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ABSTRACT 

Steam generator tube integrity is critical for the safety and 

operability of pressurized water reactors. Any degradation 

and rupture of tubes can have catastrophic consequences, 

e.g., release of radioactivity into the atmosphere. Given the 

risk significance of steam generator tube ruptures, it is 

necessary to periodically inspect the tubes using 

nondestructive evaluation methods to detect and 

characterize unknown existing defects. To make accurate 

estimates of defect size and density, it is essential that 

detection uncertainty and measurement errors associated 

with nondestructive evaluation methods are characterized 

properly and accounted for in the evaluation. In this paper 

we propose a Bayesian approach that updates prior 

knowledge of defect size and density with nondestructive 

evaluation data, accounting for detection uncertainty and 

measurement errors. An example application of the 

proposed approach is then demonstrated for estimating 

defect size and density in steam generator tubes using eddy 

current evaluation data. The proposed Bayesian probabilistic 

approach helps improve health management of steam 

generator tubes, thereby enhancing the overall safety and 

operability of pressurized water reactors.  

 

1. INTRODUCTION 

Pressurized water reactors (PWR) use heat produced from 

nuclear fission in the reactor core to generate electricity. In 

the process of generating electricity, steam generators (SG) 

play an important role by keeping the reactor core at a safe 

temperature and acting as the primary barrier between 

radioactive and non-radioactive sides of a nuclear power 

plant. Since SG tubes play such an important role, any 

degradation and rupture in the tubes can be catastrophic 

(Chatterjee & Modarres, 2011). According to the US 

Nuclear Regulatory Commission (2010), there have been 10 

steam generator tube rupture (SGTR) occurrences in the US 

between 1975 and 2000. One such incident occurred in the 

North Anna power station in 1987 when the plant reached 

its 100% capacity (US Nuclear Regulatory Commission, 

1988). The cause of tube rupture was found to be fatigue, 

caused by combination of alternating stresses resulting from 

flow-induced tube vibration and flaws resulting from 

denting of tubes at support plates. 

Given the risk significance of SGTRs, it is absolutely 

necessary to periodically inspect the tubes using 

nondestructive evaluation methods in order to detect and 

quantify the severity of unknown existing defects.
1
 All 

nondestructive evaluation methods have detection 

uncertainty and measurement errors associated with them 

that are a result of test equipment complexity, defect 

attributes, as well as human error. These uncertainties and 

errors need to be characterized properly and accounted for 

while estimating the size and density of defects.  

A defect of a given size might be detected only a certain 

percentage of the time (out of total attempts during 

nondestructive testing) depending on factors such as, noise 

level, test probe sensitivity, test equipment repeatability and 

human error. Hence, a defect has an associated probability 

of detection, which can be defined as the probability the 

inspection will detect the defect of true size, �, and is 

denoted by POD��� (Kurtz, Heasler, & Anderson, 1992). 

The data from which POD curves are generated can be 

categorized into two types: qualitative data, i.e., hit/miss; 

and quantitative data, i.e., signal response amplitude 

(�� ��. �), where ��  is signal response. The hit/miss data type 

is based on a binary process, i.e., whether a defect is 

detected or not detected. The POD for this data type is 

calculated as the ratio of the number of successful detection 

over the total number of inspections performed for a 

particular defect size, and is called the averaged POD. 

Hit/miss data are obtained from test equipments such as 

Sonic IR, and are very subjective in nature depending on 

operator experience (Li & Meeker, 2008), which induces 

uncertainty in the values of the POD. A logistic function is 

                                                           
1 In this paper defect may indicate a crack, flaw, pit, or any other 

degradation in a structural component. Size may refer to either through-

wall depth or surface length of a defect, unless specified. Density refers to 

number of defects observed per unit volume. 
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found to best-fit hit/miss data for modeling POD (Jenson, 

Mahaut, Calmon & Poidevin, 2010).  

