 

 

 

Prognostics Systems have several components, commonly 

grouped into data acquisition, signal processing and 

analysis, and decision making, Figure 1.  Figure 1 can be 

expanded to include communications, visualization, and 

database components.   

 

Figure 1: Basic components of prognostic system 

 

To allow flexibility for analysis types, and machinery types, 

each component needs to be modular to the extent 

components can be easily interchanged.  This 

interchangeability extends to hardware as well as software.  

The system needs to scale from small machines up to large 

machines, and from test cell applications down to portable 

systems and into on-line embedded systems.  Finally, the 
on-line embedded system components need to be priced 

competitive to existing data collecting systems.  In other 

words, constraints exist in hardware, software, and 

development tools in order to maximize modularity, cost  

and ease of customization.  A framework of hardware and 

software components makes this commercialization 

possible, Figure 2.   

From a cost perspective, it quickly becomes apparent that 

commercial off-the shelf (COTS) components provide the 

best cost model for the framework.  With COTS, the 

prognostics systems designer minimizes electronic design as 

well as software design efforts.  Instead, the designer is able 
to leverage development work already in play within the 
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COTS suppliers’ organization.  Further, COTS systems 

typically provide a faster validation cycle as much of the 

hardware and software components have validation 

certificates.    

 

Figure 2: Modular prognostics architecture 

 

This paper examines the prognostics architecture framework 

and its core components including COTS component 

options.   

2. MODULAR ARCHITECTURES 

There are several publications promoting a modular 

architecture for condition monitoring and prognostics 

systems.  One such standard is the ISO 13374 standard, 

Figure 3, ISO (2003). 

 

Figure 3: ISO 13374 condition monitoring standard 

 

The ISO 13374 standard divides the condition monitoring 

and prognostics system into eight subsystems.  These 

include data acquisition (DA) and data manipulation (DM) 

or data acquisition and signal processing.  The ISO 13374 

standard also calls out state detection (SD).  State detection 

is often defined as the determination of deviation from 

normal or healthy operation.  It can also be defined as 

determining the operational state of the machine, for 

example high speed operation and low speed operation.   

Three prognostic functions in the ISO 13374 standard 

include Health Assessment (HA), Prognostic Assessment 

(PA) and Advisory Generation (AG).  These three blocks 

perform the hard work of diagnostics, prediction, and 

information delivery.  The outer two blocks on the left and 

right of the six middle blocks further define data base 

storage and retrieval, as well as visualization including 

technical displays and reporting. When following this 

model, the prognostics developer can save costs by 

foregoing the need to design these architectures. Further, 

when following a defined standard, it is possible to mix and 

match components from multiple commercial suppliers, 
each of which may specialize in a specific component area.   

The University of Cincinnati Intelligent Maintenance Center 

(IMS Center), for example, takes a unique approach in 

adapting the ISO 13374 model by adding data filtering and 

sorting during the data acquisition (DA) step in the process, 

Figure 4, Lee (2009).  The University recommends sorting 

data into operating regimes.   

 

Figure 4: IMS Center multi-regime approach 

 

Operating regimes are distinguished by speeds, loads, and 

even mechanical failure modes.  These regimes are 

identified during the data collection process.  Data is labeled 

with the regime name, for example speed and load.  

Downstream, categorization of information is made easy 

with regime tags made at the data collection point.   

In either case, adaption of the ISO 13374 model to specific 

implementation provides modularity, flexibility, and 

promises to lower costs.   
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3. DATA ACQUISITION COMPONENT OF 

PROGNOSTICS 

The data acquisition component (Figure 3) of the prognostic 

system has the important role of correctly recording sensory 

information from the machine for downstream analysis and 

decision making.  Data acquisition typically consists of 
sensors, signal conditioning, and an analog to digital 

converter.  Sensors may include digital sensors as well as 

analog sensors.  Analog sensors commonly used in 

mechanical system prognostics include temperature, 

electrical power, strain, speed, and vibration.  Often, 

electrical power, strain, speed, and vibration sensors need 

fast and high resolution analog to digital converters to 

transform the analog output of the sensor into a digital 

format the embedded data acquisition can process, store, 

and report.   

