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ABSTRACT

Wave propagation is investigated in sandwich composite pan-
els using analytical approach for layered materials, Mindlin
plate theory and finite element modeling in the context of de-
veloping an on-board structural health monitoring system. It
is shown that theoretical results are in agreement with the re-
sults of numerical simulations and with experimental results.

1. INTRODUCTION

Composite sandwich panels (CSP), consisting of fiber-
reinforced facesheets separated by low-density cores, offer
lightweight and flexible production capabilities and high per-
formance: high strength, damage tolerance and thermal re-
sistance (Zenkert, 1995),(Zenkert, 1997). During the past few
decades, the CSPs have been steadily replacing the traditional
materials in many industries including e.g. automotive, ma-
rine, and aerospace. Their stiffness-to-weight ratios and dam-
age tolerance are especially attractive in aerospace industry
leading to higher payloads (Bednarcyk, Arnold, Collier, &
Yarrington, 2007). However, the multi-layered construction
and laminate layup of the facesheets allow for debonding, de-
lamination, and other internal flaws that are hardly visible and
may severely damage the structural strength of the CSPs. In
this context, it becomes important to develop reliable on-line
structural health monitoring (SHM) systems of the composite
panels. The aerospace industry has one of the highest payoffs
for SHM since damage can lead to catastrophic failures.

There are several techniques currently under investigation
(See, for example,(Raghavan & Cesnik, 2007)) for diag-
nostics including e.g. embedded fiber optic sensors for
strain measurement, active ultrasonics, passive acoustic emis-
sion monitoring, and electromechanical impedance measure-
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ments. The Lamb wave based diagnostics of CSPs is one of
the most promising SHM techniques due to the similarity be-
tween the Lamb wavelength and the CSP thickness, the abil-
ity to travel far distances, high sensitivity, active sensing and
low cost of piezoelectric wafer actuators/sensors (Raghavan
& Cesnik, 2007). The development of the reliable SHM tech-
nique based on guided wave propagation in CSPs is compli-
cated due to heterogeneity of the sandwich structures. This
study is needed for better understanding and more reliable
model predictions in the context of development of the in-
flight SHM for the next generation of the heavy-lift vehicle.

2. MODELING WAVE PROPAGATION

A three-dimensional formulation relying on a global ma-
trix technique provides a general framework for analysis
of wave propagation in an anisotropic multi-layered medium
(Zakharov, 2008). We consider symmetrical sandwich struc-
tures and the equation of motion in each layer reads

∂pσ
j
mp + ρjω

2um = 0, m, p, j = 1, 2, 3. (1)

where forj-th layerρj is the density. For an isotropic mate-
rial the stressesσj

mp and strainsεj
mp satisfy Hook’s law and

Kelvin–Voigt model of linear viscoelasticity and constitutive
relations have the form

σj
mp = (λ′j + λ′′j ∂t)δmpε

j
kk + 2(µ′j + µ′′j ∂t)εj

mp.

For small displacementsu(n)
j components of the deformation

matrixε
(n)
mp are given by the following relation

εj
mp =

1
2

(
∂pu

j
m + ∂muj

p

)
,

For the complex-valued representation of Lame constants,
wave speeds

λj = λ′j − iωλ′′j , µj = µ′j − iωµ′′j . (2)
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cj
p =

√
(λj + 2µj)

ρj
=

√
Ej(1− νj)

ρj(1 + 2νj)(1− 2νj)
= α|j , (3)

cj
s =

√
µj/ρj =

√
Ej/2ρj(1 + νj) = β|j , (4)

kj
p = ω/cj

p, k
j
s = ω/cj

s. (5)

where material parametersα, β, µ, λE, ρ, ν correspond to
each layerj = 1, 2, 3.

The three-dimensional formulation assumes the continuity of
displacementsuj and components of stress tensorσij on the
inner boundaries of the layers and allows for a quite general
form of the boundary conditions. For the circular plate PZT
sensors exiting dynamic stresses at a circular source could be
considered symmetrical about its axis (0Z) and on the inter-
faces x3 = zj , j = 1, 2, 3.