The other type of POD data is more continuous in nature 

and is a measure of the amplitude of signal response 

recorded by the nondestructive test equipment, e.g., 

ultrasonic or eddy current. In the signal response data-based 

POD estimation method, the most important parameters are 

the inspection threshold (noise level) and the decision 

threshold. The inspection threshold is chosen to account for 

the noise indications by test equipment, and responses 

above this threshold are considered for detection/non-

detection decisions. Decision threshold is often based on 

previous field inspections and knowledge of the noise 

distribution, laboratory experience, and operator experience. 

The POD curve for signal response data type is modeled 

using a cumulative log-normal distribution function 

(Department of Defense, 1999; Jenson, et al., 2010), by 

determining the cumulative probability of responses (defect 

signals) greater than the decision threshold. The selection of 

decision threshold also determines the probability of false 

call (or false positive).
2
 Hence, there is lot of uncertainty 

associated with the values chosen for inspection and 

decision threshold, which lead to uncertainties in the values 

of the POD. In some cases, the signal response data is also 

converted into hit/miss data (Jenson et al., 2010) by using 

the decision threshold and averaged POD values are 

estimated, which are then fitted into a logistic function. 

The precision and accuracy of nondestructive test 

equipment, and also the techniques used to analyze and 

process the test results can contribute to measurement 

errors. For example, large volume of sensor data (such as 

ultrasound or digital images) are filtered, smoothed, 

reduced, and censored into another form by subjectively 

accounting for only certain features of the data. Also, often 

measurement models are used to convert the form of a 

measured or observed data into the corresponding value of 

the reality of interest (i.e., defect size). Uncertainties 

associated with data processing, model selection and human 

error can contribute to measurement errors. Measurement 

error is defined as the difference between the measured and 

the true value of a defect size. There are two components of 

measurement error: systematic (bias) error and random 

(stochastic) error (Jaech, 1964; Hofmann, 2005). Systematic 

error or bias is a consistent and permanent deflection in the 

same direction from the true value (Hofmann, 2005). 

Systematic error (bias) may indicate overestimation 

(positive bias) or underestimation (negative bias). In most 

nondestructive measurements, small defects are oversized 

and large defects are undersized (Kurtz et al., 1992; Wang 

& Meeker, 2005). Random error arises due to the scattering 

                                                           
2 A nondestructive test equipment response interpreted as having detected a 

flaw but associated with no known flaw at the inspection location 

(Department of Defense, 1999). 

or random variation in measured values (measurement 

uncertainty). 

In the past, there have been efforts to model defect severity 

in structural components considering nondestructive 

evaluation uncertainties. Celeux, Persoz, Wandji, and Perrot 

(1999) describe a method to model defects in PWR vessels 

considering the POD and random error in measurements. 

Yuan, Mao, and Pandey (2009) followed the idea of Celeux 

et al. (1999), to propose a probabilistic model for pitting 

corrosion in SG tubes considering the POD and random 

error of the eddy current measurements. However, both 

Celeux et al. (1999) and Yuan et al. (2009) did not consider 

the effect of systematic error or bias in measured defect 

sizes. Also, the POD has not been adjusted for measurement 

errors in their models. Further, they did not consider 

uncertainties in the values of the POD, which can affect the 

defect severity estimates considerably. 

This paper addresses some of the shortcomings of existing 

literature and develops a Bayesian probabilistic approach for 

modeling defect severity (size and density) in structural 

components considering the detection uncertainty (i.e., POD 

and associated uncertainty) and measurement errors (and 

associated uncertainty) associated with nondestructive 

evaluation methods. The paper then presents example 

application of the proposed approach for estimating defect 

severity in SG tubes using eddy current evaluation data. 

 

2. PROPOSED BAYESIAN APPROACH 

The proposed Bayesian approach updates prior knowledge 

of defect size and density with nondestructive evaluation 

data, considering the POD, measurement errors (systematic 

and random), and associated uncertainties, to infer the 

posterior distributions of defect size and density. The 

combined effect of POD, measurement errors, and 

associated uncertainties on measured defect sizes is captured 

by a likelihood function. In this section, models for 

measurement errors and POD function will be first defined; 

then the defect severity models will be presented, followed 

by the likelihood functions and Bayesian inference 

equations. 

