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ABSTRACT 

Development of robust structural health monitoring (SHM) 
sensors and hardware alone is not sufficient to achieve 
desired benefits such as improved asset availability and 
reduced sustainment costs. For SHM systems to be 
practically deployed as part of an integrated system health 
management (ISHM), tools must be created for SHM life-
cycle management (LCM). To that end, SHM-LCM 
software has been developed to expedite the adoption of 
SHM into ISHM.  The SHM-LCM software is a flexible 
application intended to manage the cradle-to-grave life-
cycle of an SHM system for generic applications.  There are 
4 core modules to facilitate critical roles: Optimization, 
Calibration, Visualization, and Action. The Optimization 
module seeks to devise optimal sensor placement and 
excitation parameters in order to achieve probability of 
detection (POD) coverage requirements. The Calibration 
module is designed to guide a user through a series of 
material level tests in order to customize algorithm variables 
to the system being designed. The Visualization module is 
dedicated to generating a diagnostic composite picture based 
on data downloaded from the diagnostic server, which is 
“stitched” to the original 3D mesh, providing users with a 
manipulatable GUI to toggle between probability of damage 
distributions for various calibrated damage modes. Finally, 
The Action module generates residual performance plots 
(ultimate load or deflection for example) as a function of 
probability of damage, so detection confidence can be 
weighed against impact to the vehicle’s capabilities. SHM-
LCM software will enable SHM systems to be incorporated 
into ISHM by engineers rather than experts, making the 
technology more accessible, and commercially practical. 

 

1. INTRODUCTION 

Currently successful laboratory non-destructive testing and 
monitoring methods are impractical for service inspection of 
large-area structures due to the size and complexity of the 
support equipment required, as well as the time and cost 
associated with component tear-down. It is clear that new 
approaches for inspection are necessary.  Structural Health 
Monitoring (SHM) denotes the ability to detect and interpret 
adverse "changes" in a structure to direct actions that reduce 
life-cycle costs and improve reliability. Essentially, 
minimally-invasive detection sensors are integrated into a 
structure to continuously collect data that are mined for 
information relating to damage such as cracks or corrosion. 
SHM is receiving increasing attention, particularly from the 
DoD community, to eliminate scheduled and/or manual 
inspections in lieu of condition-based maintenance for more 
efficient design practices and more accurate repair and 
replacement decisions. This methodology shift will result in 
significant savings in overall cost of ownership of a vehicle, 
as well as significant gains in operational safety. 

For SHM to be successfully implemented, accurate 
diagnostic and prognostic models are essential.  Not only do 
sensors need to be properly integrated to collect data, but 
diagnostic characterization of the health of the structure 
needs to be extracted and presented to the operator and/or 
maintainer in a timely and meaningful manner.  
Furthermore, the diagnostic information should be 
converted to prognostic predictions so that proper action 
regarding remaining useful life or necessary repair can be 
taken.  There are presently limited methods for visualizing 
diagnostic data, mainly 2-D representations, and no proven 
software to explicitly link diagnostic and prognostic 
information. Some methods have been demonstrated for 
health & usage monitoring system (HUMS); however, these 
systems provide far less detailed information compared to 
what is expected from an SHM system. 
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The overall approach taken by the current investigators was 
a system optimization problem; attempting to maximize 
detection capabilities with minimal impact to the test 
structure and at minimal cost, both capitalized and risk-
generated.  Hundreds of sensors densely spaced over a test 
structure would certainly have the best opportunity to 
precisely resolve damage locations, but this would 
obviously be impractical for real-life applications due to the 
quantity of instrumentation required (cables, data 
acquisition hardware, etc) or other incurred penalties (e.g. 
weight on an aircraft).  Therefore the chosen approach was 
to use Bayesian risk function to assign costs to missed-
damage, false-positives, and localization error as well as 
associating a cost with each sensor (where cost here is not 
monetary necessarily, but a relative metric for comparing 
the value of each parameter).   