Let’s consider an infinite sandwich panel for theoretical mod-
eling and square panel for FE simulation. The cylindrical co-
ordinates(r, θ, z) are used for consideration where zeros of
z-axis coincide with the midplane of the panel. In the sim-
plest case due to axisymmetry the solution problem is two
dimensional in coordinates(r, z) (Zakharov, 2008)

uj
r =

[
−ujB′

n(sr) + wj n

kr
Bn(sr)

]{
cos nθ
− sin nθ

}
, (6)

uj
θ =

[
uj n

kr
Bn(sr)− wjB′

n(sr)
]{

cos nθ
− sin nθ

}
, (7)

uj
z = vjBn(sr)

{
cos nθ
− sin nθ

}
. (8)

where the first or second term could be chosen in the French
brackets, so they represent the terms in the trigonometrical
Fourier series wrtθ. The termsBn=Bn(sr) are any of the
appropriate Bessel function or Hankel function of the first or
second kind andB′ = dBn(sr)/d(sr),

[
uj

vj

]
= A+j

L

[
cosCαz

Cj
α

k sin Cαz

]
+ A−j

L

[
sin Cαz

−Cj
α

k cosCαz

]

+A+j
S

[
−Cj

β

k cos Cβz
sin Cβz

]
+ A−j

S

[
Cj

β

k sinCβz
cosCβz

]
, (9)

wj = B+j
S cosCαz + B−j

S sinCβz. (10)

where A±j
L,S , B±j

S are constants and displacement compo-
nents are composed of symmetrical and anti-symmetrical
terms according toz = 0, which are corresponding to sym-
metrical and anti-symmetrical modes, respectively. For the
homogeneous material properties the general approach out-
lined above can be simplified allowing for further analytical
treatment of the problem of finding dispersion relations of the
sandwich panel (Zakharov, 2008),(Lowe, 1995). Accord-
ingly, the Lamb wave dispersion relations are determined by

the determinant of square matrix of the 16x16 order

det




[D0b] [−D1t]
[D1b] [−D2t]

[D2b] [−D3t]
[D3b] [−D0t]


 = 0,

(11)
where theD matrices for the top (indext) and bottom (index
b) of a layer can be expressed, respectively, as

Djt =




s sgα Cβ −Cβgβ

Cα −Cαgα −s −sgβ

iρB iρBgα −pβCβ pβCβgβ

pαCα −pαCαgα iρB iρBgβ




j

,

(12)

Djb =




sgα s Cβgβ −Cβ

Cαgα −Cα −sgβ −s
iρBgα iρB −pβCβgβ pβCβ

pαCαgα −pαCα iρBgβ iρB




j

,

(13)
wherej = 0 corresponds to air,s is the wave number in the
direction of wave propagation,

pα = 2iρsα2, pβ = 2iρsβ2,

Cα = (ω2/α2 − s2)1/2, Cβ = (ω2/β2 − s2)1/2,

gα = eiCαz, gβ = eiCβz, B = ω2 − 2β2s2.

All matrices in (11) are4 × 4 exceptD0b andD0t which are
4× 2.

Let us investigate dispersion curves for typical sandwich
structure with soft core about 1in in thickness and carbon fibre
reinforced plastic facesheet consisting of 14 ply. The veloc-
ities are determined by the geometry of the structure as well
as longitudinal and shear velocities characterizing materials.
In the simulations we used CFRP face sheets with Young
modulus 60GPa, Poisson ratio 0.3 and density 1500kg/m3and
homogenized core with Young modulus E=80MPa, the same
Poisson ratio and density was 100kg/m3. As a result, longi-
tudinal velocity was 7338m/s and 1038m/s and shear velocity
3922 and 555m/s, correspondingly. These velocities are plot-
ted by green dashed lines. The spectrum of the waves (9),(10)
is presented in Figure 1 and 2 for the case when the core of
the sandwich(j = c) is much softer than for the facesheet.
The vibration of the soft core is restricted by rigid surfaces of
the face sheet and we have many local modes in the structure.
The dispersion curves change very drastically if the sandwich
core is visc oelastic. Many curves corresponding to honey-
comb core just disappear (Figure 2) and for the case when the
real and imaginary parts of the elastic module become com-
parable the propagation is determined by facesheet modes.

Analyzing dispersion plots for low velocities we can see
that at at low velocities dispersion curves are modulated by
facesheet flexural velocity. At higher frequency these curves
tend to shift to shear velocity of the core. For high velocities
dispersion curves exhibit a set of vertical paths where phase
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a

b

Figure 1: Dispersion curves of Lamb wave of phase veloci-
ties with respect to frequency for symmetric sandwich, (a) –
low speed limit and (b) – high speed limit, blue lines - shear
waves, lilac lines - Lamb waves).

velocity changes by a large value at the same frequency. The
group velocity at these frequencies (vertical lines) is close to
zero and this means waves are practically standing. This state-
ments is confirmed by FE simulations.