The analysis of measurement error is based on assessing the 

deviation of the measured defect size from the actual or true 

defect size, as shown in Eq. (1): 

                      	
 � �� 
 �                                        �1� 
        

where, 	
 is the measurement error, �� is measured and � is 

the true defect size. Generally a linear regression 

relationship of the form shown in Eq. (2) is used to model 

measurement error (Kurtz et al., 1992; Jaech, 1964).   

 �� � �� � � � ��0, ���                               �2� 
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where, � and � are regression coefficients obtained through 

a regression analysis of �� ��. �, and � is the random error 

in measurement (scattering of the data), which is assumed to 

follow a normal distribution with mean zero and standard 

deviation �� (function of defect size). The regression 

coefficients (� & �) are jointly measure of systematic error 

or bias in measurements. Distributions of bias parameters 

represent epistemic uncertainty in the chosen measurement 

error model. From Eqs. (1) and (2), the measurement error 

can be expressed as: 

  

	
 � �� 
 1�� � �������������� � ��0, �������� �!"#
 $%%#%                �3� 
                  

Measurement error can then be expressed as a function of 

measured defect size using Eqs. (1) and (3) as: 

  

	
 � '� 
 1� (�� � �����������������
� ��0, ��������� �!"#
 $%%#%

             �4� 
     

The probability density function (PDF) of the measurement 

error can then be defined using a normal distribution with 

mean as the bias, *�, standard deviation as that of random 

error, 
+,
 , and measurement error as random variable. 

 -�	
� � . /*�, ���0                             �5� 
 

Assume that true defect size, �, is treated as random 

variable with the PDF, 2��|4�, where 4 is the vector of the 

PDF parameters. Defect size PDF considering measurement 

error can then be expressed as shown in Eq. (6). 

    2��|4� � 526��� 
 	
�7489:
-�	
�;	
            �6� 

      
All the defects in a structure are not detected during 

nondestructive testing. The detection of a defect depends on 

its size and is represented by the POD curve. The POD of a 

defect of size, �, can be represented by a function as shown 

in Eq. (7): 

    =>?��|@, �ABC� � D��, @, �EF� � �ABC�0, �ABC�        �7� 
         

where, D��, @, �EF� is the POD function, �EF is the detection 

threshold, @ is vector of parameters of the POD function, 

and �ABC  is the random error, which represents uncertainty 

in the POD data and is assumed to follow a normal 

distribution with mean zero and standard deviation �ABC 

(function of true defect size). The POD function is selected 

based on the type of data, e.g., hit/miss or signal response as 

discussed in Section 1. Joint distribution of the parameters 

of the POD function, H�@�, represents the epistemic 

uncertainty associated with the choice of the POD function. 

The marginal POD independent of random variables, @ and �ABC, can be expressed as shown in Eq. (8), where, ���ABC� represents the PDF of random variable, �ABC. 

 =>?��� � 5 5=>?��|@, �ABC�H�@����ABC�;@;�ABCI+JKL
   �8� 

 

The likelihood function for detecting defect of true size, �, 

given that the defect is detected �? � 1�, can then be 

expressed as shown in Eq. (9) (Celeux et al., 1999): 

         

N��|? � 1� � 2��|4� O =>?���="�4�                       �9� 
                     

where, ="�4� is the marginal POD that is a function of 

defect size distribution parameters only (independent of 

defect size), and can be expressed as: 

        

="�4� � Pr�? � 1� � 5 =>?���2��|4�;�         �10�S
T

 

 

During nondestructive measurements true defect sizes are 

unknown, while the only known quantities are the measured 

defect sizes and number of detections. The likelihood 

function of true defect sizes corresponding to measurements 

consisting of U$�  
exact defect sizes (using Eq. 9) considering 

measurement errors can be represented as: 

 

N��$V�WE|4� � 1X="�4�Y!Z�[ 5=>?���� 
 	
�26���� 
 	
�|48-�	
�;	
9:

!Z�

�\]
 

                              (11) 

Nondestructive measurements are in most cases interval or 

left censored, in which case the likelihood function of true 

defect sizes corresponding to measurements consisting of U�!E,^�  defects within the _EF interval (or in a left censored 

interval) (Cook, Duckworth, Kaiser, Meeker & Stephenson, 

2003), can be expressed as shown in Eq. (12).  