The algorithms used were a hybrid collection of functions 
making use of both coherent and incoherent information in 
the data.  Data for each sensor is processed separately, then 
ultimately summed in a weighted fashion across the test 
structure.  Further logic is also deployed to eliminate 
anomalies and invalid features.  Generally, this process is 
analogous to active sonar.  Damage ("targets") are detected 
and/or localized by generating ultrasonic elastic waves and 
watching how they bounce off of potential targets.  Because 
a test structure is arguably far more complex than the open 
ocean, producing potentially far more "false targets" (such 
as boundaries, stiffeners, rivets, size changes, material 
interfaces, etc.), this approach takes advantage of 
embedding probabilistic models into the wave 
propagation/scattering process so that likelihood-based 
judgments can be made about the damage targets. These 
judgments may be understood in appropriate performance 
terms—probability of detection, probability of localization, 
etc.—which directly supports the uncertainty quantification 
needed for decision-making. 

Finally, the decomposed data must be displayed in a 
meaningful matter.  Work was done to deploy a graphical-
user-interface (GUI) that would allow 3D structures to be 
represented with damage predictions stitched-in.  Controls 
are deliberately included to allow knowledgeable users to 
deviate from default algorithm and display parameter values 
to refine the image or search for smaller damage that is 
obfuscated by severe damage locations.  The software is 
also built in such as way so that diagnostic results can be 
exported to commercial finite element tools to provide 
prognostic information such as residual strength or stiffness. 

A major advantage of this overall approach is its power to 
serve also as a design tool. Through the overarching 
probabilistic framework, if a client-defined objective is 
established for a given application (e.g., "must detect fatigue 
cracks < 1 mm oriented at any random angle with a 
probability of 95% and use no more than 1 sensor per square 
meter"), this approach allows for an a priori optimization of 

the sensor architecture before in-situ deployment to meet 
those objective(s).  This provides tremendous potential cost 
savings, eliminating the "black box" and "trial and error" 
approaches to doing SHM system design. 

2. SHM SYSTEM SENSORS AND HARDWARE 

To achieve the overall goals of efficient damage detection, 
This research leverages hardware previously developed by 
the investigators, including distributed digitization 
hardware, piezoelectric-based damage and localization 
sensors. A patented method is used to determine relative 
phase information for the sensor responses, by surrounding 
a central actuating disk with multiple sensing disks, known 
as vector-based localization.  The actuating and sensing 
component consists of seven piezoelectric wafers that are 
integrated into a custom flex-circuit assembly that connects 
to the digitization hardware. These elements are 
permanently mounted on the structure being monitored. The 
closely spaced set of piezoelectric elements in each node 
form a phased array, which enables the identification of 
both range and bearing to multiple damage sites using a 
single node. This is in contrast to isolated piezoelectric 
elements which can only identify range, necessitating the 
use of multiple spatially separated elements to localize 
damage sites through a triangulation process that has been 
shown to be susceptible to corruption by multiple damage 
sites.  Also, if relative time of arrival at the sensor elements 
is used, a ray indicating angle to damage can be generated 
without any wavespeed information. Thus damage can be 
localized by simply finding the ray intersection of 2 of these 
vector-locator nodes.  This method can be deployed actively 
using GW to determine the location of damage as described 
here, or passively in acoustic emission mode the same 
equations can be used to describe the position of an impact.  

3. SENSOR PLACEMENT OPTIMIZATION 

SHM systems are decision makers. At any given time, or 
according to any given measurement, the SHM system 
needs to be designed to let the operator know whether or not 
a potential problem in the structure requires action. As such, 
an SHM system will likely have to make hundreds or 
thousands of decisions while the structure is undamaged 
before a defect actually develops. During this time, it is 
important that the SHM system correctly decides that the 
structure is healthy as frequently as possible. If the SHM 
system constantly demands costly, unnecessary manual 
inspections then it provides no benefit to the monitored 
structure and its operation. It is important, then, that the 
design of SHM systems and the evaluation of their 
performance consider the total risk posed by all forms of 
decision errors. 
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3.1 Theory 

