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ABSTRACT

Modern aircraft—both piloted fly-by-wire commercial air-

(Integrated System Health Management) systensédtware
has a great potential for ensuring safety and operatiofial re

craft as well as UAVs—more and more depend on highlya\bility of aircraft and UAVs. This is particularly true, sie

e . any software problems do not directly manifest themselves
complex safety critical software systems with many sensorgut r}ellther exhibl?'emer ent behaviorFor}:exam le, when the
and computer-controlled actuators. Despite careful desig 29 Rapt 3th it tional d tpl' ' ;
and V&YV of the software, severe incidents have happened dL’(za' bl ap ort,; cros%e em e.rnat.|ona : € mte, |aé|\|&car
to malfunctioning software. problem in the guidance, navigation, and control ( )

) , ) system did not only shut down that safety-critical companen
In this paper, we discuss the use of Bayesian networks to mog;: a1so brought down communications, so the F-22s had to
itor the health of the on-board software and sensor systeng, guided back to Hawaii using visual flight rufes.

and to perform advanced on-board diagnostic reasoning. We

focus on the development of reliable and robust health m;odeﬁn on-board software health management (SWHM) system

for combined software and sensor systems, with applicatioW

to guidance, navigation, and control (GN&C). Our Bayesian
network-based approach is illustrated for a simplified GN&C®
system implemented using the open source real-time opelg
ating system OSEK/Trampoline. We show, using scenarios
with injected faults, that our approach is able to detect and
diagnose faults in software and sensor systems.

1. INTRODUCTION

Modern aircraft depend increasingly on the reliable openat
of complex, yet highly safety-critical software systemsy-F
by-wire commercial aircraft and UAVs are fully controlley b
software. Failures in the software or a problematic sofewar
hardware interaction can have disastrous consequences.

Although on-board diagnostic systems nowadays exist for
most aircraft (hardware) subsystems, they are mainly work-
ing independently from each other and are not capable of re-
liably determining the root cause or causes of failuresain p
ticular when software failures are to blame. Clearly, a pow-
erful FDIR (Fault Detection, Isolation, Recovery) or ISHM

Johann Schumann et.al. This is an open-access articlébdisii under the
terms of the Creative Commons Attribution 3.0 United Stateshse, which
permits unrestricted use, distribution, and reproductioany medium, pro-
vided the original author and source are credited.

onitors the flight-critical software while it is in opera,
and thus is able to detect faults, such as the F-22 problemns, a
oon as they occur. In particular, an SWHM system

monitors the behavior of the software and interacting
hardware during system operationInformation about
operational status, signal quality, quality of computatio
reported errors, etc., is collected and processed on-board
Since many software faults are caused by problematic
hardware/software interactions, status information &abou
software components must be collected and processed,
in addition to that for hardware.

performs diagnostic reasoning in order to identify the
most likely root cause(s) for the fault(s)This diagnos-

tic capability is extremely important. In particular, for
UAVSs, the available bandwidth for telemetry is severely
limited; a “dump” of the system state and analysis by the
ground crew in case of a problem is not possible.

For manned aircraft, an SWHM can reduce the pilot’s
workload substantially. With a traditional on-board diag-
nostic system, the pilot can get swamped by diagnostic
errors and warnings coming from many different subsys-
tems. Recently, when one of the engines exploded on a

Ihttp: //www af . mi | / news/ story. asp?storyl D=
123041567
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Qantas A380, the pilot had to sort through literally hun-reflects a domain’s causal structure, is a compact repi@esent
dreds of diagnostic messages in order to find out whation of a joint probability table if the DAG is relatively spse.
happened. In addition, several diagnostic messages com a discrete BN (as we are using for SWHM), each random
tradicted each othér. variable (or node) has a finite number of states and is param-

. ) . . eterized by a conditional probability table (CPT).
In this paper, we describe our approach of using Bayesian

networks as the modeling and reasoning paradigm to achiewg!ng system operation, observations about the softwae a