 

N̂ ���!E|4� � ` 1="�4�5 5=>?��� 
 	
�26��� 
 	
�|48-�	
�;	
9:
�a�
�abc� ;��d

!efg,a�
 

          (12) 

Therefore, the likelihood function of true defect sizes 

corresponding to total measurements consisting of � defect 

size intervals each with certain number of defects (U�!E,^ �  in _EF interval), and U$�   
exact defect sizes can then be expressed 

as shown in Eq. (13). 

 

N��|4� � ∏ i ]Aj�k�l l =>?��� 
 	
�26��� 
 	
�|48-�	
�;	
9:�a��abc� ;��m!efg,a�
̂\]  

             

 O 1X=;�4�YUn�∏ l =>?��o� 
	��26��o� 
 	��|48-�	��;	�	�Un�o�1    (13) 
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The posterior defect size distribution parameters can then be 

estimated using Bayesian inference as: 

  

p]�4|?�q�� � N�?�q�|4�pT�4�l N�?�q�|4�pT�4�;4k             �14� 
                   

where, p]�4|?�q�� is posterior distribution of defect size 

parameters and pT�4� is prior distribution of the 

parameters. The posterior defect size parameters obtained 

from Bayesian inference can then be used to estimate the 

corresponding marginal POD values (Eq. 10).  

The likelihood of observing U� �� U$� � ∑ U�!E,^�
̂\] � number 

of defects given U actual number of defects can be 

expressed by a binomial function (detection process is 

binary, i.e., either detection or no detection), as shown by 

Eq. (15): 

  N�U�|U� � / UU�0 X="�4�Y!�X1 
 ="�4�Y!s!�         �15� 
 

where, ="�4�  is the marginal POD value corresponding to 

posterior defect size parameters. In Eq. (15), the actual 

number of defects, U, is unknown whereas U� and ="�4� are 

known. The actual number of defects can be estimated using 

Bayesian inference as shown in Eq. (16): 

 

p]�U|U�� � N�U�|U�pT�U�∑ N�U�|U�pT�U�!                    �16� 
 

where, p]�U|U�� is posterior distribution of actual number 

of defects given the observation, U�, and pT�U� is the prior 

distribution of number of defects. The prior distribution of 

number of defects can be estimated from a Poisson function, 

which gives the likelihood of observing U total number of 

defects in a volume t, given prior defect density u as shown 

in Eq. (17). Here Poisson distribution is used because 

defects are assumed to occur with the same average 

intensity and independent of each other. 

   

pT�U� � nsvw �ut�!U!                             �17� 
                            

The posterior distribution of actual number of defects (Eq. 

16) can then be used to obtain the posterior defect density. 

The standard conjugate prior employed for Poisson 

distribution likelihood (Eq. 17) is a two-parameter gamma 

distribution (Simonen, Doctor, Schuster, & Heasler, 2003), 

in which case the posterior has the same functional form as 

the gamma distribution. Assume that prior distribution of 

defect density is: 

 pT�u� � -�����u|y], yz�                      �18� 
      

where, y] and yz are parameters of gamma distribution. 

Then the posterior distribution of defect density can be 

expressed as shown in Eq. (19).  

    p]�u� � -�����u|t � y], U � yz�              �19� 
           

A MATLAB routine was developed to implement this entire 

Bayesian approach for estimating defect severity in 

structural components. The proposed Bayesian approach 

considers systematic (bias) and random error in 

nondestructive measurements; suitably adjusts measurement 

errors in POD; considers uncertainty in POD values; 

incorporates prior knowledge of defect size and density; 

provides a framework for updating probability distributions 

of defect model parameters when new data become 

available; and is applicable to exact, interval, and censored 

measurements. 

