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ABSTRACT 
Most existing condition based maintenance (CBM) work 
reported in the literature only focuses on determining the 
optimal CBM policy for single units. Replacement and other 
maintenance decisions are made independently for each 
component, based on the component’s age, condition 
monitoring data and the CBM policy. In this paper, a CBM 
optimization method is proposed for multi-component 
systems, where economic dependency exists among the 
components subject to condition monitoring. In a multi-
component system, due to the existence of economic 
dependency, it might be more cost-effective to replace 
multiple component at the same time rather than making 
maintenance decisions on components separately. 
Deterioration of a multi-component system is represented by 
a conditional failure probability value, which is calculated 
based on the predicted failure time distributions of 
components. The proposed CBM policy is defined by a two-
level failure probability threshold. A method is developed to 
obtain the optimal threshold values in order to minimize the 
long-term maintenance cost. An example is used to 
demonstrate the proposed multi-component CBM method.  

1. INTRODUCTION 

Condition based maintenance (CBM) generally aims to 
determine an optimal maintenance policy to minimize the 
overall maintenance cost based on condition monitoring 
information. The health condition of a piece of equipment is 
monitored and predicted via collecting and analyzing the 
inspection data, such as vibration data, acoustic emission 
data, oil analysis data and temperature data. Various CBM 
policies and optimization methods have been proposed 
(Banjevic et al, 2001, Jardine et al, 2006). However, most 
existing condition based maintenance (CBM) work reported 
in the literature only focuses on determining the optimal 
CBM policy for single units. Replacement and other 

maintenance decisions are made independently for each 
component, based on the component’s age, condition 
monitoring data and the CBM policy.  

For multi-component systems which involve multiple 
components, economic dependency exists among the 
components subject to condition monitoring. For example, 
in the replacement of bearings on a set of pumps at a remote 
location, the fixed maintenance cost, such as sending a 
maintenance team to the site, is incurred whenever a 
preventive replacement is performed. Thus, for multi-
component systems, it might be more cost-effective to 
replace multiple component at the same time rather than 
making maintenance decisions on components separately. 
Tian and Liao (2011b) developed an proportional hazards 
model based approach for CBM of multi-component 
systems. In this paper, we proposed an approach which can 
utilize prediction information from more general prediction 
tools. More specifically, the proposed CBM can be used as 
long as the prediction tool can produce predicted failure 
time values and their associated uncertainty information. 
The cost evaluation method is presented. An example is 
used to illustrate the proposed approach.  

2. COMPONENT HEALTH CONDITION PREDICTION 

The output of component health condition prediction is the 
predicted failure time values and the associated uncertainty 
information. That is, at a certain inspection point, health 
condition prediction tools can generate the predicted failure 
time distribution. In this section, we present a general 
framework for generating the predicted failure time 
distribution.  

Suppose at a certain inspection point where the age of the 
component is ݐ, the predicted failure time is ௡ܶ,௧ , and the 
actual failure time of the component is ௠ܶ. The prediction 
error is defined in this paper as the ݁௡,௧ ൌ ൫ ௡ܶ,௧ െ ௠ܶ൯ ௠ܶ⁄ . 
We also define the life percentage as ݌௧ ൌ ݐ ௠ܶ⁄ . The 
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prediction error is a measure of the prediction accuracy. To 
obtain the predicted failure time distribution, Tian et al 
(2010, 2011a) developed a method to calculate the standard 
deviation of the predicted failure time, while using the 
artificial neural network (ANN) prediction model. The basic 
idea is that the ANN life percentage prediction errors can be 
obtained during the ANN training and testing processes, 
based on which the mean, pμ , and standard deviation, 

pσ , of the ANN life percentage prediction error can be 
estimated. These values can be used to build the predicted 
failure time distribution at a certain inspection point. 
Suppose the component age is t and the ANN life 
percentage output is tP , then the predicted failure time will 
be ( )ptPt μ− , and the standard deviation of the 
predicted failure time will be ( )ptp Pt μσ −⋅ . That is, 
the predicted failure time pT  at the current inspection point 
follows the normal distribution as:  

( ) ( )( )ptpptp PtPtNT μσμ −⋅−  ,~ .            (1) 

It is assumed that the ANN life percentage prediction errors 
follow normal distribution, and due to this assumption, the 
predicted failure time at a certain inspection point also 
follows normal distribution. It is also assumed that the 
standard deviation of the ANN life percentage prediction 
errors is constant and does not change over time.  