SWHM. With a properly developed Bayesian network, de-System (e.g., monitoring signals and commands) are mapped
pto states of nodes in the BN. Various probabilistic querie

tection of faults and reasoning about root causes can be pé ) i
formed in a principled way. Also, a proper probabilisticatre can be formulated based on the assertion of these obs@&watio

ment of the diagnosis process, as we accomplish with odP yigld predictions prdiagnoses for_ the syster_n. Com”.‘o.".‘ BN
Bayesian approach (Pearl, 1988; Darwiche, 2009), can n&eries pf interest include computing posterior probaedi
only merge information from multiple sources but also pro—and finding the most probable explanation (MPE). For exam-

vide a posterior distribution for the diagnosis and thus prople’ an observallttjlokr)l about al_)norrr]nal behEB/IOI’ ofda S.Z“W?‘re
vide a metric for the quality of this result. We note that this€omponent could, by computing the MPE, be used to identify

approach has been very successful for electrical power Syg_ne or more components that are most likely in faulty states.

tem diagnosis (Ricks & Mengshoel, 2009, 2010; MengshoePifferent BN inference algorithms can be used to answer
etal., 2010). the queries. These algorithms include join tree propaga-

It is obvious that an SWHM system that is supposed to operI—ion (Lauritzen & Spiegelhalter, 1988; _3_9”58”’ Lauri_tzen,
ate on-board an aircraft, in an embedded environment, mut Olesen,- 1b?90,l' S.hen_oy, 1_989)’, cogdltu_)nlng (I?ar\r/IV|che,
satisfy important properties: first, the implementatiortred 2001), variable elimination (Li & D’Ambrosio, 1994; Zhang

SWHM must have a small memory and computational foot& Poole, 19'96), and arithmetic circuit evaluation (Darvech
print and must be certifiable. Second, the SWHM should ex2003; Chavira & Darwiche, 2007). In resource-bounded sys-
hibit a low number of false positives and false negativetsd-a tems, mclu_dmg real-time avionics sys_tems, th_ere IS a_ngtro
alarms (false positives) can produce nuisance signalseais need.to al!gn the resource consumptlon of diagnostic com-
adverse events (false negatives) can be a safety hazard. ation with resource bounds (Musliner et al., 1995; Meng-
approach of using SWHM models, that have been Compi|9§o oel, 2007) while also providing predictable real-time-pe

into arithmetic circuits, are amenable to V&V (Schumann, rmance. The comp|lqt|on appr(.)ach—whlch' mclu'des join
Mengshoel, & Mbaya, 2011). tree propagation and arithmetic circuit evaluation—isaattr

i i tive in such resource-bounded systems.
The remainder of the paper is structured as follows: Sec-

tion 2. introduces Bayesian networks and how they can be

used for general diagnostics. In Section 3. we demonstrate

our approach to software health management with Bayesian Bearing ok | worn
networks and discuss how Bayesian SWHM models can be no 09| 005
constructed. Section 4. illustrates our SHWM approach with yes | 01} 095 = 1 oo

a detailed example. We briefly describe the demonstration
architecture and the example scenario, discuss the use of Bearing ok | worn
a Bayesian health model to diagnose such scenarios, and l‘::N 0?693 0(;1
present simulation results. Finally, in Section 5. we codel
and identify future work.

worn| 0.01

Figure 1. Simple Bayesian network. CPT tables are shown

near each node.
2. BAYESIAN NETWORKS

. o . Letus consider a very simple example of a Bayesian network
Bayesian networks (BNs) represent multivariate probgbili (gjgure 1) as it could be used in diagnostics. We have a node

distribut_ions and are used for reasoning and learning undeia ng Heal t h (BH) representing the health of a ball
uncertainty (Pearl, 1988_): T_hey are often used to m(_)del Sy%’earing in a diesel engine, a sensor ndfidr at i on (V)

tems of a (partly) probabilistic nature. Roughly speakia@;  onresenting whether vibration is measured or not, and @ nod
dom variables are repre;gnted as nodes ina directed acyp&g Pressur e (OP) representing oil pressure. Clearly,
graph (DAG), while conditional dependencies between variy,g sensor readings depend on the health status of the ball
ables are represented as graph edges (see Figure 1 for an gz ing and this is reflected by the directed edges. The de-
ample). Akey pointis thata BN, whose graph structure ofteryees of influence are defined in the two CPTs depicted next to

T Zhito /7 ww . the sensor nodes. For example, if there is vibration, thb-pro

ttp://ww. aer osoci et ychannel . conf aer ospace - . .