 

To obtain the best sensory information, many dynamic 
signals including vibration, need a wide dynamic range data 

acquisition device.  Dynamic range is a measure of the data 

acquisition’s systems ability to detect both strong and weak 

signals at the same time.  In the case of vibration, it is 

important as many vibration sensors measure vibration from 

multiple machine components at the same time.  In other 

words, high-amplitude low frequency vibration from 

unbalance is measured along with low-amplitude high 

frequency vibration from roller bearing and gears.  A wide 

dynamic range data acquisition system, such as a 24 bit 

delta sigma analog to digital converter is beneficial in 
prognostic applications.  The difference in amplitudes at 

various frequencies can be seen in the Figure 5. 

 

 

Figure 5: Vibration frequency and amplitude spectrum 

 

A high dynamic range then allows the single sensor to 

correctly digitize unbalance vibration, mechanical looseness 

vibration, bearing fault vibration, and even gear mesh 

vibration.   

In addition to dynamic range, there are several other factors 

for consideration in the data acquisition component.  These 

include anti-aliasing filters, amplification, and sensor power.  

Typical 24 bit data acquisition hardware includes anti-

aliasing filters that remove high frequency noise from the 

measured signal.  While pre-amplification of signals is not 

often needed with 24 bit hardware, attenuation may be 

desirable to provide for dynamic displacement or proximity 

probe sensors.  The latest 24 bit data acquisition hardware 

offers a +/- 30V input range at bandwidths of 40kHz, 

creating a universal input for accelerometers, proximity 
probes, voltage inputs, and tachometer signals.  Finally, 

most 24 bit vibration acquisition hardware devices provide 

configurable IEPE 24V power to power accelerometers, 

laser tachometers, dynamic pressure, acoustic emission and 

microphone sensors.   

To provide a data acquisition component of the prognostic 

system, there exist three core choices.  First, it is possible to 

design the data acquisition system from the ground up, 

selecting analog to digital and signal conditioning 

semiconductor components, board manufacturers, 

embedded processors, programming languages, and so on.  

While this approach can lead to the lowest manufacturing 
cost for higher volumes, the electronic design domain 

expertise and time to market costs become prohibitive.   

A second choice is to purchase a series of board level 

products following any number of standards such as PC-

104.  This choice offers the prognostics developer a range of 

suppliers to choose from and a range of generic processor 

and analog to digital boards that can work together.  In most 

cases however, the processor and analog boards have 

limited software facilities for analysis, data storage, and 

downstream diagnostics or prognostics.  In other words, 

they provide a fundamental capability, primarily designed 
for control applications with limited dynamic range, and 

have limited software support.  These products typically are 

designed to compete on price, with limited advanced 

features often needed for embedded or downstream analysis.  

The prognostics developer then must create AND validate 

signal processing, filtering and other related algorithms in 

addition to data storage and communications.  This effort 

can become a significant software development effort.   

A third choice is to build the prognostics system on a 

modular system designed for high fidelity sensor 

measurements with wide dynamic range, with a wide range 

of hardware certifications, and with a full featured signal 
processing library for downstream or embedded prognostic 

analysis.   

The second and third options are differentiated by software 

development tools including mathematics as well as system 

certification activities.  Figure 6 shows a comparison of 

complete custom (option 1) and modular system (option 3).  

There is considerable reduction in development effort 

required when using a instrumentation class modular system 

as the basis of a prognostics system.  A COTS system 

providing modular instrumentation class data acquisition 

then allows the prognostic systems developer to focus 
attention on health assessment and prognostics.   
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Figure 6: Modular system development effort reduction 

 

Given, there is a data acquisition modular hardware 

platform in place, it is possible to adjust the sensory input 

capabilities of the system using modular hardware I/O to 

best match the machine for which the prognostic system will 

be used.  A modular system allows analog input modules for 

a variety of sensor types to be selected based on the needs of 

the system.  For example, vibration, temperature, speed, and 

process variable modules can be added (or removed) based 

on the measurements that best serve the prognostic system.   