 

3. APPLICATION OF PROPOSED BAYESIAN 

APPROACH TO EDDY CURRENT DATA 

An example application of the proposed Bayesian approach 

is presented in this section for estimating flaw severity in 

SG tubes using eddy current measurements of flaw sizes 

(through-wall depth). In this section, we first model POD 

and measurement error for eddy current evaluation using 

available data from literature, and then use the proposed 

Bayesian approach to estimate the posterior distributions of 

flaw size and density.  

The eddy current measurement error is assessed in this 

paper by a Bayesian regression approach (Azarkhail & 

Modarres, 2007) in light of available data from literature 

(Kurtz, Clark, Bradley, Bowen, Doctor, Ferris & Simonen, 

1990). The regression result is illustrated by Figure 1 with 

the 50% regression line representing the bias corresponding 

to mean values of the parameters � and � of Eq. (3). The 

95% uncertainty bounds of Figure 1 corresponds to the 

random error with a constant standard deviation, �. The 

parameters �, � and � obtained through Bayesian regression 

were then used in Eq. (5) to estimate the PDF of 

measurement error as a function of measured flaw size.  

In order to derive the POD model, it was assumed in this 

paper that eddy current signal response data were converted 

into equivalent hit/miss. The POD curve can then be 

expressed by a logistic function of the form as shown in Eq. 

(20) (Yuan et al., 2009): 

 

=>?��|{], {z, �EF� � |1 
 ]}$b~c~�]}$~c�,b~�b,g�� � �ABC�0, �ABC�   2��  � � �EF0                                                                   �qDn��o�n  �
          (20) 

where, � is flaw size, �EF is threshold size for detection, {] 

and {z are logistic function parameters, and �ABC  is the 

random error, which is assumed to follow a normal 

distribution with mean zero and standard deviation �ABC. A 
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flaw of size less than detection threshold will not be 

detected. Distributions of the POD model parameters {], {z, 

and �ABC were estimated using Bayesian regression 

approach in light of POD data available from literature 

(Kurtz et al., 1992). Figure 2 illustrates a sample logistic 

function curve and associated uncertainties fitted on POD 

data through Bayesian regression, with �EF � 0. 

Flaws in nuclear reactor vessel and piping are in most cases 

best fitted with an exponential distribution, with smaller size 

flaws having higher probability density and larger size flaws 

having lower probability density. Here we define the PDF of 

random variable �, i.e., true flaw size in SG tubes, assuming 

exponential distribution as: 

    2��|�� � �ns��                                   �21� 
                   

where, � is flaw size intensity. Flaw size distribution 

considering measurement errors can then be expressed as 

shown in Eq. (22).  

    2��|�� � 5�ns ����s9:�-�	
�;	
9:
               �22� 

            

Eddy current measurements for SG tubes (Dvorsek & 

Cizelj, 1993) used in our paper to demonstrate the 

application of the proposed Bayesian approach, were left 

and interval censored. The likelihood function of true flaw 

sizes corresponding to eddy current measurements was 

defined using Eq. (13), with measurement error limits set as 

-1 and 1 (to cover the extremes of bias and random error). 

The Bayesian posterior inference of the flaw size intensity 

was carried out using the MATLAB routine (Section 2). 

Prior distribution for flaw size intensity was generated using 

available data from literature (Liao & Guentay, 2009). 

Figure 3 illustrates the posterior and prior flaw size intensity 

distributions. Flaw size intensity values were sampled from 

the posterior distribution (Figure 3), and the corresponding 

marginal POD values, ="�4�, were estimated (Eq. 10). 

 

Figure 1. Measurement error and uncertainty bounds (95%) 

 

Figure 2. POD curve and uncertainty bounds (95%) 

The likelihood function of observed number of flaws was 

then defined using Eq. (15), and the Bayesian posterior 

inference of the actual number of flaws (Eq. 16) computed. 