-insi ght/ 2010/ 12/ excl usi ve- gant as- qf 32-f 1 i ght-from ability thatp(BH =n O_k ) increases. To obtain the health

-t he- cockpi t/ of the ball bearing, we input (or clamp) the states of the BN
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sensor nodes and compute the posterior distribution (or bébarwiche, 2009):

lief) over BH. The prior distribution of failure, as reflected AN 00

in the CPT shown next t& H, is also taken into account in F =" dordvropbuiontorbopiont
)\ok)\v)\~0p9v|ok90k9~op|ok+

this calculation.
o | twork in Fi 1 ts the ioint b )\ok)\Nv)\Nopemav|ok00k9~op\ok+
ur example network in Figure 1 represents the joint proba- Aok Ao AopBeas ok BokBoplok+

bility p(BH,V,OP) anq is showr) in Table 1. For simplicity, Aok Ao AopBy|mokBmokBop| okt
we replace all CPT entries with, (i.e.,f0,, < BH is ok, and

O-or < BH isworn). Let)\; indicate whether evidence of a
specific state is observed (i.8,, = 1 means evidence of vi-
bration is observed, ang, = 0 means no evidence of vibra-
tion is observed. The probability distributigd BH,V,OP)  orin other words

Aok Amn )\opowv|~ok9~ok90p\ ~okT
Aok Ay )\~0p91;|~ok9~ok gwop\ ~okT
)\Nok )\Nv )\NOPQNU|N0]€9NO]€6N0P‘ ~oks

captured by the Bayesian network above is shown in Table 1. Z H 0 H A
s|z
a\.n
BH V. OP p(BH,V,0P) whereFE indicates evidence of a network instantiation.
ok v op Aok Av AoplujokOokOop|ok An arithmetic is a compact representation of a network poly-
ok v ~op Aok AvAnopOu|ok Dok Oroplok nomial. An arithmetic circuit (AC) is a directed acyclic gta
ok ~v ~0p )\ok>\~’u>\N0p0~v‘ok90k0~op|ok

(DAG) in which leaf nodes represent variables (parameters

Ngt N\\l, gg Ai‘iii;ﬁ\i"gﬁ:fgﬁigzz :ikok and indicators) while other nodes represent addition arlel mu
~OK AV 0P | Acok Ao AopOos|mokOmokOop|mok tiplication operators. Size, in terms of number of AC edges,
~OK vV ~0P | Aok Ao AeopBu|mokOmokOmop| ~ok a measure of complexity of inference. Unlike treewidth, an-
~ok A~V 0P | Aok Ao Anoplan|mokOnok O op| ok other complexity measure, AC size can take network param-
eters (such as determinism and local structure) into a¢coun
Table 1. Probability distribution fos( BH, V, OP). Answers to probabilistic queries, including marginals and

MPE, are computed using algorithms that operate directly on

the arithmetic circuit. A bottom-up pass over the circuibyh
According to this joint probability distribution table,eHirst Input to oqtput, evaluat_es the probability of a particutar e
FOW ok Aw Mook fokfoplor) IS representing the probabil dence setting (or clamping afparameters) on the state of the
ity that the hé)artﬁ of th;_ptl))all bearing is oka,f, = 1), and network. And a top-down pass over the circuit, from output to
that vibrations and good oil pressure are observedand i_nput, computes partial derivatives. _From these_partiEine _
op = 1) would be 9.4% indicating a very low degree of tives one can compute many m_arglnal p_r(_)babllltles, provide
belief in such a state. Given the corresponding numericdl\formation about how change in a specific node affects the
CPT entries this number is calculated &, 0osfopjor = whole network (sensitivity analysis), and perform MPE com-

0.1 % 0.99 * 0.95 = 0.09405. On the other hand, the fourth Putation (Darwiche, 2009).
MOW (Aok AvAopfnjokorOoplor) rEPresenting the probabil-
ity that the ball bearing is okay\(; = 1), there is no vibra- 3: BAYESIAN NETWORKS FOR SOFTWARE HEALTH

tions and good oil pressura (, and),, = 1) is much higher MANAGEMENT

(85%) as follows: O..yjokbokbopior = 0.9 % 0.99 % 0.95 = At a first glance, the SWHM does look very similar to a tradi-
0.84645. tional integrated vehicle health management system (IVHM)
Posterior marginals can be computed from the joint distribusensor signals are interpreted to detect and identity antsfa
tion: which are then reported. Such FDIR systems are nowadays