If the core is viscoelastic we have coupling of different modes
and the dispersion curves start to intersect, some of the modes
vanish and some of them change their trend with increasing
frequency (Fig. 2). With introducing viscoelasticity, as seen
from the plots, high velocity Lamb wave modes tend to S0
modes of the facesheet and shear modes to shear velocity in
the facesheet. At a low frequency the limit coupling is not
so pronounced but the tendency is that we have two charac-
teristic velocities here: shear velocity of the core and flexural
velocity of the facesheet (green dashed line in the Fig. 1).
These two modes mainly determine the form of the disper-
sion curves at the low velocity limit.

It should be noted that attenuation increases very sharply in
the frequency range where coupling takes place. This can be
seen from simulations presented in Figure 3 when red dashed
lines vanish due to the interaction between modes associated
with viscoelasticity. The small interval in 1-10kHz is plotted
to see how coupling between S0 and A1 arises with small
viscoelasticity (E′′ = 0.01E′). In this case standing modes
transform into propagating modes with high attenuation in the
frequency region of coupling. As can be seen from Fig. 3

a

b

Figure 2: Dispersion curves of Lamb wave of phase veloci-
ties with respect to frequency for symmetric sandwich with
viscoelastic coreλ′c = 0.1λc, µ′c = 0.1µc; (a) – low speed
limit, and (b) – high speed limit. Blue lines - shear waves,
lilac lines - Lamb waves.

attenuation increases practically in the order at the frequency
region of 7.8 kHz where coupling takes place (dark dashed
line).

A more simplified approach to investigation of wave propa-
gation for SHM in CSP lies in using averaged over thickness
parameters of the structures since we obtain 2D model in con-
trast to 3D theory considered above. In many cases, such ap-
proach is sufficiently good since it makes it possible to find
a simpler analytical solution for propagating waves than the
solution described by formulas (9),(10). The next section is
devoted to the review of the Mindlin plate theory and the ap-
plication of this approach to wave propagation modeling.

3. M INDLIN PLATE THEORY FOR SANDWICH

STRUCTURES

In the Mindlin plate theory the displacements of the plate in
the transverse, radial, and tangential direction components are
expressed as follows (Mindlin & Deresiewicz, 1954)

w = w(r, θ, t), u = zψr(r, θ, t), v = zψθ(r, θ, t),

wherez is the coordinate defining points across the thickness
of the plate (z = 0 is the neutral plane), w is the out-of-
plane displacement of the wave,ψr andψθ are the rotations
of vertical lines perpendicular to the mid-plane.
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Figure 3: Dispersion curves of Lamb wave of phase veloci-
ties with respect to frequency for symmetric sandwich panel
(red solid line corresponds to viscoelastic coreE′ = 0.01E′′,
dashed curve - elastic coreE′′ = 0, black dashed line is at-
tenuation of the coupled mode, [Np/m] ).

The governing equations for the symmetric honeycomb pan-
els in terms of moments and shear forces can be presented
based on shell approximation by the following approach
(Rose & Wang, 2004)

1
r

∂Qθ

∂θ
+

∂

∂r
Qr +

1
r
Qr −Qθ = ρ

∂2

∂t2
w , (14)

∂Mrr

∂r
+

1
r
Mrr− 1

r
Mθθ +

1
r

∂

∂θ
Mrθ−Qr = I

∂2

∂t2
ψr , (15)

1
r

∂Mrθ

∂r
+

2
r
Mrθ +

1
r

∂

∂θ
Mθθ −Qθ = I

∂2

∂t2
ψθ , (16)

whereρ =
∑3

k=1

∫ bk

ak
ρkdz, is the mass density per unit area

of the plate, indexk corresponds to the material layer,ρk is
the density,I =

∑3
k=1

∫ bk

ak
ρkz2dz is the mass moment of

inertia. Each layer in the sandwich panel is bounded by the
coordinatesak andbk in the thickness direction as shown in
the Figure 4 (a). The stress resultants in terms of moments
Mrr, Mθθ, andMrθ, along with shear forcesQr andQθ can
be related to the transverse displacements and rotations as fol-
lows:

Mrr =
D

r

[
r
∂ψr

∂r
+ ν(ψr +

∂ψθ

∂θ
)
]

, (17)

Mrθ =
D(1− ν)

2r

[
∂ψr

∂θ
− ψθ + r

∂ψθ

∂r

]
, (18)

Mθθ =
D

r

[
νr

∂ψr

∂r
+ ψr +

∂ψθ

∂θ

]
, (19)

Qr = 2κ2G

(
ψr +

∂

∂r
w

)
, (20)

Qθ = 2κ2G

(
ψθ +

1
r

∂

∂θ
w

)
, (21)

a

b

Figure 4: (a) - General view of the panel, (b) - Dispersion
curves of the velocities with respect to frequency of symmet-
ric sandwich panel in Mindlin approximation.

whereD = Ef t3f
6 + Ect3c

12 + Ef tf (tf+tc)
2

4 - is the flexural stiff-
ness,ν is the Poisson ratio, which for the sake of simplicity is
taken as equal for each layer, Ef , Ec are the Young’s modulus
of the facesheet and the core, correspondingly,tf , tc - thick-
nesses of the facesheet and the core layers,G is the shear
stiffness of the plate,κ is the shear correction factor ˜1.

The general solution of the acoustic waves propagation with
cycling frequencyω is (w, ψ) = Re [(W,Ψ) exp(−iωt)]
(Rose & Wang, 2004), where and throughout this paper Re(.)
denotes the real part of the quantity appearing in parentheses,
ψ=(ψr ,ψθ). The variablesW,Ψ are presented by expressions

W = W1 + W2,

Ψ = ξ1∇W1 + ξ2∇W2 − ez ×∇V,

whereez is a unit vector in z direction (the displacement is
uz=wez, normal stress and strain in the thickness direction of
the plate are not included in Mindlin plate theory),W1,W2, V
satisfy three Helmholtz equations

∆W1 + k2
1W1 = 0, (22)

∆W2 + k2
2W2 = 0, (23)

∆V + k2
3V = 0 (24)

and ∆, ∇ - Laplace and Nabla operators, correspondingly.
For isotropic sandwhich layers
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k2
1,2 =

1
2
(k2

p + k2
s)±

√
k4

f +
1
4
(k2

p − k2
s)2, (25)

k2
3 =

k2
1k

2
2

k2
p

(26)

ks = ω/cs, kp = ω/cp, kf = (ρω2/D)1/4,

cs = (G/ρ)1/2, cp = (D/I)1/2, ξj = (ks/kj)2 − 1.

The dispersion curves for a typical sandwich panel corre-
sponding to three branches are shown in the Figure 4 (b). The
flexural wave corresponds to the realω,k in wholeω domain.
The second (and third) dilatation branch of (k,ω) dependence
become real starting from the cutoff frequency.

For a similar 3D consideration we will consider a circular-
patch actuator on the Mindlin plate generated by a surface
traction plate waves in the form (Mindlin & Deresiewicz,
1954). In this case, the radially directed bending moments
mr , uniformly distributed along the ring of radiusr0 , can be
described as follows:

mr =
1
2
hp(t)δ(r − r0), mrθ = 0,

wherep(t) is the amplitude of the force.

The source term for circular force leads to the solution for
out-of-plane displacement

w(r, ω) = s1H0(k1r) + s2H0(k2r), (27)

where radius vectorr is counted from the center of the actua-
tor and coefficientss1, s2 are presented by

s1 =
iπhp(ω)

4D

k1r0J1(k1r0)
k2
1 − k2

2

,

s2 = − iπhp(ω)
4D

k2r0J2(k2r0)
k2
1 − k2

2

,

whereJn and Hn are the Bessel and the Hankel functions
of the first kind, respectively. We will consider that the fre-
quencyf of the source is sufficiently highω=2πf>ωc, where
ωc is the cutoff frequencyωc=(G/I)1/2. As a result, the prop-
agation spectrum is determined by two real wavenumbers k1

and k2. Expressions for rotationsψ=(ψr ,ψθ) and, conse-
quently,u(r, ω), v(r, ω) can be found in the article (Mindlin
& Deresiewicz, 1954).