Finally, hardware should be industrial grade, meeting high 

standards for rugged environments.  Key measures of 

rugged reliability include temperature, shock, and vibration.  
The prognostic systems designer should also consider 

supplier quality systems and hardware warranty.  Table 1 

provides common rugged specifications.  

  

Table 1. Common rugged specifications for hardware 

  

 

A number of COTS suppliers provide modular industrial 

grade data acquisition hardware.  Example suppliers include 

National Instruments, Spectris, Advantech, and 

Measurement Computing Corporation.   

With a solid hardware framework, the prognostics developer 

is able to focus on the systems architecture, prognostics 

algorithms, and information delivery aspects of the system.    

3.1 Data recording filters 

Once the data acquisition system is chosen, it is prudent to 

determine what signal processing and data storage strategies 

should be embedded into the data acquisition system 

component of the prognostic system.  On one end of the 

scale, all time series data from all sensors is continuously 
recorded.  While this strategy insures no loss of data from 

the machine, it burdens communications and downstream 

signal processing.  For example, simply recording four 

channels of vibration data at 51,400 samples per second 

continuously for a week yields 605 Giga-Bytes of data.  

That is a lot of work for communications, off-line 

processing, and human interpretation.  Much of the data is 

repetitive.   

An alternative is to filter data to limit on board recording to 

just data that contains new information.  This filtering is 

typically done by onboard analysis. 

By analyzing data, it is possible to determine whether the 
data has changed.  On board analysis is performed on 

monitored sensory data such as speed, temperature, 

vibration, strain, and electrical power.  Examples of onboard 

analysis include statistical analysis and spectral analysis,   

The prognostics system should be configurable to allow for 

deviation limits of sensory information to be used as data 

storage triggers.  With this implementation in place, sensory 

data is recorded only when it has changed, on a periodic 

basis, or when an operator request has occurred.  Further, 

the recording includes the condition which caused the data 

to be recorded.  By recording a range of sensory metrics or 
features along with the recorded data, it is possible to sort 

the data downstream in the prognostic process.  These 

sensory metrics, then allow the downstream prognostics 

functions to categorize operational and failure patterns of 

the same machine and similar machines.   

When reviewing the capabilities of COTS technologies for a 

prognostic system, it is prudent to consider software 

templates, routines, facilities, etc. that allow for data 

filtering and data sorting, Figure 7.  With the ability of the 

data acquisition system to filter and sort data, downstream 

prognostic consumers of the data are more focused and 

productive. 

 

Figure 7: In line analysis drives data recording 

 

Figure 7 shows a simple data recording trigger of vibration 

RMS level.  This block can be replaced and enhanced with a 

wide range of embedded signal processing including order 
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analysis, envelope analysis, statistics, etc.  The ability to 

customize storage triggering with embedded analysis is an 

important modularity feature of several COTS hardware 

data acquisition platforms.   

3.2 Data storage format considerations 

When considering data storage formats, it is best to leverage 
a technology or format that works well for the embedded 

data acquisition system, and provides rich descriptive 

capabilities for downstream prognostics analysis.  One 

common “schema” for data recording is the Common 

Relational Information Schema, or CRIS, as defined by the 

Machinery Information Management Open Systems 

Alliance (MIMOSA) organization, MIMOSA (2002). This 

schema defines data types including time waveform data, 

spectral data, alarm status, process data, and a range of 

sensory source information including machine asset and 

sensor asset information.  An illustration of the MIMOSA 

schema is given in Figure 8. 

 

 

Figure 8: MIMOSA CRIS schema 

 

The MIMOSA CRIS data schema describes a rich data 

architecture allowing for a combination of time waveforms, 

spectrum, scalar values, images, and related data types to be 

stored in a unified data base.  When the data sets are 

organized by sensor, mechanical component, etc, a view of 

related data sets is easily obtained.  For example, opening a 

sectional view under a roller bearing, one would see time 

series vibration data, temperature trends, vibration spectra, 

oil particulate count trends, etc.  All of the information is 

organized as sensory information related to the bearing.   

There are several ways to implement an embedded data 

storage capability which supports this rich data structure.  

These include common relational database structures and 

data structures specifically designed for embedded 

monitoring applications.  An example of a embedded data 

structure format is shown in Figure 9.  