commonplace in the aircraft and for other complex machin-
ery. It seems like it would be straight-forward to attach a
p(BH,V,0P) H Osle H)‘ software to be monitored (host software) to such an FDIR.
Os1z However, there are several critical differences betweelRFD
for hardware and software health management. Most promi-
nently, many software faults do not develop gradually over
whered,, indicates a state’s conditional probability akd  ¢jme (e.g., like an oil leak); rather they occur instantarsp
indicates whether or not statds observed. Herd), variables  \yhereas some of the software faults directly impact the cur-
are known as variables, variables as indicators. rent software module (e.g., when a division-by-zero is de-
Summing all individual joint distribution entries yields tected), there are situations where the effects of a softwar
a multi-linear function—at the core of arithmetic cir- fault manifest themselves in an entirely different subsyst
cuit evaluation—referred to as theetwork polynomialf  as discussed in the F-22 example above. For this reason, and



Annual Conference of the Prognostics and Health ManageS8wmaiety, 2011

the fact that many software problems occur due to problem- model. A health node can be binary (with states, say,
atic SW/HW interactions, both software and hardware must ok or bad), or can have more states that reflect health
be monitored in an integrated fashion. status at a more fine-grained level. Health nodes are usu-
Based upon requirements as laid out in Section 1., we are ally connected to sensor and status nodes.

using Bayesian networks to develop SWHM models. On &TATUSnodeU A status node reflects the (unobservable)
top-level, data from software and hardware sensors are pre- status of the software component or subsystem.

sented to_the node; of 'ghe Bayes!an netvyork, which in UM ELAVIOR node B Behavior
performs its reasoning (i.e., updating the internal heaitti
status nodes) and returns information about the healtheof th
software (or specific components thereof). The information
about the health of the software is extracted from the poste-
rior distribution, specifically from health nodes. In our @ro
eling approach, we chose to use Bayesian networks, which do
not reason about temporal sequences (i.e., dynamic Bayesig. 1.2 Edges
networks) because of their complexity. Therefore, all S€NThe following informal way to think about edges in Bayesian

sor datg, which are usually t|.me series, must undergo a Pretworks are useful for knowledge engineering purposes: An
processing step, where certain (scafegturesare extracted.

. ; . : edge (arrow) from nod€’ to nodeF indicates that the state
These values are then discretized into symbolic states (e.%f C' has a (causal) influence on the stateof
“low”, “high”) or normalized numeric values before pre-

nodes connect sensor,
command, and status nodes and are used to recognize
certain behavioral patterns. The status of these nodes is
also unobservable, similar to the status nodes. However,
usually no health node is attached to the behavioral
nodes.

sented to the Bayesian health model (Section 3.3). Suppose thab is a S(_)ftware_signal (e.g., within the aircraft
controller) that leads into an input pdrbf the controller. Let
3.1 Bayesian SWHM us assume that we waftbeing 1 to caus€’ to be 1 as well.

Failure mechanisms are represented by introduced a health

3.1.1 Nodes .
. ) _ nodeH. In our example, we would introduce a noleand
Our Bayesian SWHM models are set up using several kindgs it pe a (second) parent éf More generally, the types of

of nodes. Please note that all nodes are discrete, i.e., €agffjyences typically seen in the SWHM BNs are as follows:
node has a finite number of mutually exclusive and exhaustive

states. {H,C} — U represents how stalé may be commanded
through command’, which may not always work as in-
dicated. This is reflected by the health of the com-
mand mechanism’s influence on the state.

CMD nodeC  Signals sent to these nodes are handled as
ground truth and are used to indicate commands, ac-
tions, modes or other (known) states. For example,
a nodeW it e_Fil e_Syst em represents an action, 1C} — U represents how staté may be changed through

which eventually will write some data into the file sys- ~ commandC; the health of the command mechanism is
sumed that this action is in fact happenighe CMD command mechanism can be represented in the CPT of

nodes are root nodes (no incoming edges). During the U.