The presented approach to SHM is the minimization of the 
expect cost, or Bayes Risk, associated with an SHM system 
through the optimal design of detection algorithms and 
hardware (i.e., sensor placement). Put simply, the Bayes 
Risk is sum of the costs of all possible detection outcomes 
(detection, missed detection, false alarm, etc) weighted by 
their probability of occurring.  This can be represented as 

              
       

,

| ,,
d

R C P P Cd ed e


     (1) 

where d  is the set of possible decisions the SHM system 
makes, is the damage state of the structure, and e is the 
design of the SHM algorithms and hardware. The first 
probability term describes the statistical performance of the 
SHM detection system and the second probability term 
reflects the prior probabilities of damage, if known. The 
optimal design is then defined as:  

 * arg max
e

e R e
 

                  (2) 

A key component of the approach to structural health 
monitoring is the optimization of the placement of sensor 
nodes according to the minimization of the expect cost, or 
Bayes Risk, associated with the decisions made by the SHM 
system. The calculation of the Bayes Risk for an arbitrary 
set of node placements then requires accurate models of the 
wave propagation process and detector statistics 
parameterized by the node coordinates.  To simplify the 
modeling, the structure is divided into discrete regions. 
Then to determine the total Bayes Risk of the structure, the 
localized Bayes Risk is calculated for each region and sum. 
The statistical performance of detectors for each region is 
evaluated with any given set of node placements using an 
analytical model of the wave propagation and scattering 
process. This model includes beam spread, line of site, 
directional scattering, and transmission across the doublers. 
According to this stochastic model, the detector described 
above, and an optimal set of detector thresholds, maps can 
be constructed of the expected localized detection and false 
alarm rates. Examples of these maps for a two-node 
arrangement are shown in Figure 1. Note the effect of line 
of site and the doublers in the two maps. Nodes were 
optimally placed in a greedy algorithm fashion. Starting 
with one node, one at time, each node is added so that it 
optimally compliments the existing fixed arrangement.  As 
such, there always exists a subset of n nodes from the total 
N nodes that is near-optimal. Near-optimal in this case 
means a guaranteed performance of at least: 

        1 0.631
n

Greedy
nU U Un n n

n
      

  
   (3) 

where  U n


is the performance (or utility) of the optimal 

arrangement of   nodes. 

 

Figure 1: Local detection rates (left) and, false alarm rates 
(right) for a two-node arrangement. Nodes are indicated 

with small white-filled circles. 

3.2 Optimization Example 

A structure was divided into two sets of discrete regions. 
The first set forms a uniformly spaced grid covering the 
structure. The second set is assembled from the identified 
hot spots on the structure consisting of the localized area 
around each of the bolt holes. Each region from the uniform 
and hot-spot sets is then assigned a probability of damage. 
Wave scattering was modeled according to a 5 mm crack 
with uniform random orientation. Imaging noise was 
modeled as Raleigh distributed. Noise parameters were 
fitted from data acquired over two days from three-foot-
square plate instrumented with identical nodes. The 
probabilities and error penalties were assigned as follows: 

- Probability of damage being introduced: 80% 

- Conditional probability of damage being 
introduced at hot spots: 60% 

- Conditional probability of damage being 
introduced away from hot spots: 40% 

- Penalty of missed detection / penalty of false alarm 
= 2/1 

Figure 2 shows the optimized arrangement of six nodes on a 
map of the resulting normalized risk.  The nodes are 
numbered in order of their placement by the greedy 
algorithm.  The normalized risk for the greedy-chosen 
arrangement fell within 5% of the true optimal 6-node 
arrangement as found by an exhaustive genetic algorithm 
search.  Figure 3 provides a graph of the normalized risk 
versus node count.  When the cost of each additional node is 
added to the risk calculation, the risk versus node count will 
have a minimum that indicates the optimal number of 
sensors to use. Figure 3 demonstrates that adding additional 
nodes has diminishing returns when accounting for per-node 
costs. 
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Figure 2: Optimal 6 node arrangement with map of 
normalized local risk 

 

 
Figure 3: Normalized risk versus node count 

4. DIAGNOSTIC ALGORITHMS 

Active sensing involves mechanically exciting a structure 
and in turn measuring the response in order to gain 
information regarding the potential presence of damage. 
When one dimension of the structure being excited is 
relatively small compared to the other two, such as in a 
plate-like structure, and the wavelength(s) of excitation are 
of the same order as this dimension, the process is referred 
to as guided-wave active sensing.  