4. DYNAMICS . TRANSIENT SOLUTION

To study the transient wave propagation we consider that the
plate is excited by a pulse of the load stimulated by a PZT
sensor (Raghavan & Cesnik, 2007). The expression for the
wave pulses in the plane (x,y) may be derived from the steady-
state solution in the frequency domain by applying the Fourier
transform technique.

Let us consider that any pulse of the wave can be expanded
into the Fourier transform which represents pulse as a series
of plane waves. If the Fourier spectrumG(ω) of the signal
g(t) is

g(t) =
1
2π

∫ ∞

−∞
G(ω)e−iωtdω, (28)

then the final solution for mechanical fields in the time do-
main will be




uj(r, t, θ)
vj(r, t, θ)
wj(r, t, θ)


 = Re

1
2π

∫ ∞

−∞
G(ω)




uj(ω)
vj(ω)
wj(ω)


 e−iωtdω

(29)
For Mindlin plate theory we omit indicesj. Let us present
the results obtained by (29) and compare them with the re-
sults of the direct computer simulation of the real honeycomb
plate. We consider the Hanning type actuation signals which
are usually used for fault detection in SHM (Raghavan & Ces-
nik, 2007). The Hanning signal can be presented in the form

g(t) = [Θ(t)−Θ(t− 2πN/ω0)] [1− cos(ω0t/N)] sin(ω0t)
(30)

whereN is a parameter of impulse,f 0 =ω0/2π is a carrier
frequency,Θ(t) is the Heaviside step function. The selection
of the driving frequencyf was made in the frequency range
from 20 to 100 kHz and this selection is critical for Lamb
waves generation and fault detection.

We compare the analytical results with the corresponding re-
sults obtained by the Finite Element simulation. The FE mod-
eling for 2D Mindlin plate is presented in Fig. 6. and it fits
well with the theoretical approach. The main difference be-
tween these signals is that the theoretical results are valid for
the infinite plate, and the FE 2D Mindlin plate model pro-
vides the result which takes into account reflections from the
boundaries. The comparison of the 3D modeling of sandwich
composite panels with the theoretical result is considered in
the last section.

4.1 Propagation of the signal

As an example, for simulation we used Hunning pulses with
3.5 windowed input waveform with different carrying fre-
quencyf. The Fourier transform of such signal is presented
in Fig. 5 a) forf = 100kHz (dashed red line). Disper-
sion curves are presented in Fig. 5 (b) calculated according to
the characteristic equation (11). It can be seen that the main
domain of narrowband 3.5 windowed input waveform taking
part in wave propagation is sufficiently broad (the domain be-
tween two red lines in dispersion curves Fig. 5 (b), which
is taken, for example, on the level of 10 db Fig. 5 (a). The
modesA0 andS0 of the facesheets are the leading ones in
the formation of wave propagation through the structure. The
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wave velocitiesv = ω/k, wereω = 2πf , k is a wavenum-
ber, of the soft core are much lower than the facesheet veloc-
ities and that is why most dispersion curves have much lower
slope than facesheet modes, except for the small vicinity of
the facesheet modesA0 andS0. As a result, the generation
of the Hanning windowed signal with leading frequencyf
(f = 100kHz on the plot) leads to generation of antisym-
metric and symmetric zeros modes of the facesheets coupled
with a large number of local modes of the soft core.
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Figure 5: Dispersion relation for symmetric sandwich panel,
(a) – Spectrum of the input signal forf = 100kHz , (b) –
Honeycomb layered structure modes, (c) – Lamb velocities
modes. (Blue lines - facesheet modes, red line - homogenized
panel modes, dashed line - modes of Mindlin plate theory ap-
proach).

The phase velocities of the sandwich panel are presented in
the Fig. 5 c (black lines) and correspond to the same depen-
denciesω = ω(k) of the Fig. 5 (a). It can be easily seen
that for the considered impute signal many modes propagate
in the structures. If we consider the facesheet itself then only
the S0 mode and the A0 mode can propagate in the consid-
ered frequency range below or at the order of100kHz (blue

lines in the Fig. 5 (c). In this region, the S0 mode is almost
non-dispersive, and the A0 mode is slightly dispersive. Con-
sidering the structure of the dispersion curves (Fig. 5 b) and
velocity curves (Fig. 5 c) we can confirm that the majority of
wavenumbers of the modes in dispersion curves are located
in the small vicinity ofA0 and S0 modes and in this case
facesheet modes are much more sensitive to debond delami-
nation defects than the core modes synchronizing vibration of
the two facesheets.