execution of the SWHM, these nodes are always directlf H, U} — S represents the influence of system status

connected (clamped) to the appropriate command sig-  on a sensof, which may also fail as reflected . We

nals. use a sensor to better understand what is happening in a
SENSOR node S A sensor nodé is an input node similar system. However, the sensor might give noisy readings;

to the CMD node. The data fed into this node are sen-  the level of noise is reflected in the CPT.9f

sor data, i.e., measurements that have been obtained frofar} — S represents a direct influence of system heaith

monitoring the software or the hardware. Thus, this sig-  on a sensofS, without modeling of state (as is done in

nal is not necessarily correct. It can be noisy or wrong al- the {H,U} — S pattern). An example of this approach
together. Therefore, a sensor node is typically connected s given in Figure 1.

with a health node, that describes the health status of th{aU} .S represents how system statdénfluences a sen-

sensor node. sorS. Sensor noise and failure can both be rolled into the
HEALTH node H The health nodes are nodes that reflect  cpT ofS.

the health status of a sensor or component. Their pos- )
terior probabilities comprise the output of an SWHM Table 2 shows the CPT for the last case. Here, we consider the
- _ o _ status of a file systen¥(S). The file system can benpty,
S|fthere is a reason that this command signal is not reliabéegtimmand

i 0
nodeC is used in combination with & node to impact stat&/ as further f ul'l ! or flllgd to mor_e than 95% (UI I 95)' If more space
discussed below. Alternatively, one might consider usingrsesr node in- 1S available, its state is labelexk. Th|5_(un0bservab|e) state
stead. is observed by a software sensor, which measures the current
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capacity of the file system¥{C). Because this sensor might occurs one needs to utilize design artifacts, system sahema
fail, a health node{ H) indicates the health af C' sensor as ics, source code, and other sources of knowledge about com-
ok orbad. ponent interactions.

Because the sensor nod&” has two parents (status node

F'S and health nodé"H), the CPT table is 3-dimensional. 3.2 Software Sensors

Table 2 flattens out this information: the rows correspond to ) )

the states of the sensor node (Lst group for healthy Senscgtp,formatlon that is needed to reason about software health
2nd group for bad sensor). The rightmost four columns refefust be extracted from the software itself and all compo-
to the states of th&S node. In this particular example, a file N€Nts that interact with the software, i.e., hardware s&nso
system sensor, which is not working properly will not report2ctuators, the operating system, middleware, and the com-
if the file system is almost full or full. Such a bad sensor will Puter hardware. Different software sensors provide interm
only reportenpt y orok. This is reflected by the zero-entries tion about the software on different levels of granularityla

in the lower right corner of the CPT. ab;tractioq. Table 3 gives an impression of the variousfaye
of information extraction.
FS FH p(FC|FH,FS) Only if information is available on different levels, the
enpty ok full95 full SWHM gets a reasonably complete picture of the current situ-

enpty | ok 0.88 0.05 0.01 0.0 ation, which is an enabling factor for fault detection anehd
ok ok 01 0.6 0.2 0.1 tification. Information directly extracted from the softnga
full95 | ok 0 02 0.7 01 (Table 3) provide very detailed and timely information. How
full ok 0 0 0 1 ever, this information might not be sufficient to identifyaal
enpty | bad 09 01 0 0 ure. For example, the aircraft control task might be working
?EI | 95 EZS 8'% 8'2 8 8 properly (i.e., no faults show up from the software sensors)
full bad 0:5 0:5 0 0 However, some other task might consume too many resources

(e.g., CPU time, memory, etc.), which in turn can lead te fail
ures related to the control task. We therefore extract aimult
Table 2. CPT table fop(FC|F H, FS). tude of different, usually readily available informatioboait
the software.

3.1.3 Developing Conditional Probability Tables (CPTYs)

Software
The CPT entries are set based on a priori and empirical knowl-| errors flagged errors and exceptions
edge of a system’s components and their interactions (Ricks| memsize used memory
& Mengshoel, 2009; Mengshoel et al., 2010). This knowl- | quality signal quality
edge may come from different sources, including (but not | reset filter reset (for navigation)
restricted to) system schematics, source code, analysis o Software Intent
prior software failures, and system testing. As far as a sys-| fs_write intent to write to FS
tem’s individual components, mean-time-to-failure stits fork intent to create new process(es)
are known for certain hardware components, however simi-| malloc intent to allocate memory
lar statistics are well-established for software. Consatjy, usemsg intent to use message queues
further research is needed to determine the prior distdbut usesem using semaphores
for health states, including bugs, for a broad range of soft- | userecursion| using recursion
ware components. As far as a interaction between a system’s Operating system
components, CPT entries can also be obtained from under{ cpu CPU load
standing component interactions, a priori, or testing hdw d n_proc number of processes
ferent components impact each other. As an example, con{ m_free available memory
sider a testbed like NASAs advanced diagnostic and prog-| d_free percentage of free disk space
nostic testbed (ADAPT) (Poll et al., 2007), which provides | shm size of available shared memory
both schematics and testing opportunities. Using a testing| sema information about semaphores
approach, one may inject specific states into the navigation| realtime missed deadlines
system and record the impact on states of the guidance syst n_intr number of interrupts
tem, and perform statistical analysis, in order to guidedire I_msgqueue | length of message queues