3. THE MULTI-COMPONENT CBM APPROACH 

In this section, we present the CBM policy for multi-
component systems, and the cost evaluation method for the 
CBM policy.  

3.1 The CBM policy 

In multi-component systems, the conditional probability 
כݎܲ is used to determine not only when and also which 
components should be preventive replaced at each 
inspection time. The CBM policy for multi-component 
systems are proposed as below: 

1) Identify number of components in multi-
component systems. 

2) Regularly inspect these components which 
subjected to condition-based monitoring. Calculate 
the predictive failure probability of each 
component at each inspection time based on the 
prediction method. 

3) When a component’s predicted failure probability 
ݎܲ  exceeds the level-1 threshold value ܲݎଵ

כ , 
preventively replace the component.  

4) When a component fails, replace it by a new one. 
5) When there is a preventive replacement or a failure 

replacement performed on any component in the 
system, simultaneously replace other components 

if their ܲݎ  values exceed the level-2 threshold 
value ܲݎଶ

 .כ

At each inspection time, one of the following events takes 
place exclusively for each component ݅:  

1. Component ݅  reaches ܲݎଵ
כ  ՜   a preventive 

replacement is performed on ݅. 
2. Component ݅  reaches ܲݎଶ

כ  if there is a failure 
replacement or a preventive replacement that needs 
to be performed on one of the components in the 
multi-component systems ՜  preventively replace 
component ݅ simultaneously. 

3. Component ݅  fails ՜  a failure replacement is 
performed, the component is replaced by a new 
one. 

4. None of the above ՜  component ݅  continues its 
normal operation. 

3.2 A simulation method for cost evaluation 

In our research, a simulation method is used to find the 
optimal condition failure probability threshold value which 
corresponds to the minimum expected replacement cost. We 
assume that there are N components in the multi-component 
systems. The procedure of the simulation method for CBM 
policy cost evaluation is shown in Figure 1, and is discussed 
in details as follows.  

Step 1: Define the maximum simulation iteration. 

Set the maximum simulation iteration NT, for example, 
100,000 inspection points. It means we start from inspection 
point 0 and end with inspection points 100,000. Between 
each inspection point, there is a fixed inspection interval L, 
like 20 days. 

Step 2: Generate a random failure time as the actual failure 
time of each component.  

At the starting point of a new life cycle of component i, 
generate a random failure time, FT୧, which follows Weibull 
distribution with the parameters α, β.  

Step 3: Generate a random predicted failure time of a 
component. 

At inspection point k ሺk ൌ 0, … , NTሻ , generate a random 
predicted failure time for component i based on ANN RUL 
prediction error. In a simulation process, this random 
predicted failure time simulate the predicted result based on 
ANN model using condition monitoring data at each 
inspection time. The predicted lifetime is denoted by PT୩୧ 
and follows normal distribution: 

     PT୩୧~Nሺµ, σଶሻ        (k ൌ 0, … , NT; i ൌ 1, … , N) (2) 

where µ ൌ FT୧ , σ ൌ σ୮ ൈ FT୧ , σ୮  is standard deviation of 
the remaining useful life prediction error. 

 



Annual Conference of the Prognostics and Health Management Society, 2011 

 3 

 

 
 

 

 
Figure 1. The procedure of the simulation method for cost 
evaluation in multi-component 

 

Step 4: calculation of predicted failure probability. 