The MD7 system works in an analogous fashion to active 
sonar. One at a time, each MD7 node actuates a series of 
narrow-band, ultrasonic mechanical pulses, or “pings”, 
using its central actuation transducer.  These pulses 
propagate through the structure, reflect and scatter at 
geometric features, such as plate boundaries, as well as at 
potential damage, and are then sensed by the six sensing 
transducers on the node. The node digitizes the sensed 
responses and sends the data to the accumulation hub where 
it is stored for later retrieval and processing 

The recorded responses are used to determine the range(s), 
bearing(s), and size(s) of potential damage in the structure 
relative to each node. In traditional active sonar 
applications, bearing is often determined in one of two 
ways.  The first is to physically arrange the sonar array to 
maximize its sensitivity in one direction, and then 
mechanically orientate, or steer, the array to scan multiple 
directions. The second approach is to artificially introduce 
delays in the acquired, digitized responses in order to 
electronically steer the array through a processes known as 
beam forming. For the current application, the latter 
approach has two distinct advantages.  First, the position of 
the array elements (i.e. sensing transducers) can be fixed so 
there are no moving parts.  Second, a single actuated pulse 
and sensed response can be used to simultaneously scan for 
damage in every direction. This directional scanning 
through electronic steering forms the basis of the present 
approach to ultrasonic guided wave imaging. 

4.1 Beamforming 

Optimal detectors can be derived according to statistical 
likelihood tests on the measured responses for the presence 
and location of damage. Depending upon the specific 
objective(s), such detectors provide a means of combining 
measurement data to build a set of test statistics T(x) 
(sometimes referred to as “damage features”) that can be 
compared to a threshold (determined by a risk analysis) in 
order to make decisions regarding the existence and/or 
location of damage on the structure. In most cases, where 
localization is of prime importance, the time of flight from 
the actuator to the potentially damaged region to the sensor 
for a given wave number can be reasonably estimated based 
on an average group velocity computed from the (likely 
heterogeneous) material and geometric properties along the 
propagation path. With this in mind, a common localization 
detection approach for each region in a structure is one that 
delays and sums the measurements from the different 
transducer pairs so that they will additively combine at the 
true location of damage, resulting in an “image” of highly 
constructive scatter relative to the background noise. 
However, the relative average phase velocities from each 
transducer pair to each region of the structure can be more 
difficult to predict. This leads to two basic forms of 
detectors based on the statistical model of the 
measurements: coherent and incoherent beam forming.  

In the case where the relative phase velocity is different and 
unknown between transducer pairs, the envelopes of the 
waveforms must be summed together in order to eliminate 
the dependence on phase. Otherwise, the delayed and 
summed waveforms run the risk of destructively interfering 
at the true location of damage and/or constructively 
interfering away from damage. If we represent the baseline-
subtracted acquired waveform from each transducer pair   
on node   according to its complex analytic signal  , then the 
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test statistic for the incoherent (“phase ignorant”) detector 
for damage at   reduces to 

    I
1

,
M

m
m

T w t m


 x x              (4) 

where  ,m x is time of flight from transducer pair m  to x. 

In the case where the relative phase velocity between 
transducer pairs is the same, the delayed waveforms can be 
combined coherently, without enveloping, which is referred 
to as coherent beamforming. The test statistic for the 
coherent detector can then be expressed as: 

     C
1

,
M

m
m

T w t m


 x x                    (5) 

where the magnitude is taken after summation rather than 
before. Coherent beamforming is ideal since the summation 
of the delayed waves tend to destructively combine at all 
locations except the true location of damage. However, in 
order for the average phase velocities along the path to each 
region of the structure to be the same, the transducers must 
be very closely spaced (less than a characteristic 
interrogation wavelength apart), limiting their coverage of 
the structure. In practice, for narrowband signals, the time 
delays are substituted by computationally faster phase shifts.  
As such, arrays of sensors that make use coherent beam 
forming, such as those packaged in each MD7 node, are 
referred to as phased arrays.   