For comparison, we will consider here the dispersion rela-
tions of Mindlin plate theory for symmetric sandwich struc-
tures (Dashed red line in Fig. 5 (c). The theory of the sand-
wich panels is considered in (Zenkert, 1995). We used analyt-
ical formulas from these sources just to identify coefficients
in Mindlin plate theory used for investigation of wave propa-
gation . The Mindlin plate theory approach shows that disper-
sion curves in the vicinity of f=100kHz are sufficiently close
to the antisymmetric mode of the facesheet (Fig. 4).

Dispersion curves in coordinates(v, f) for homogenized
plate are presented by green curves and they show quite dif-
ferent dispersion curves (Fig. 5c). In this case we can expect
that a simplified approach can not completely describe wave
propagation, and wave patterns in honeycomb structure are
much more diverse. This is especially true fora high fre-
quency excitation signal like 100kHz.

5. FINITE ELEMENT M ODEL

The SCP has two main components, namely two stiff
facesheets and a soft core between them. In addition to these
subcomponents, we will consider an adhesive layer binding
facesheets with the core. The thickness of the adhesive layer
is generally sufficiently small but this component is important
for simulation of the debond origination and growth. We also
consider PZT actuator and sensors mounted on the panel. As
a result of simulation, electrical signals of the sensors were
compared with the signals obtained experimentally. Such ap-
proach best fits the typical sketch we have in SHM when
the measured signals are used for interpretation of changes
in monitored panels.

The FE model of the honeycomb sandwich structures with a
piezoelectric actuator/sensor distribution is shown in Fig. 6.
The model consists of the honeycomb core and two laminated
facesheets with an actuator and sensors attached to the top
sheet.

5.1 Facesheet

The facesheet in Abaqus can be modeled using shell, contin-
uum shell, or solid element types (Fig. 7). We have found
that continuum shell element type for the facesheet provides
performance that is close to optimal. The facesheets were
made by graphite/epoxy with lay-up sequence of [0/ 90]. In
all cases, the composite layup is modeled explicitly as shown

6
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Figure 6: Finite element model of the sandwich honeycomb
structure with a piezoelectric actuator (shown by an arrow)
and a set of sensors (marked by the numbers).

Table 1: Parameters of the facesheet.
Ply elastic modulusE11 16 Msi
Ply elastic modulusE22 1.2 Msi
Ply Poisson’s ratioν12 0.3
Ply shear modulusG12 0.6 Msi
Ply thickness 6 mils
Laminate thickness 84 mils

in the figure 7. The parameters of the ply are shown in the
table

Figure 7: The composite layup of the facesheets consisting of
14 layers with orientation 0 and 90 degrees. The parameters
of the lamina are shown in the Table1.

5.2 PZT sensors and actuators

Geometrical properties of PZT elements (Fig. 8) of the model
are summarized in the Table2. The response of the PZT ele-
ments was determined by the piezoelectric stress matrixe and

Table 2: Parameters of the actuator and sensors.
Actuator diameter 0.709”
Actuator inner diameter 0.394”
Actuator thickness 20 mils
Sensor A diameter 0.354”
Sensor A thickness 20 mils
Sensor B diameter 0.250”
Sensor B thickness 10.5 mils

elasticity matrixc

[e] =




0 0 −5.4
0 0 −5.4
0 0 15.8
0 0 0.0
0 12.3 0.0

12.3 0 0.0




[Cm−2] (31)

[c] =




12.1 7.54 7.52 0 0 0
7.54 12.1 7.52 0 0 0
7.52 7.52 11.1 0 0 0
0 0 0 2.26 0 0
0 0 0 0 2.11 0
0 0 0 0 0 2.11



× 1010[Pa]

(32)

The dielectric matrix of the PZT material has the following
diagonal elementsε11 = ε22 = 8.11 × 10−9 [C/V/m] and
ε33 = 7.35× 10−9 [C/V/m]. The density of the PZT material
is ρPZT = 7750 [kg/m3].

Figure 8: Snapshot of the actuator and sensor A during the
simulations.

5.3 Honeycomb core

A special attention was paid to modeling of the detailed hon-
eycomb structure (Fig. 9 a,b,c) including the difference in
thickness for different walls of the structure and the presence
of bending tips. The structure was built from a single strip
shown in the Fig. 9(c). The bending tips were attached to
the structure using the boolean operation on the mesh. The
parameters characterizing mechanical properties of the hon-
eycomb structure are listed in Tab. 3
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XY

Z

a

b c

Figure 9: (a) Detailed view of the honeycomb structure. (b)
A single cell of the structure with bending tips. (c) A single
strip of the core used to build the structure.