velopment of CPT entries for the guidance system. Setting
of software component CPTs to reflect their interactions wit
hardware can be conducted in a similar way. Clearly, the-well
known limitation of brute-force testing apply, and whersthi

Table 3. SWHM informations sources
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3.3 Preprocessing of Software and Har dwar e Sensor 4. DEMONSTRATION EXAMPLE

Data
. . ) 4.1 System Architecture
The main goals of preprocessing are to extract important in-

formation from the (large amounts of) temporal sensor dat&or demonstration purposes, we have implemented a sim-
and to discretize continuous sensor data to be used with opte system architecture on a platform that reflects reat-tim
discrete SWHM models. For example, the sensor for thembedded execution typical of aircraft and satellite syste

file system C) has the statesnpty, ok, full 95, Trampoline? an emulator for the OSEKreal-time operat-

ful | . Preprocessing steps, which extract temporal featuresg system (RTOS), is used as a platform rather than other
from raw sensor data, enable us to perform temporal redRTOSes more established in the aerospace industry (such as
soning without having to use a dynamic Bayesian networkVind River's VxWorks or GreenHills’ INTEGRITY). OSEK
(DBN). This is a very prominent conceptual decision. By giv-is easily available, widely used for embedded control sgste

ing up the ability to do full temporal reasoning by means ofin the automotive industry, and its capabilities were sigfit
DBNs, which may be complex in design and execution, weor the purpose of our experiments.

are able to use much Simpler static health models and handﬁ]e basic System architecture (Figure 2) for running SWHM

the temporal aspects during preprocessing. experiments consists of the OSEK RTOS, which runs a num-
In particular, we use the following preprocessing techaggu ber of tasks or processes at a fixed schedule. For this sim-
(which can also be combined): ple SWHM demonstration system, (1) the simulation model

) o ) L ) ) of the plant is integrated as one of the OSEK tasks, and (2)
discretization A continuous value is discretized using & pargware actuators and sensors are not modelled in detail,

number of monotonically increasing thresholds. For exyyhich would have required drivers and interrupts routines.

ample, Table 4 shows the discretization for file systenpegpite jts simplicity, this architecture is sufficient anra
sensotC. simple simulation of the aircraft and the GN&C software in a

min/max/average The minimal/maximal value or the real-time environment (fixed time slots, fixed memory, inter
mean of the entire available time series is taken. process communication, shared resources).

moving min/max/average A moving min/max/mean value The §oftvyare health management executive, including prepr
(with a selectable window size) is taken. In contrast to°@SSing, is executed as a separate OSEK task. It reads soft-

the features above, we only consider the last few second¥are and sensor data, performs preprocessing and provides
of the signal. the data as evidence to the sensor nodes of the (compiled)

. ) . Bayesian network. The reasoning process then yields the pos
sum (integral) The sum (integral) of the sensor value is (q/ior probabilities of the health nodes.
taken. For example, the sum of “bytes-written-to-file-

system” (per time unit) approximates the amount of data
in the file system (assuming nothing is being deleted).

ISWHM

temporal Temporal states of sensor signals can be ex-

tracted, e.g., time difference between evdrdand event SWHM

B. Arithmetic Circuit Arithmetic Circuit

(Knowledge Base)

time-seriesanalysis Kalman filters can be used to corre-
late signals against a model. Residual errors then can

Inference Engine
GN&C

be used as sensor states (e.g., close-to-model, small- Guidance

deviation, large-deviation). Fast Fourier transformatio Neomtol H

(FFT) can be used to detect cyclic events, e.g., vibrations Pt

or oscillations. ‘ RTOS Emulator ‘

(OSEK/Trampoline)

| Percentage (df] State |

0<df <5% | enpty Figure 2. Demonstration system architecture. The Bayesian
5<df <80% | ok network model is compiled (before deployment) into an arith
80 < df < 95% | full 95 metic circuit representing the knowledge base. The rea-ti
95 < df | full operating system schedules three tasks: the controller, th

plant, and the SWHM inference engine.