During a lifetime of component i , calculate conditional 
failure probability P୰ౡ౟  in each inspection point by using 
equation below:  

P୰ౡ౟ ൌ
׬ 1

σ√2π
eିሺ୲౟ିµሻమ

ଶ஢మ dt୲౟ାL
୲౟

׬ 1
σ√2π

eିሺ୲౟ିµሻమ

ଶ஢మ dtஶ
୲౟

     

ሺk ൌ 0, … , NT; i ൌ 1, … , Nሻ 

Where t୧ is cumulated inspection time of component i in one 
life cycle,  L  is the constant inspection interval, µ  is the 
predicted failure time of different component at different 
inspection point of time PT୩୧ , and σ ൌ σ୮ ൈ FT୧ , σ୮  is 
standard deviation of ANN RUL prediction error. 

If Pr୩୧   is greater than the level-1 condition failure 
probability threshold Prଵ

כ , preventively replace the 
component at inspection point k. If there is no preventive 
replacement performs during a lifetime of the component i, 
perform failure replacement at the inspection point just past 
the generated failure time FT୧. When there is a preventive 
replacement or a failure replace took place at inspection 
time k, check other components in the system, if Pr୩୨ ሺj ൌ
1, … , Nሻ  is greater than the level-2 failure probability 
threshold Prଶ

כ  , perform preventive replacement on 
component j simultaneously. 

We also introduce two variables to represent the stature of 
the component i in the multi-component systems: 

∆୮୩୧ൌ 1    Component ݅ was preventively replaced; 

0    No preventive replacement  

∆f୩୧ൌ 1    Failure replacement on Component ݅  

0    No failure replacement on component ݅  

If ∆୮୩୧ൌ 0 & ∆f୩୧ൌ 0 , component i  continues its normal 
operation. 

Step 5: New life cycle starts.  

Start a new life cycle of component i after a preventive or a 
failure replacement takes place, go back to Step 2 and set 
the cumulated inspection time,  t୧, equals to 0. The iteration 
would not stop until maximum simulation iteration is 
reached. 

Step 6: Estimate total expected replacement cost.  

The expected replacement cost for multi-component system 
can be obtained by the following equation:  

C୰ ൌ C୭ୱ୲_୲୭୲ୟ୪
T୧୫ୣ_୲୭୲ୟ୪

ൌ ∑ Cౡ
NT
ౡసబ
NTൈL

 ሺ$/dayሻ                 (3) 

where C୩ is the total cost occurs at inspection point k, NT is 
the total inspection point of the simulation process, and L is 
the inspection interval.  

C୩ ൌ C୤ · ∑ ∆f୩୧
N
୧ୀଵ ൅ C୮ · ∑ ∆୮୩୧

N
୧ୀଵ ൅ Iሺ∆୮୩୧ሻ · C୮଴  (4) 
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where I൫∆୮୩୧൯ ൌ 1 , when ∑ ∆୮୩୧
N
୧ୀଵ ൒ 1 & ∑ ∆f୩୧

N
୧ୀଵ ൌ 0 ; 

otherwise I൫∆୮୩୧൯ ൌ 0 . N  is number of components under 
condition monitoring, C୮଴  is fixed preventive replacement 
cost and C୮  is variable preventive replacement cost, C୤  is 
failure replacement cost at a time. 

At inspection point k, C୩  can be in one of three possible 
circumstances as follows: 

C୩ ൌ C୮୭ ൅ nC୮, ሺ1 ൑ n ൑ Nሻ , there is at least one 
preventive replacement needed but no failure replacement; 

C୩ ൌ mC୤ ൅ nC୮, ሺ1 ൑ m ൑ N, 0 ൑ n ൑ N െ 1ሻ, there are at 
least one failure replacement and n preventive replacement 
perform; 

C୩ ൌ 0, there is neither preventive replacement nor failure 
replacement needed. 

Step 7: Determine the optimal CBM policy for multi-
component systems. 

The two level predicted failure probability are decision 
variables in the CBM policy for multi-component systems. 
The minimum calculated replacement cost corresponding to 
the predicted failure probability threshold value P୰ଵ

כ  and P୰ଶ
כ . 

So once P୰ଵ
כ  and P୰ଶ

כ  are determined, the CBM policy is 
determined. 