The prior flaw density distribution used to obtain prior 

information on number of flaws (Eq. 17) was obtained from 

the available data in the literature (Liao & Guentay, 2009). 

Figure 4 illustrates the distribution of actual number of 

flaws for mean, 2.5% and 97.5% values of posterior flaw 

size intensity. Posterior distribution of flaw density was then 

estimated using Eq. (19) for a given volume corresponding 

to the tube-support plate 9. Figure 5 presents a box and 

whisker plot showing the distribution of actual number of 

flaws at tube support plate 9 for different flaw size intervals. 

 

Figure 3. Posterior and prior flaw size intensity 

 
Figure 4. Distributions of actual number of flaws 

-0.6

-0.2

0.2

0.6

1

0 0.5 1 1.5

M
ea

su
re

m
en

t 
 e

rr
o

r 
 (

m
m

)

True flaw size (mm)

97.5%

50.0%

2.50%

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.3 0.6 0.9 1.2 1.5

Mean

2.50%

97.50%

P
O

D

True flaw size (mm)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 2 4 6

Posterior (mean = 3.4)

Prior (mean = 3)

Flaw size intensity (per unit mm)

P
ro

b
a

b
il

it
y

  d
en

si
ty

0

0.01

0.02

0.03

0.04

0.05

0.06

50 100 150 200

Mean

2.5%

97.50%

P
ro

b
a

b
il

it
y

  d
en

si
ty

Actual number of flaws 

λ

λ

λ



Annual Conference of the Prognostics and Health Management Society, 2011 

6 

 

A comparison between the eddy current measurements and 

mean of estimated actual number of flaws is presented in 

Table 1 for different flaw size intervals. It is evident from 

Table 1 that nondestructive evaluation methods cannot 

detect and measure all the defects existing in a structure due 

to associated detection uncertainty and measurement errors. 

In Table 1, the mean number of flaws estimated using the 

proposed Bayesian approach (column 3) after considering 

all uncertainties and prior information, is substantially 

higher than eddy current measurements (column 2), 

especially for very small sizes.  

As illustrated by the example application, it is critical to 

consider detection uncertainty and measurement errors 

associated with nondestructive evaluation methods, in order 

to estimate the actual defect size and density distributions in 

critical structures. This is important because the defect size 

and density distributions estimated during in-service 

inspections can help in making appropriate and timely 

replacement/repair decisions, thereby preventing 

unanticipated failures. 

 

Figure 5. Box and whisker plot of actual number of flaws by 

size intervals at support plate 9 

 
Table 1. Measured vs. actual number of flaws 

 

4. CONCLUSIONS 

It is imperative to assess the health condition of SG tubes 

periodically during their operating life in order to prevent 

the occurrence of SGTR failures. Estimating defect size and 

density in SG tubes require appropriate methods to account 

for all uncertainties associated with nondestructive 

evaluation methods. This paper presents a Bayesian 

approach for estimating defect size and density in structural 

components considering detection uncertainty and 

measurement errors. The proposed Bayesian approach 

updates prior knowledge of defect size and density with 

nondestructive evaluation data, considering the POD, 

measurement errors, and associated uncertainties, to give the 

posterior distributions of defect size and density. The 

proposed approach considers both systematic and random 

error in nondestructive measurements, suitably adjusts 

measurement errors in POD, considers uncertainties in POD 

values, and captures the combined effect of POD and 

measurement errors (including associated uncertainties) on 

measured defect sizes by a likelihood function. The 

approach is applicable to exact, interval, and censored 

measurements; and also provides a framework for updating 

defect model parameter distribution as and when new 

information becomes available. An application of this 

proposed approach is demonstrated for estimating defect 

size and density in SG tubes using eddy current 

nondestructive evaluation data. This developed Bayesian 

probabilistic approach not only fills a critical gap in health 

management and prognosis of SG tubes, but can also help 

improve reliability of safety-critical structures in a broad 

range of application areas, including medical, avionics, and 

nuclear.  
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