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ABSTRACT 

Prognosis of defects for machines working under large 
variation of speed and load conditions is a topic still 
under development. Wind turbines are recent examples 
of such kind of machines that need reliable diagnosis 
methods. Vibration analysis can be of very limited use 
when the speed variation is too high. An effective 
angular resampling method can be very valuable as the 
first step of vibration signal processing but it is 
important to know what are the appropriate variables to 
be monitored.  
 
The authors present a statistical analysis method 
consisting of a linear model based on the parameters 
that characterize the system, in our case the variable 
speed and load, and the fault condition to which the 
system is subjected. With this method can be 
determined if the variable analyzed is significant, that is 
to say if are sensitive to these parameters and hence can 
detect the fault faster. The aim of implementing this 
method is to reduce the number of variables to be 
monitored, resulting in a savings not only in measuring 
equipment but also in times of processing and 
analyzing information. 
 
The results of vibration analysis of a test-bed working 
under large variation of speed and load are shown. 
Different tests with increasing level of defects are tried 
and the corresponding vibration is analyzed and 
modeled so an effective detection and prognosis can be 
done. Taking in to account such variation of speed and 
load for the vibration modeling can lead to a very 
sensitive detection of incipient defects.* 

                                                           
* This is an open-access article distributed under the terms of 
the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

1. INTRODUCTION 

Vibration analysis has been implemented and studied in 
rotating machinery for many years, and it is widely 
accepted as one of the main techniques for condition 
based maintenance (Hameed, 2009). With the advance 
of technology, more complex machines that operate 
under more severe conditions have been developed; an 
example of these conditions are those who operate 
under varying loads and speeds like wind turbines, 
excavators and helicopters (Barszcz, 2009; Blunt, 2006; 
Combet, 2009; Bartelmus, 2009). In these kinds of 
machines, gear transmissions play a crucial role in 
terms of their reliability. 
 
The initial research in the area of transmission damage 
detection was focused on vibration signal analysis 
(Davies, 1998). At first, as discussed in (Samuel, 2005), 
the statistical characteristics of the signal in the time 
domain were the primary focus of study. However, the 
field quickly expanded to include spectral analysis, 
time-frequency analysis, wavelet analysis, neural 
networks and mathematical modeling. This field is 
continuing to grow. As new signal processing 
techniques emerge, they are applied to the transmission 
damage detection problem and must be accommodated 
to the needs and specificities of each mechanical 
system. 
 
For systems which work under variable speed and load 
conditions one of the most appropriate signal 
processing method is angular resampling, however, 
using this method is only the fisrt step because it is 
necessary to analyze the information obtained and it is 
also important to determine that the variables that are 
being analyzed are those that provide the best 
information on fault diagnosis. For the selection of 
these variables, the authors present in this paper a 
statistical method based on a linear model to determine 
the sensitivity of each variable with respect to the 
failure and system operating conditions. 
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The main motivation for this work is the diagnosis of 
wind turbines, so the test bed that will be shown, is 
used to approach the phenomenon and failures of a real 
wind turbine. 
 

2. VARIABLE SPEED AND LOAD 
RESERARCH 

For the analysis of systems that operate under variable 
speed conditions, efforts were made to find techniques 
that allow for better processing and analysis of the 
signals captured from these systems. A theory of 
interpolation applied to time domain averaging was 
presented in (McFadden, 1989; McFadden, 1991) as an 
alternative to averaging when there is no rotational 
reference signal. 
 
Due to the fact that many systems are working under 
variable speed, the technique known as order tracking 
is very common in vibration analysis. Each of the steps 
that comprise the order tracking method are explained 
in (Fyfe, 1997). In this method the main algorithm is 
the angular resampling, which repositions the samples 
of vibration to be equivalents to a signal measured at 
constant speed. In this article comparisons are made at 
each step and the best alternatives for each are given. 
Later, (Bossley, 1999) presented a hybrid, computed 
order tracking method to perform angular resampling 
which was compared with two previously proposed 
methods by comparing the results.  
 
A method to perform angular resampling was presented 
in (Bonnardot, 2005) using the acceleration signals 
directly without the need for an encoder signal, but this 
method has the limitation that it can only be used when 
speed variations are small and it requires a sufficient 
number of harmonics.  
 