 

 

Figure 9: Example embedded data recording structure 

 

Figure 9 illustrates a data structure that is efficient in 

recording with high speed streaming capabilities.  It is rich 

in data descriptors with the use of data property strings for 

each data element or channel stored in the data file.  In other 

words, information about the sensor, location, scaling 

factors, filtering, and mechanical component beneath the 

sensor, can be stored as labels that describe the time 

waveform recording.  In addition, properties in the data file 
describe the conditions that caused the data file to be 

recorded, whether it be an analysis result threshold limit, a 

time limit, speed change, or operator request.   

A second feature of this data structure is the ability to add 

information along the prognostic system analysis chain.  In 

other words, as the data file record is moved from the data 

acquisition device downstream to an engineering 

workstation, additional analysis can be performed on both 

time series data and extracted features which are stored 

alongside the original sensory data record, Figure 10.   

 

 

Figure 10: Progression of data structure 
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The task of analyzing and categorizing data is rarely 

complete.  With a flexible data store, additional analysis 

results, methods, comparisons, labeling, etc can be added to 

the data set at any time in the progression of the prognostics 

process.  Going further, if specific empirical patterns 

emerge, the data files become new models or fault mode 
references.  A flexible and modular COTS data acquisition 

system provides a core framework for the important task of 

digitizing and storing necessary sensory data.   

 

3.3 Data acquisition system communications 

A third important element of the data acquisition system is 

communications capabilities.  While TCP/IP 

communications is a common monitoring systems 

requirement, there are situations where alternative methods 

are beneficial.  These communications protocols can include 

Controller Area Network (CAN) based protocols including 

DeviceNet, CanOpen, Modbus, etc. (National Instruments 
2010).  Further, TCP/IP communications may vary in 

physical form including copper, fiber optic, cellular, and 

900 MHz communications.  The data acquisition platform 

framework should be able to easily accommodate many of 

these communications variants, allowing adaptation of the 

prognostics systems to oil and gas machinery, to mining 

equipment, to wind turbines, to remote equipment and many 

others.  With a flexible architecture, the data acquisition 

system abstracts the communications to a higher level, 

where specific communications protocols can plug in easily.   

By leveraging flexible communications architectures, the 
embedded component of the prognostics system is able to 

easily adapt to the needs of the industry and its machines.  

In addition, with the embedded data recording structure 

described above, data can be stored locally, and forwarded 

to the engineering team at the pace of the communications 

system and when the communications network is available.  

This “store and forward” capability is valuable for remote 

machinery locations with sporadic and slower 

communications.   

4. SIGNAL PROCESSING AND VISUALIZATION 

Signal processing functions operate on sensory data to 

extract features or measurements from data acquired from 
sensors placed strategically on the machine.  Signal 

processing can occur in the data acquisition system, 

downstream on a engineering or database computer, or even 

across the internet leveraging emerging cloud computing 

technologies.  Signal processing plays a part in state 

detection, health assessment, and prognostic assessment 

steps in the complete prognostic system.  Table 2 and Figure 

11 illustrate several signal and data processing functions 

that can play a part in the commercial prognostic system, 

Zhang (2008).   

 

Table2: Signal processing options for feature extraction 

 

 

As Table 2 indicates, there are a wide range of signal 

processing options for condition monitoring and prognostics 
applications. The choice of signal processing function is 

made on feature extraction needs, mechanical phenomenon 

indication desired, and domain expertise and preference of 

the prognostic system designer.  It is important that the 

software development tools used to implement the 

prognostic system, offer a wide range of signal processing 

capabilities.   

The IMS Center at the University of Cincinnati has added 

performance prediction, assessment, and diagnostic pattern 

matching as a supplement to advanced signal processing, 

Intelligent Maintenance Systems (2007).  These capabilities 

operate downstream from embedded data acquisition by 
categorizing extracted features into operating modes and 

failure modes.  