3.3 The CBM optimization model 

The objective of the CBM optimization is to determine the 
optimal failure probability threshold values to minimize the 
long-run expected replacement cost. The optimization 
model can be formulated as below: 

min C୰ሺPrଵ
,כ Prଶ

 ሻ                                       (5)כ

s. t. 

C୰ ൑ C଴ , Prଵ
כ ൒ Prଶ

כ  ൒ 0 

where C଴ is the cost constraint value, Prଵ
and Prଶ כ

-are Level כ
1 and Level-2 failure probability threshold values and also 
are the policy decision variables. 

4. EXAMPLE 

In this section, we present an example based on bearing 
vibration monitoring data collected from bearings on a 
group of Gould pumps at a Canadian kraft pulp mill 
company (Stevens 2006). We use totally 24 bearing 
histories which were examined in 8 pump locations, 
embracing 10 bearing failure histories and 14 suspension 
histories. For each pump, seven types of measurements were 
recorded: five different vibration frequency bands (8*5), 
and the overall vibration reading (8*1) plus the bearing’s 
acceleration data (8*1). So the original inspection data 
includes 56 (8*5+8*1+8*1) vibration measurements at each 
time. 

EXAKT was used to do the significance analysis for the 56 
vibration measurements (Stevens 2006). Two of the 
variables were identified as significant influence on the 
health of bearings. Then we use these two measurements 
and the age time of the component as the inputs of the ANN 
model. 5 failure histories and 10 suspension histories are 
used as training ANN inputs and the other 5 failure histories 
are used as test. After comparing the predicted lifetime to 
the actual lifetime, we found that the prediction error follow 
the normal distribution. The mean of prediction error is 
0.1385 and the standard deviation is 0.1429. 

For multi-component systems, level-1 and level-2 
probability thresholds are two decision variables to 
determine the optimal CBM policy, and therefore, the 
expected replacement cost of certain CBM policy can be 
evaluated by giving certain probability threshold values 
Prଵ

and Prଶ כ
כ . In this case, we consider a multi-component 

system consisting of 5 identical bearings which are 
operating in parallel and which are subject to random 
failures. The lifetimes of the individual components are 
independent random variables and are identically distributed 
as Weibull distribution with parameters α ൌ 1386.3 , β ൌ
1.8.  

The simulation procedure is as follows: 

Step 1: Set the maximum simulation inspection point is 
100,000, same as in single unit policy. Between each 
inspection point, the fixed inspection interval, L equals 20 
days. 

Step 2: At the starting point of each iteration for component 
i ሺi ൌ 1, … , 5ሻ , set t୧  equals 0, generate a random failure 
time, FT୧ , of the component which follows Weibull 
distribution.  

Step 3: At inspection point k ሺk ൌ 0, … ,100,000ሻ, generate 
a random predicted failure time,PT୩୧, of the component i, 
based on the ANN RUL prediction error. PT୩୧  follows a 
normal distribution. In this case: µ୧ ൌ FT୧ , σ ൌ σ୮ ൈ FT୧ , 
σ୮ is standard deviation of ANN RUL prediction error. Thus, 
we have  

PT୩୧~NሺFT୧, ሺ0.1429 ൈ FT୧ሻଶሻ         (6) 

Step 4: During the lifetime of component i, calculate the 
conditional failure probability Pr୧ of each inspection point, 
thus we have: 

P୰୩୧ ൌ
׬ 1

0.1429√2π
eି

ሺ୲౟ିPTౡ౟ሻమ

ଶൈ଴.ଵସଶଽమ dt୧
୲౟ାଶ଴

୲౟

׬ 1
0.1429√2π

eି
ሺ୲౟ିPTౡ౟ሻమ

ଶൈ଴.ଵସଶଽమ dt୧
∞

୲౟

       

ሺk ൌ 0, … ,100,000; i ൌ 1, … , 5; t୧ ൒ 0ሻ    

where t୧ is cumulated inspection time in one life circle for 
component i. 
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At each inspection point k, if Pr୩୧ ሺi ൌ 1, … , 5ሻ is greater 
than the given level-1 condition failure probability threshold 
Prଵ

ሺ0 כ ൏ Prଵ
כ  ൏ 1ሻ, preventively replace the component at 

time point k. If there is no preventive replacement during 
the lifetime of component i, perform failure replacement at 
the inspection point just behind FT୧ . When there is a 
preventive/ failure replacement occurs in time k , check 
other components, if Pr୩୨ ሺj ൌ 1, … ,5ሻ  is greater than the 
given level-2 failure probability threshold Prଶ

כ  , perform 
preventive replacement on component j simultaneously. 