An extension to the algorithm proposed by Bonnardot 
was presented by Combet. However, it is not advisable 
for use in the case of very large speed variations, such 
as during acceleration (Combet, 2007; Combet, 2009). 
 
Another factor affecting the variability of the speed is 
the fluctuating load that modulates the amplitude of the 
vibration signal measurement and causes changes in the 
rotational speed of the system. Changes in the system 
speed cause a modulation in the characteristic 
frequencies of the mechanical elements of the system 
(Stander, 2005). 
 
The resulting spectra of a signal under fluctuating load 
conditions presents multiple peaks known as 
"smearing” in the region around the characteristic 
frequencies of the system.  
 

For the above reasons, the vibration monitoring 
systems require signal processing procedures to 
compensate for the fluctuations in shaft speed and the 
amplitude modulation caused by the variable load 
(UpWind, 2006; Stander, 2002; Stander, 2005). 
 
In the fluctuating load research many studies have been 
developed using various methods of signal analysis, 
among these studies are those by Stander, Heyns, Zhan 
and Bartelmus (Stander, 2006; Zhan, 2006; Bartelmus, 
2009). However, until now no studies have been 
developed in an extended work range of speed and 
load, and that is where our research focuses. 
 

3. ANGULAR RESAMPLING ALGORITHM 
FOR LARGE SPEED VARIATION 

Due to the speed variations caused by the operating 
conditions itself, and load variations, as is the case of 
wind turbines, it is necessary to process the vibration so 
its frequency content can be analyzed. The angular 
resampling technique can be used to solve this problem. 
 
The works that have been developed previously on the 
issue of angular resampling are applicable to cases in 
which the speed fluctuations are small (Bonnardot, 
2005; McFadden, 1989; Fyfe, 1997; Bossley, 1999). 
The application of this kind of signal processing to the 
vibration analysis of machines like wind turbines is 
limited, because the angular speed and hence 
acceleration variations experienced in a wind turbine 
are high and are not predictable as they depend on the 
wind.  
 
The method of angular resampling algorithm proposed 
by (Fyfe, 1997) is valid for linear profile of speed. The 
authors in (Villa, 2011) presented an evolution of this 
method, an angular resampling algorithm for a general 
case of variable speed and a generic number of 
keyphasors. 
 
The method proposed by (Fyfe, 1997) includes the 
following steps; first records the data at constant t∆  
increments, and them resamples this signal to provide 
the desired data at constant θ∆  increments, based on a 
keyphasor signal. To determine the resample times, it is 
assumed that the shaft is undergoing constant angular 
acceleration, the shaft angle; θ  is described by the 
following quadratic equation: 
 

2

210)( tbtbbt ++=θ
 

(1) 

 

The unknown coefficients
0b , 

1b  and 
2b  are found by 

fitting three successive keyphasor arrival times 
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(
1t ,

2t and 
3t ), which occur at known shaft angle 

increments. Once the resample times are calculated, the 
corresponding amplitudes of the signal are calculated 
by interpolating between the sampled data. After the 
amplitudes are determined, the resampled data are 
transformed from the angle domain to the order domain 
by means of an FFT.  
 
Due to the fact that the speed varies considerably 
between consecutive rotations, the decision taken was 
to use more than one pulse per revolution, and to use 
the full profile of the speed instead the analysis of three 
consecutive samples like the algorithm presented in 
(Fyfe, 1997). The main improvement of the proposed 
algorithm in (Villa, 2011) is to take full advantage of 
the whole measured speed to obtain an accurate angular 
resampled vibration. 
 
Figure 1 shows the results of this algorithm applied to a 
simulated signal created with parameters that 
characterize the test bed described in the next section.  
The simulated signal was created with a wide range of 
speed variation of and our resampling algorithm can 
process it without any problem. 
 

 

Figure 1. Spectrum before and after angular resampling 
for a simulated signal 
 

The angular resampling method developed by the 
authors (Villa, 2011) was also tested with experimental 
data with satisfactory results. The data shown 
corresponds to a bearing with damage in the inner ring 
of the fast Shaft (figure 2). 
 

 

Figure 2. Spectrum before and after angular resampling 
for an experimental signal 
 

4. TEST-BED TESTS 

The experiments presented in the next sections are to 
simulate in a test bed the behavior that occurs in the 
wind turbines. This test bed is used to simulate 
different defects under variable load and speed and it is 
controlled. 
 