Underlying signal processing and prognostics algorithms is 

a wide range of mathematics.  It is important then that the 

underlying math meets applicable standards and quality 

metrics.  One such reference is the Numerical Mathematics 

Consortium, (NMC 2009).  In the case of sound and 

vibration numerical functions, there exist several standards 

including ANSI, ISO, and IEC.  When using signal 

processing algorithms that meet existing standards, the 

prognostics system developer is able leverage the 
certification and validation work of the algorithm supplier.   

 

Health or performance assessment and prediction or 

prognostics assessment build on signal processing used in 

the data acquisition, data filtering and sorting, and feature 

extraction steps of the upstream prognostic components.  

These additional steps, including logic regression, self 

organizing maps (SOM), and even the field of statistical 

pattern recognition; provide tools for matching current 

measurements with data driven models of system health and 

failure modes.  In other words, the discovery of impacting 
and out of balance features in vibration data can match 
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patterns of induced stress on roller bearings and help predict 

a specific bearing failure.   

The leverage of signal processing for feature extraction and 

health indication measurements, leads to visualization of 

data and signal processing results that the human uses to 

understand a problem or degradation in the machine.  Figure 
11 offers one example of visualization graphics.  

 

 

Figure 11: Orbit plot visualization of shaft vibrations 

 

Orbit plots are a common diagnostic and health indicator 

graphic used in turbine driven machinery applications.  

These plots indicate the severity of out-of-balance, 

alignment, and coupling machined degradation issues.  The 

shape and size of the orbit plot indicates the progression of 

specific shaft vibration problems in the machine.  The shape 

and size of the orbit plat can be analyzed by human domain 
experts as well as analytically with mathematical 

algorithms.   

Additional visualization tools exist in prognostics software 

development libraries to summarize multiple machine or 

system components.  These summary plots provide a high 

level of machine health and allow for selection of suspect 

machines for further study.  The University of Cincinnati’s 

Intelligent Maintenance Systems Center offers several 

visualization tools for information delivery, Lee (2009), 

Figure 12.   

These graphics provide visual display of health information.  
The Confidence Value trend chart shows the mechanical 

health of a specific machine component using a measure of 

1 (very healthy) to 0 (badly damaged).  The confidence 

value is commonly calculated using statistical pattern 

matching described earlier.  The Health Radar Chart shows 

the confidence value of multiple components on a single 

chart. The Health Map combines machine operational states 

with machine failure modes.  The Risk Radar Chart 

combines machine state and health indicators along with 

safety and financial parameters to indicate an element of 

risk.   

 

 

Figure 12: Visualization of machine health and prognostics 

 

Armed with these reports, operations and maintenance 

teams are best prepared to make operational and 

maintenance decisions.  Of course these end reports build on 

solid data collection and signal processing techniques 

described earlier. 

 

The signal processing and visualization components of the 

prognostic system can be utilized in the embedded data 

acquisition portion of the system, at the local engineering 

workstation computer, and over the network and remote 

engineering centers or data centers.  The flexibility of 

location of mathematical analysis offers the prognostic 
systems designer options to choose the best place for 

advanced prognostics in the data acquisition, filtering, 

storage, and post processing components of the prognostic 

system.   

5. CASE STUDIES 

There are several case studies worth review where a 

modular system framework is in use for condition 
monitoring and prognostics applications.  While several are 

relatively new to the market, each leverages a common 

modular hardware data acquisition platform, with modular 

software architecture allowing for the placement of signal 

processing and prognostic functions to be placed anywhere 

along the data acquisition, off-line data manipulation, and 

visualization sequence of prognostic system activities.   

 

In power generation applications, wind energy continues to 

lead renewable energies as next generation sources of 

power.  However, these machines are complex and operate 
in a variety of speed, load, and environmental conditions.  

These energy generating machines historically have shown 

to have reliability problems in the drive train.   Much 

interest in research and industry is focused on improved 

monitoring, diagnostics, and prognostics systems to support 
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wind energy applications.  One such example is illustrated 

in Figure 13.   

 

 

Figure 13: IMS Center view of wind farm prognostics 

 

The IMS Center continues work to adapt state of the art 

prognostics systems technologies to wind energy 

applications.  In partnership with National Instruments, the 
IMS center leverages rugged COTS embedded data 

acquisition technologies, signal processing algorithms, and 

local and web based visualization  tools to implement a 

wind farm prognostics framework.  This framework is used 

to further research in wind turbine prognostics and to 

develop an advanced commercial condition monitoring and 

prognostics system for the wind energy industry.   