Table 4. Discretization into states (right) by means ofghre

olds (left). 4http://tranpoline.rts-software. org/
Shtt p: // www. osek- vdx. or g/



Annual Conference of the Prognostics and Health ManageS8wmaiety, 2011

4.2 Example Scenario to dangerous situations or even loss of the aircraft.

An experimental scenario aimed at the study of faults rdlatem_th_IS scenario, the software prob_lem does not manifesifits
within the software system (e.g., in form of errors or excep-

to file systems, inspired by the Mars rover SPIRIT reboot cy-. ] . s
cle incident (Adler, 2006), has been implemented using thHO”S)' Rather, the overall behavior of the aircraft is icipa

system architecture. A short time after landing, the Mard" @ nOn-obvious way.

rover SPIRIT encountered repeated reboots, because a fa@ther possible scenarios with this setup, to be diagnosed by
during the booting process caused a subsequent reboot. Age SWHM task, are:

cording to reports (Adler, 2006), an on-board file system for,
intermediate data storage caused the problem. After this st
age was filled up, the boot process failed while trying to ac-
cess that file system. The problem could be detected on th®
ground and was resolved successfully.

In a more general setting, this scenario is dealing with bad
interaction due to scarce resources, and delays duringsicce ®
Even if no errors show up, a blocking write access to a file
system that is almost full, or the delivery of a message thinou

a lengthy message queue, can in the worst case cause severe
problems and emerging behavior.

For the purpose of demonstration, we designed a flawed sof®  The controller and the science camera compete for the
ware architecture with a global message queue that buffers Message queue, which could (when not implemented
all control signals and logs them in the file system (blocking ~ CO'Tectly) cause message drops or even deadlocks.
before forwarding them (Figure 3). This message queue iith our SWHM, the observed problem (oscillation) should

also used to transport image data from an on-board camef@ detected properly and traced back to the root cause(s).
(e.g., for UAV) to the radio transmitter. The relevant saftey

components of this simple architecture are: GN&C, messagé3 The SWHM Model

gueue, logging to file system, camera, transmi.tter,. anct.planA Bayesian SWHM model for this architecture was designed
On-boarq camera an.d transmltter. are ;hovyn in Figure 3 btﬂfsing the Samlam to8l A modular BN design approach was
not used in the experiments described in this paper. attempted by first designing the SWHM model for the ba-
sic system including relevant nodes such as—in the aircraft
Zénansmme, case—the pitch-up and pitch-down command nodes. The

The pilot’s or autopilot’s stick commands are delayed,
which again results in oscillations of the aircraft.

Non-matching I/O signal transmit/read/processing rates
between control stick and actuators result in plant oscil-
lations whose root causes are to be disambiguated.

An unexpectedly large feed from the on-board camera
(potentially combined with a temporary low transmis-
sion bandwidth) can cause the message queue to over-
flow, which results in delays or dropped messages with
similar effects as discussed above.

pitch status nodes, the fuel status node, and the software,
pitch, and acceleration health nodes were introduced. rOthe
subnetworks were then added to this core Bayesian network
to obtain the complete SHWM model for the specific archi-
tecture used for SWHM experiments. The relevant nodes of
the subnetwork module added for SWHM experiment with
file system related faults are shown in Figure 4.

The Wite File System command node indicates
whether a write to the file system is being executed. The
health nodes for the file system and the message queue reflect
the probabilities that they might malfunction. The status
nodes for the file system and the message queue represent

. . . . their unobservable states, while their sensor nodes reflect
Here, we are running the following scenario: the file systenansor readings after preprocessing

is initially set to almost full. Subsequent control message
which are being logged, might stay longer in the messag
gqueue, because the blocking write into an almost full file sys
tem takes substantial time. This situation potentiallysesu
overflow of the message queue or leads to loss of messag S .
However, even a small delay (i.e., a control message is n ith such a sensor, Iow-frequgncy.oscnlat'lons (g.g.,tpllo
processed within its allotted time frame, but one or moretim induced oscillations (P10)) or V|brat|ons (with a highee-ir
frames later) can caussscillation of the entire aircraft. This quency) can be detected and fed into the SWHM model. The

oscillation, similar to P1O (pilot induced oscillation)rcéead Sht t p: // r easoni ng. cs. ucl a. edu/ sani am

Guidance
Navigation
Control

RTOS Emulator
(OSEK/Trampoline)

Figure 3. Software architecture for file system relatedtfaul
scenarios, diagnosed using SWHM system.