Each sensor node implemented by MDC involves a single 
actuating transducer surrounded by six sensing transducers. 
Across the transducers in each node, the average phase 
velocity along the path to any given region is approximately 
equal, allowing for coherent beamforming.  From node to 
node, however, the average phase velocity is generally not 
equal and as such the scattered signals must be combined 
incoherently. This hybrid approach enables both effective 
imaging through coherent beam forming within each node 
as well as effective coverage of large areas through the 
placement of multiple nodes.   

      
6

H
1 1

, ,
N

nm
n m

T w t n m
 

 x x               (6) 

Figure 4 shows a graphical representation of the summation 
process.  The scans on the left are the result of coherent 
summation of the individual sensing-tranducers’ 
measurements with appropriate time delays while the image 
on the right shows the result of the incoherent summation of 
multiple MD7 nodes. 

 

Figure 4: Summation of multiple single-node radial scans 

  

 
Figure 5: Incoherent (left) coherent (right) and hybrid 

(bottom) imaging using three nodes. The 0.25 inch disc 
magnet is located at the center of the open black circle. 

 

Figure 5 shows a summary of results from these three 
imaging approaches for detecting a 0.25 inch magnet added 
to a three foot square plate. As shown, with coherent 
beamforming, a single node can identify both range and 
bearing of wave-scattering damage.  Sensing systems that 
are not capable of coherent beamforming, such as sparse 
transducer arrays, can only identify range to a target, forcing 
them to rely on multiple, widely spaced, sensing elements in 
order to triangulate the damage location. This significantly 
reduces the necessary instrumentation footprint of the MD7 
system when compared to traditional ultrasonic guided wave 
systems. 
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4.2 Matched Pursuits 

One of primary and most unique aspects of the present data 
processing approach is the using of matching pursuit 
algorithms for identifying scatter targets. This is done by 
decomposing the 2D radial scans for each node into a sum 
of wave reflection packets, so that the scans can be 
approximated as 

  ( , ), n n
n

nI a K rr r                        (7) 

where ia , ir  and i are the maximum likelihood estimates 

of the amplitude, range and bearing of the  largest wave 
reflection and  ,K r   is the wave reflection shape 

function.  The wave reflection shape function depends on 
the shape and frequency of the excitation pulse as well as 
the layout of the sensing array within each node.   

 

Figure 6: Beam pattern for 46 mm wavelength wave 
incident on the MD7 node 

In the case of the MD7 node and the pulse width and 
frequency used in this test, the shape function can be 
expressed as 

   2

2

, exp
2 r

r
K r B 



 
   

 
                       (8) 

where 2
r   is the width of the excitation pulse and   is the 

beam pattern for a wave incident at broadside (zero 
degrees). The beam pattern is graphed in Figure 6 (solid 
line) for the primary wavelength used in testing and the 
circular sensor configuration on the MD7 nodes. The 
function represents the leakage of a wave incident at zero 
degrees into other look directions in the radial scan. 

The amplitudes, ranges, and bearings of the wave packets 
are estimated according to the following matching pursuit 
algorithm: 

1. Identify range, bearing, and amplitude 
corresponding the global maximum of the radial 
scan image 

     
,

, arg max ,   ,,nn n
r

nnr I a I rr


               (9) 

2. Subtract the reconstructed wave packet from the 
radial scan image 

     ,, , n nnI I a K r rr r                  (10) 

3. Repeat until the error the between the original 
image and the reconstructed image reaches a 
minimum 

   
2

, 1

argmin ,,
N

Optimal n n
N r n

nN I a K r rr


 


    
 

  (11) 

 