Another example in wind energy applications is the use of 

the modular COTS hardware and software prognostics 

development platform by bearing supplier, FAG, Figure 14.   

 

 
Figure 14: FIS condition monitoring system 

 

FAG Industrial Services, the service division of FAG 

industrial bearings, has developed an advanced condition 

monitoring system based on modular COTS embedded data 

acquisition and signal processing platforms.  The 

monitoring systems are used both by wind farm operators 

and maintenance service teams, as well as FAG’s bearing 
service and support center.  Embedded intelligence in the 

monitoring system, specifically envelope analysis,  reduces 

sensory data at the data acquisition source to information 

that is more actionable when it reaches operations and 

maintenance personnel.  The information is transmitted over 

existing controls networks or wirelessly leveraging cellular 

and RF technologies, Langer (2006).   

 

Another case study, explores distributed condition 

monitoring and prognostics in nuclear power, Shumaker 

(2010), Figure 15.   

 

 
Figure 15: AMS-Corp nuclear pump monitoring systems 

 

Analysis and Measurement Services Corporation (AMS) 

specializes in testing of process instrumentation and 

development of specialized test equipment and software 

products for power and process industries. This project 

proposes a comprehensive effort to expand and 

commercialize previous research projects to provide 

passive, in-containment use of wireless technology at 

nuclear power plants. Specifically, the effort of the 

subsequent phases of the project will focus on assembling a 

complete, commercial, wireless on-line data monitoring and 

analysis system that can be adapted for use in any 

pressurized water reactor containment. The system would be 

used for condition monitoring during plant operation and/or 

outage time to provide additional measurements that may be 

needed by the maintenance crews, operations or plant 

management. Because of the nature and purpose of nuclear 

plant containment, the introduction of a wireless 

network/communication system inside the confined area is 

challenging and, yet, very advantageous. The immediate 

benefit to the nuclear plant is the reduced cost for 

monitoring equipment and/or processes within containment 
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and to provide additional data as needed for maintenance 

work during refueling outages and normal operation.  

 

This particular example, leverages COTS technology 

including rugged embedded data acquisition and signal 

processing to gather and digitize sensory information, to 

store and forward the sensory data over wireless TCP/IP and 

to format the data in a flexible data schema for off-line 

analysis and reporting.   

 

Finally, in the mining and materials industry, a wide range 

of conveying and grinding machinery is used.  Crushers are 

important assets in material processing plants.  O’mos 

developed a condition monitoring solution using a modular 

architecture to monitor the health of cone crushing 

equipment, Epie (2011).   

 

The modular conical mill condition monitoring system uses 

accelerometers, temperature sensors, and pressure switches.  

O’mos is a service company, providing maintenance 

services for its customers.  With remote monitoring and in-

line signal processing, O’mos is able to improve its service 

offerings to its material processing customers.  The ability 

to leverage COTS embedded data acquisition and analysis 

components frees O’mos to focus their expertise on off-line 

analysis, prediction, and reporting.  O’mos lowers their cost 

of service thru data acquisition automation while working to 

improve reporting and recommendation results leveraging 

specific conical mill domain expertise.   

 
Several other prognostics suppliers are working to adapt 

COTS technologies as the foundation for their prognostic 

offerings.  Example prognostics offerings are IMS Center 

Watchdog™ Agent, Global Technologies Corporation’s 

PEDs hms™, and Impact Technologies ReasonPro™. 

 

6. CONCLUSION 

By leveraging commercial off the shelf (COTS) 

technologies and a flexible modular architecture or 

framework, it is possible to develop and bring to market a 

prognostic system that adapts to a wide range of machines, 

industries, and applications.  The prognostics system 

developer is able to get to market rapidly and at less cost, 

than the alternative of developing components that are 
otherwise commercially available.  This benefit is 

specifically realized, when the COTS components are 

flexible in data storage, and signal processing capabilities 

making it possible to adapt the COTS components for 

specific prognostic algorithms and methods.   
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