The right side of the test bed (figure 3) is composed of 
a motor (instead of the generator of a wind turbine), a 
parallel gearbox and a planetary gearbox. Both 
gearboxes resemble the configuration and the gear ratio 
of a commercial wind turbine of 1:61. 
 
To simulate the load variable that is under the drive 
train due to the randomness of the wind, an electrical 
brake has been added to the test bed. For coupling it 
with the right side of the test bed, it is necessary to add 
another gearbox to compensate for the torque in the 
slow axis against the torque of the motor in the fast 
shaft. 
 

 

Figure 3. Test-bed 
 
For the acquisition of vibration signals we used four 
accelerometers distributed in axial and radial position 
in the gearboxes located on the right side of the test-
bed. 
 

5. EXPERIMENTATION 

The failures simulated on the test bed were unbalance 
and misalignment, starting with small values of defects 
and increasing with each new set of measurements to 
simulate a progressive failure (table 1). The table shows 
the value of the weight in grams and the equivalent 
percentage of the total weight of the rotor test bed, and 
the thickness of the sheet used to misalign and their 
respective angle of misalignment. 
 
To guarantee variable speed and load conditions, 
different profiles were generated to cover a random 
range of velocity between 1000 and 1800 rpm, and a 
range between 0 and 100% of load. An example of 
these profiles are shown in figure 4. 
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Table 1: Kind of faults 
Unbalance  Misalignment  

 gr %  mm º 
Unbalance 

A 
5.79 0.077 Misalignment 

A 
0.75 1.53 

Unbalance 
B 

9.13 0.12 Misalignment 
B 

2 0.78 

Unbalance 
C 

19.5 0.26    

Unbalance 
D 

28.8 0.38    

 
 

 
Figure 4. Speed and load profile 
 
These profiles were generated to cover a full day of 
measurements (24h), with constant intervals of speed 
and load every 100 sec. Speed measurements were 
generated starting at 1000 rpm because this is the 
approximately equivalent speed in the slow axis when a 
wind turbine begins to generate energy. 
 
Captures were made of 72 seconds with each of the 
four accelerometers mentioned in section 4 with a 
sampling frequency of 25600 Hz. The speed signal 
captured in the slow axis used for angular resampling 
was sampled at a frequency of 6400 Hz. 
 
The variables monitored from the vibration signals 
captured are order and natural frequencies of the 
system determined experimentally, calculated orders 
for specific elements such as gears and bearings, 
statistical parameters extracted from the time domain 
and the harmonics of order 1 to 10 of the rotation speed 
resulting in a final set of 166 variables (table 2). 
 
 
 
 
 
 
 
 
 
 

Table 2. Variables monitored 
Type of variable Number of 

variables 
Statistical variables 5 
Electrical variables 4 
Order 1X to 10X 10 

Gears 12 
Common orders for the 4 accelerometers 58 

Common frequency bands for the 4 
accelerometers 

40 

Planetary Axial 15 
Planetary Radial 4 

Parallel Axial 10 
Parallel Radial 8 

 

6. ANALYSIS AND RESULTS 

From monitored variables, we selected the classical 
parameters used for the analysis of the defects that are 
in analysis; the harmonic 1x in radial direction of the 
planetary gearbox to analyze the unbalance, and the 
harmonics 1x and 2x in the radial and axial direction of 
the planetary gearbox to analyze misalignment. 
 

6.1 Unbalance analysis 

First of all an analysis of the radial vibration level (first 
harmonic) for the different defects was made. It is 
presented the vibration for the 4 levels of unbalance 
compared with the vibration without defect, and can be 
clearly seen that the defects cannot be distinguished 
directly (figure 5) and are not statistically different 
(figure 6) due to the fact that the amount of unbalance 
and the speed shaft are very low. 
 

 

Figure 5. Vibration level harmonic 1X planetary radial 
(unbalance) 
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Figure 6. Box-plot harmonic 1X planetary radial 
(unbalance) 
 
If the same data (radial vibration level of first 
harmonic) is modeled with a linear model that takes 
into account the speed, load and the unbalance level the 
resulting parameters are not significant (table 3). 
 
The equation of the model is  
 

( ) LbSbFbbY 2130 +++=  (2) 

 
Where Y  is the vibration dependent on the speed, load 

and defect, Fbb 30 +  is the intercept, Sb1 is the 

slope as a function of speed and Lb2  is the slope as a 

function of load. 
 