 
Figure 7: Original radial scan for single MD7 node (left) 
and reconstructed scan (right) using reflection packets 

estimated using matching pursuit algorithm 

 
Figure 8: Reconstructed scan using narrowed-angle 

reflection shape function  

Figure 7 shows the original radial scan for a single MD7 
node (top) and a reconstructed image using discrete 
reflection packets.  As can be seen in the figure, the natural 
wave reflection shape functions leave a large degree of 
ambiguity in the target bearing. When the responses from 
multiple nodes are combined, this can lead to significant 
error in the target localization. To remedy this, the imaging 
software alternatively reconstructs the images using the 
same estimated target amplitudes, ranges, and bearings, but 
with a narrower shape function, as depicted in Figure 6 
(broken line).   Figure 8 shows the same reconstructed radial 
scan image using the narrower shape function. Here, the 
precise locations of the potential reflection targets can be 
more readily identified. 
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5. PATH TO PROGNOSTICS 

The development of sensors, hardware and diagnostic 
algorithms alone is not sufficient to achieve desired benefits 
for SHM.  At best, current SHM systems can to provide 
diagnostic information—typically in a proprietary and/or 
stand-alone format—and furthermore require a team of 
subject-matter experts to properly devise an installation 
strategy, calibrate algorithms and interpret the data. It is 
evident that for SHM system to be practically deployed as 
part of an integrated system health management (ISHM), 
tools must be created for SHM life-cycle management 
(LCM).  To that end, SHM-LCM software has been 
developed to manage the cradle-to-grave life-cycle of an 
SHM system for generic applications.  The initial version 
focuses on the MD7 pulse-echo style guided-wave SHM 
sensors previously described; however, the intent is to 
develop a framework that could eventually be sensor 
agnostic. There are 4 core modules to facilitate critical roles: 
Optimization, Calibration, Visualization, and Action.   

The Optimization module seeks to devise optimal sensor 
placement (using the Bayesian principals previously 
described) and excitation parameters in order to achieve 
probability of detection (POD) coverage requirements.  This 
module is fueled by a 3D mesh of the structure to be 
monitored, and allows a user to impose POD distribution 
through a graphical user interface (GUI), resulting in a list 
of grid point to locate SHM sensors to meet these 
requirements.   

The Calibration module is designed to guide a user through 
a series of material level tests in order to customize 
diagnostic algorithm variables (using the hybrid 
beamforming approach as previously described) to the 
system being designed.  The output would be a file to be 
uploaded onto the SHM system diagnostic server (could be 
a local data accumulator or remote slot-card in a HUMS or 
AHM system box) that would take individual sensor raw 
data, translate it to diagnostic results, and fuse data from 
both active and passive sensor sources to compile a 
complete diagnostic picture including both structural and 
sensor health with quantified uncertainty.   

5.1 Visualization Software 

The Visualization module is dedicated to generating a 
diagnostic composite picture based on data downloaded 
from the diagnostic server.  A prototype of the visualization 
tool was developed to help present ultrasonic imaging data 
to the user, seen in Figure 9.  The idea is that the input to the 
software would be a) finite element mesh from a designer, 
and b) probability distribution as a function of damage size 
from diagnostics algorithms.  The software would then 
stitch these results to the mesh and allow 3D visualization 
and manipulation (zoom, rotate, etc) of the diagnostic 
results on the actual geometry.  Controls in the form of 
“sliders” are provided to the user to be able to control key 

algorithms variables, as well as adjust the upper and lower 
visualization thresholds.  The intention is that eventually 
users will be able to toggle between probability of damage 
distributions for various calibrated damage modes within the 
GUI as well, as separated using time-windowed pattern 
recognition techniques such as K nearest neighbor (KNN). 

This all contributes to providing a system that “feels” more 
like conventional NDE, where, while there are default 
settings, a knowledgeable/advanced user could refine the 
results for a more precise location, or alternatively find 
smaller damage that is hidden by the effects of large damage 
response.  A screen-shot of the full three dimensional 
visualization of the software is shown in Figure 10. 