Step 5: When there is a preventive/ failure replacement took 
place on component i, start a new life circle of component i 
by setting t୧ ൌ 0, and back to Step 2. The iteration would 
not stop until k equals 100,000.  

Step 6: Estimate cost rate. In this case, the fix preventive 
replacement cost C୮୭  is 3,000 and the variable preventive 
replacement cost C୮ is 1,800. We have: 

C୰ ൌ
Cost_total
Time_total

ൌ
∑ C୩

ଵ଴଴,଴଴଴
୩ୀ଴

100,000 ൈ 20
 ሺ$/dayሻ  ሺk

ൌ 0, … ,100,000ሻ 

where  

C୩ ൌ C୤ · ෍ ∆f୩୧

N

୧ୀଵ

൅ C୮ · ෍ ∆୮୩୧

N

୧ୀଵ

൅ Iሺ∆୮୩୧ሻ · C୮଴ 

ฺ C୩ ൌ 16,000 · ෍ ∆f୩୧

ହ

୧ୀଵ

൅ 1,8000 · ෍ ∆୮୩୧

ହ

୧ୀଵ

൅ 3,000

· Iሺ∆୮୩୧ሻ 

where   

∆௣௞௜ൌ 1    Component ݅ was preventively replaced; 

0    No preventive replacement  

∆௙௞௜ൌ 1    Failure replacement on Component ݅  

0    No failure replacement on component ݅  
 

 

 

 

If ∆୮୩୧ൌ 0 & ∆f୩୧ൌ 0, the component i continues its normal 
operation. 

Step 7: find the optimal total expected replacement cost. By 
setting different value of Prଵ  and Prଶ , the corresponding 
total expected replacement cost can be evaluated and the 
results are list in Table 1. The minimal cost value shows and 
the condition failure probability threshold value Prଵ

and Prଶ כ
 כ

can be determined.  

The expected cost as a function of Prଵ
and Prଵ כ

Prଶ/כ
כ  is 

plotted in Figure 2. The optimal failure probability threshold 
values can be observed from this figure, where the lowest 
expected cost exists.  

 
Figure 2. Cost versus two condition failure probability 
threshold values 

 

The minimal expected cost for multi-component occurs 
when Prଵ

כ ൌ 0.100259  and Prଶ
כ ൌ 4.0973 ൈ 10ିସ , the 

expected maintenance cost for this multi-component system 
containing 5 components is $17.5651/day. 

The comparative results are showed in Table 1. Compare to 
the CBM policy for single component, the optimal cost is 
much lower when using multi-component CBM policy, cost 
savings in percentage is 27.21%. 

 

Table 1. Comparison of cost between single unit and multi-
component CBM policy 

  
Single Unit 

Multi-component 
systems 

 (5 components) 

Cost ($/day) 4.8264 17.5651 

Cost for  

each component ($/day) 
4.8264 3.513 

Cost savings (%) 27.21%   

 

This comparative study demonstrates that the proposed 
multi-component CBM policy can achieve a lower total 
expected replacement cost by taking advantage of economic 
dependency in the multi-component systems.  
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5. CONCLUSION 

In this paper, a CBM optimization method is proposed for 
multi-component systems, where economic dependency 
exists among the components subject to condition 
monitoring. Deterioration of a multi-component system is 
represented by a conditional failure probability value, which 
is calculated based on the predicted failure time 
distributions of components. The proposed CBM policy is 
defined by a two-level failure probability threshold. A 
method is developed to obtain the optimal threshold values 
in order to minimize the long-term maintenance cost. An 
example is used to demonstrate the proposed multi-
component CBM method. 
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