Table 3: Coefficients modeling harmonic 1X planetary 
radial (unbalance) 

 Estimate Std. Error t value Pr(>|t|)  

b0 2.202e-04 4.208e-06 52.322 < 2e-16 *** 

b1 8.313e-05 9.484e-06 8.766 < 2e-16 ***  

b2 -1.895e-05 2.262e-06 -8.377 < 2e-16 *** 

F=5.79 -2.645e-07 1.819e-06 -0.145 0.88438  

F=9.13 4.686e-06 1.814e-06 2.583 0.00982 ** 

F=19.5 -8.896e-07 1.824e-06 -0.488 0.62582  

F=28.8 2.527e-06 1.810e-06 1.396 0.16274  

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

It must be said that for the case of unbalance, due to the 
small amount of added mass that can be practically 
used, the slow speed (below 0.5 Hz) and the wide range 
of working conditions (speed and load) the classical 
parameter used, that is the radial vibration at the first 
order, is not statistically conclusive. Therefore it is 
necessary to rely on other parameters like for example 
the 6x order. Although the defects cannot be 
distinguished directly (figure 7) with this parameter and 
are not statistically different (figure 8), the default 
parameter is significant if the vibration of 6x order is 
modeled using the speed, load and defect level (table 
4). 
 

 

Figure 7. Vibration level harmonic 6X planetary radial 
(unbalance) 
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Figure 8. Box-plot harmonic 6X planetary radial 
(unbalance) 
 

Table 4: Coefficients modeling harmonic 6X planetary 
radial (unbalance) 

 Estimate Std. Error t value Pr(>|t|)  

b0 2.159e-05 4.378e-07  49.31 <2e-16 ***  

b1 2.902e-05 9.866e-07 29.42 <2e-16 *** 

b2 -5.538e-05 2.353e-07 -235.31 <2e-16 ***  

F=5.79 -2.987e-06 1.892e-07 -15.79 <2e-16 *** 

F=9.13 -5.409e-06 1.887e-07 -28.66 <2e-16 ***  

F=19.5 -2.864e-06 1.898e-07 -15.09 <2e-16 *** 

F=28.8 -2.940e-06 1.883e-07 -15.61 <2e-16 ***  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 
With the modeling parameters of speed, load and defect 
can be determined which variables are most sensitive to 
failure and they are to be monitored. Based on this 
analysis, a selection of the most significant variables 
for the detection of the faults has been done resulting in 
a final set of 45 variables (table 5). 
 
 
 
 
 
 
 
 
 

Table 5. Selected variables to be monitored for 
unbalance 

Type of variable Number of 
variables 

Statistical variables 1 
Electrical variables 0 
Order 1X to 10X 10 

Gears 5 
Common orders for the 4 accelerometers 17 

Common frequency bands for the 4 
accelerometers 

9 

Planetary Axial 0 
Planetary Radial 1 

Parallel Axial 0 
Parallel Radial 2 

 

6.2 Misalignment analysis 

In the case of misalignment, the results obtained from 
the visual and the statistical analyses are similar to the 
unbalance, that is, with the analysis of the vibration 
level alone cannot be differentiated statistically the 
amount of misalignment of the harmonic 1x axial 
(Figures 9 and 10) and radial (Figures 11 and 12) or 2x 
axial (Figures 13 and 14) and radial (Figures 15 and 
16). 
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Figure 9. Box-plot harmonic 1X planetary axial 
(misalignment) 
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Figure 10. Vibration level harmonic 1X planetary axial 
(misalignment) 
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Figure 11. Box-plot harmonic 1X planetary radial 
(misalignment) 
 

 

Figure 12. Vibration level harmonic 1X planetary radial 
(misalignment) 
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Figure 13. Box-plot harmonic 2X planetary axial 
(misalignment) 
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Figure 14. Vibration level harmonic 2X planetary axial 
(misalignment) 
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Figure 15. Box-plot harmonic 2X planetary radial 
(misalignment) 
 

 

Figure 16. Vibration level harmonic 2X planetary radial 
(misalignment) 
 
On the other hand, a linear model of the vibration using 
the speed, load and defect levels as independent 
variables can lead to a detection and separation of the 
defect levels, where the significance level for the 
different defect levels are statistically significative 
(small p-value) as is shown for the harmonic 1x axial 
(table 6) and radial (table 7) or 2x axial (table 8) and 
radial (table 9). 
 