 

 

 

Figure 9: Prototype diagnostic visualization software (2D) 
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Figure 10: Prototype diagnostic visualization software (3D)  

 

5.2 Residual Performance 

The final Action module completes the life-cycle 
management by providing users with guides for responses to 
the diagnostic results.  This includes the generation of 
residual performance plots (ultimate load or deflection for 
example) as a function of probability of damage, using an 
embedded finite element engine that compares baseline 
models to those with reduced material properties or un-tied 
coincident nodes. Using this module, users can weigh 
detection confidence against the impact to the vehicle’s 
capabilities; and eventually this type of methodology could 
be embedded for real-time usage to enable fly-by-feel 
methodologies. Finally, repair optimization tools are 
planned to be incorporated in order to suggest means of 
restoring original performance for an assumed damage 
confidence-level design point.   

6. CONCLUSION 

This paper presents the framework of a software tool being 
developed to manage the life-cycle for SHM systems.  The 
core elements include optimization, calibration, 
visualization and action modules.  Much of the present 
research has focused on the optimization piece, using a 
Bayesian risk minimization approach to determine optimal 
sensor placement to minimize false positives while 
providing the desired coverage, attempting to use the 
minimum number of sensors to convey efficiency.  
Furthermore work was performed with regards to diagnostic 
algorithm calibration using a hybrid beamforming method.  
Finally, a visualization approach was demonstrated with an 
intuitive and fast GUI for near-real time display of 

diagnostic results with NDE-like controls. Overall, while 
the proposed framework was demonstrated using pulse-echo 
style guided wave sensors, it was developed such that it will 
be able to become sensor agnostic, and also be able to easily 
link up with prognostic methods for evaluating residual 
performance. The SHM-LCM software will enable SHM 
systems to be incorporated into ISHM by engineers rather 
than experts, making the technology more accessible, and 
commercially practical. 

ACKNOWLEDGEMENT 

This work was sponsored by the Office of Naval Research, 
under contract N00014-10-M-0301, monitored by Dr. 
Ignacio Perez.  The authors would like to additionally thank 
Dr. Liming Salvino, Dr. Roger Crane, Dr. Mark Seaver and 
Dr. Benjamin Grisso for their guidance during this program.  
Metis Design Corporation was the prime contractor under 
this STTR topic N10A-T042, and University of California 
San Diego was the subcontracted research institute. 

REFERENCES 

Fasel T. R., Kennel M. B., M. D. Todd, E. H. Clayton, M. 
Stabb, and G. Park, (2009). “Damage State Evaluation 
of Experimental and Simulated Bolted Joints Using 
Chaotic Ultrasonic Waves,” Smart Structures and 
Systems, vol 5(4), pp. 329-344. 

Flynn E. and M. D. Todd (2010). “Optimal Placement of 
Piezoelectric Actuators and Sensors for Detecting 
Damage in Plate Structures,” Journal of Intelligent 
Material Structures and Systems, vol. 21(2), pp. 265-
274. 

Holmes C, Drinkwater BW, Wilcox PD (2005). Post-
processing of the full matrix of ultrasonic transmit–
receive array data for non-destructive evaluation. NDT 
and E International. vol. 38, pp.701–711.  

Kay SM (1998). Fundamentals of Statistical signal 
processing, Volume 2: Detection theory.  Prentice Hall 
PTR.  

Kessler S.S. and P. Agrawal.(2007) "Application of Pattern 
Recognition for Damage Classification in Composite 
Laminates." Proceedings of the 6th International 
Workshop on Structural Health Monitoring, Stanford 
University 

Kessler S.S. and A. Raghavan (2008). "Vector-Based 
Localization for Damage Position Identification from a 
Single SHM Node." Proceedings of the 1st 
International Workshop on Prognostics & Health 
Management, Denver, CO 

Kessler S.S. and A. Raghavan (2009). "Vector-based 
Damage Localization for Anisotropic Composite 
Laminates." Proceedings of the 7th International 
Workshop on Structural Health Monitoring, Stanford 
University 

 