'e[he only non-standard software sensor node in this SWHM
model is a sensor to detect oscillations or vibrations. A fas
Fourier transform (FFT) performs a simple time-seriesynal
g'és' on major aircraft signals (e.g., accelerations or pegs)a
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Figure 4. Partial Bayesian network for diagnosing faults pogjg re 5. Temporal trace for the nominal case of file system
teptially taking place in the software architecture shown i ,ca scenarios. The top panel shows pitch up and down com-
Figure 3. mands to the aircraft. The middle panel shows the readings of

altitude and vertical speed. The bottom panel shows the de-
SWHM reasoning then tries to perform a disambiguation orgree of belief in the good health of the accelerometer sensor
the cause of the oscillation or vibration. (h-accel , green), of the pitch signah(pi t ch, red), and of

This Bayesian network is compiled into an arithmetic citcui the softwarelf-SW thick blue line).
which is integrated with the rest of the system as shown in
Figure 2.

cause of oscillations when we add a pilot input node con-
4.4 Results nected to the oscillation detection fast Fourier transfeem-
sor node. The SWHM reasoner can then disambiguate the

Analysis of experimental runs with this architecture iradéd piagnosis by evaluating whether the fault is due to PIO or a

that the system undergoing SHWM runs fine in the nomina

case (Figure 5). However, the SWHM inference engine Wagoftware problem.

instrumental in pointing toward the root cause of osciflati ~ The SWHM models, which we have presented here are able
when pitch-up and pitch-down commands to the aircraft planto recognize and disambiguate known failure classes. In gen
are affected by faults originating in the file system, cagsin eral, the handling of emergent behavior, i.e., the occorer

the aircraft to oscillate up and down rather than maintaén th €vents or failures that have not been considered or modsled,
desired altitude. For the purpose of our experiments, the filan important task for a system-wide health management sys-
system was set to almost full at the start of the run, and a§m. Such failures can occur if the system is operated in a
the system runs and controls are issued and logged, delays8W environment, or due to unexpected interaction between
executions start taking place at time= 30s (Figure 6) but components.

no software errors are flagged. Eventually, altitude ascill Our SWHM approach can—albeit with some restrictions—
tions are detected by a fast Fourier transform performed odetect and diagnose emergent behavior. If we model the soft-
the altitude sensor readings shown in the middle panel of Figvare behavior using safety and performance requirements (i
ure 6. The bottom panel indicates that when the fast Fourieaddition to specific pre-analyzed) failure modes, emergent
transform eventually detects oscillations aroure 100s, the  havior, which manifests itself adversely by violating $wfe
SWHM infers that the posterior probability of good softwarerequirements or lowers performance, can be detected and di-
health drops substantially, while the posteriors of goagithe agnosed.

of pitch and accelerometer systems are mostly high despiig our experimental setting, relevant performance or gafet
some transient lows. This indicates a low degree of belief iRequirements could be: no vibrations or oscillations stioul
the good health of the software and that the most likely causgccur, and a smooth flight path without specific pilot input
for a state with oscillations would be a software fault. F@t ghould not require substantial actuator activation. Wit t
purpose of this experiment, no additional pilot inputs weregxisting sensors and the reasoning capabilities of thesaye
assumed. network, the failure scenario discussed above would raise a
SHWM can also be instrumental in disambiguating the rootilarm due to the violation of these requirements.
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) —— cept can be extended to robustly handle unexpected and un-
< cmd_pitch_up modeled failures, as well as how to more automatically gener
0.5¢ o cmd_pitch_dwn ate SWHM Bayesian models based on information in artifacts
0 : : ‘ : : : ‘ including software engineering models, source code, ak wel
20 40 60 80 100 120 140 as configuration and log files.
0.4+ 1
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