Table 6: Coefficients modeling harmonic 1X planetary 
axial (misalignment) 

 Estimate Std. Error t value Pr(>|t|)  

b0 3.618e-04 1.267e-05 28.568 <2e-16 ***  

b1 3.281e-04 2.877e-05 11.405 <2e-16 *** 

b2 -2.358e-05 6.661e-06 -3.539 0.000408 ***  

F=0.75 -5.325e-05 4.190e-06  -12.709 <2e-16 *** 

F=2 -5.301e-05 4.224e-06 -12.550 <2e-16 ***  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Table 7: Coefficients modeling harmonic 2X planetary 
axial (misalignment) 

 Estimate Std. Error t value Pr(>|t|)  

b0 2.713e-04 3.826e-06 70.923 <2e-16 *** 

b1 -2.378e-04 8.690e-06 -27.365 <2e-16 ***  

b2 -4.248e-06 2.012e-06 -2.112 0.0348 * 

F=0.75 -2.818e-05 1.266e-06 -22.264 <2e-16 ***  

F=2 -3.300e-05 1.276e-06 -25.867 <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  
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Table 8: Coefficients modeling harmonic 1X planetary 
radial (misalignment) 

 Estimate Std. Error t value Pr(>|t|)  

b0 2.436e-04 5.262e-06 46.293 <2e-16 *** 

b1 1.833e-05 1.195e-05 1.533 0.125  

b2 -2.544e-05 2.767e-06 -9.195 <2e-16 *** 

F=0.75 -3.829e-05 1.741e-06 -21.995 <2e-16 ***  

F=2 -2.943e-05 1.755e-06 -16.769 <2e-16 *** 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 

Table 9: Coefficients modeling harmonic 2X planetary 
radial (misalignment) 

 Estimate Std. Error t value Pr(>|t|)  

b0 9.265e-05 1.710e-06 54.185 <2e-16 ***  

b1 -6.068e-05 3.884e-06 -15.623 <2e-16 *** 

b2 -1.122e-05 8.992e-07 -12.474 <2e-16 ***  

F=0.75 4.753e-06 5.657e-07 8.402 <2e-16 *** 

F=2 -3.239e-06 5.703e-07 -5.680 1.49e-08 ***  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1  

 
Because cases of misalignment used in these tests are 
very severe, it is easy to detect with all the variables, 
however the method presented in this section to 
determine the most sensitive has reduced the number of 
variables to 133, in Table 10 shows this result. As the 
classical parameters used for monitoring misalignment, 
orders 1X and 2X in radial and axial directions are 
among this group of 133 variables, these are the 
variables to be monitored for this type of failure. 
 

Table 10. Selected variables to be monitored for 
misalignment 

Type of variable Number of 
variables 

Statistical variables 5 
Electrical variables 0 
Order 1X to 10X 10 

Gears 12 
Common orders for the 4 accelerometers 49 

Common frequency bands for the 4 
accelerometers 

32 

Planetary Axial 11 
Planetary Radial 2 

Parallel Axial 7 
Parallel Radial 5 

 

7. CONCLUSION 

The present work shows the first results of a statistical 
analysis of vibration applied to a test-bed working 
under large variability of speed and load conditions. To 
solve the problems caused by variations in speed and 
load, the vibration signals are processed with an 
angular resampling method developed by the authors. 
Based on this signal processing technique the classical 
vibration order parameters can be used to detect 
incipient faults like small unbalance and 
misalignments. The authors show how through a 
statistical vibration analysis taking into account the full 
working range of the test-bed (speed and load) as 
independent parameters can be determined which 
variables are most sensitive to these parameters and to 
the failure and can be reduced the number of variables 
to be analyzed do not always coincide with the 
variables recommended by the theory of vibration 
analysis. 
 
At present, the authors are working on an automated 
selection of parameters using computer intelligence 
methods, and are also working on a prognosis based on 
statistical significance levels of different models. 
Another important defect simulation under work is gear 
failure. The aim of the authors is to implement the 
prognosis algorithms for the detection of mechanical 
defects in the drive train of wind turbines. 
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