Table 3: Parameters of the honeycomb core.
Cell size 0.25”
Shear modulus, ribbon direction (L) 70 ksi
Shear modulus, transverse direction (W)40 ksi
Density 5.2 lbs/ft3

Shear strength (L) 380 psi
Shear strength (W) 220 psi
Thickness 1”

The material properties of the Aluminum used to build the
structure are the following: Young’s modulusEAlm =
7.3084 × 1010 [Pa], Poisson’s ratioνAlm = 0.33, Mass den-
sity ρAlm = 2700 [kg/m3].

5.4 Adhesive layers

An important property of the honeycomb sandwich structure
is the presence of adhesive layers both between the actua-
tor/sensors and the facesheet and between the facesheet and
the honeycomb core (Fig. 10). Accordingly, the layer with the
following properties (Young’s modulusEAdh = 4.82 × 109

[Pa], Poisson ratioνAdh = 0.40, and mass densityρAdh =
1255 [kg/m3]) was explicitly included into the finite element
model.

Adhesive layer 

Cohesive layer 

Figure 10: The location of the adhesive layer between PZT
elements and facesheet and cohesive layer between facesheet
and honeycomb.

a

b

c

Figure 11: Finite element modeling of the sandwich honey-
comb structure with a piezoelectric actuator. (a) – out-of-
plane displacement fort = 0.02ms, (b) – t = 0.06ms, (c) –
t = 0.16ms, (PZT sensors corresponding experimental layup
are denoted black circles).

6. FE MODELING WAVE PROPAGATION

6.1 Numerical results

An experiment in Lamb wave propagation in a honeycomb
sandwich panel was done by Metis Design Inc. in collabo-
ration with ARC NASA. The sandwich panel fabricated for
this test consisted of two 84-mil thick cross-ply carbon fiber
composite laminates (bonded to a 1”- thick aluminum hon-
eycomb core). The size of the panel was 1ftx1ft. In the
experiment, PZT sensors located on the facesheet of the hon-
eycomb panel were used to determine the deformation at a
different location (Fig. 6). The primary goal of this study is
to model wave propagation field in3D sandwich honeycomb
panel to fit these results to SHM experimental data. Lamb
wave tests were done over a frequency range from 20 to 100
kHz and 3.5-cycle Hanning windowed toneburst was used as

8
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a

b

Figure 12: The results of the simulations of the wave propa-
gation in honeycomb structure are shown in comparison with
the experimental results measured for 80 kHz on (a) sensor #
1 embedded into actuator and (b) a similar sensor # 2 on the
other side of the structure.

an actuation signal for SHM.

First, we simulated a generation of acoustic modes by annular
PZT patch and studied wave propagation. Second, different
voltage generating signals were used to obtain transient fields
which generate an electrical signal in a set of PZT sensors
mounted on the facesheet plane in a particular experiment.
Finally, we compared an electrical signal in pitch catch and
pulse-echo technique and showed a very good agreement of
both the theoretical and experimental data. Typical view of
the FE simulations results is presented in Fig. 11. It can be
easily seen from Fig. 11 that magnified displacement actu-
ated by transducer located at the top of right-hand side corner
propagates through the structure and generates electric signal
in PZT sensors mounted to the top facesheet.

Results for voltage measurement for different sensors
mounted on the plate are presented in Figures 12 and 13 for
f = 80kHz, which shows the voltage on the corresponding
sensors as a function of time at two locations, x = - 0.135m
(y=6in) and x = 0.135m (y=6in), respectively, (the panel is
centered at (0,0) and all sensors are positioned with respect to
the center).

Theoretical and experimental results fit very well at the ini-
tial stage of wave propagation. The wave modes reflected
from the boundaries of the plate lead to change in the phase
of strain vibration and are not identical in the instance when
we have reflections from the boundaries.

a

b

Figure 13: The results of the simulations of the wave propa-
gation in honeycomb structure are shown in comparison with
the experimental results measured for 80 kHz on (a) sensor #
7 and (b) sensor # 8.

The results of simulations of the wave propagation in a hon-
eycomb sandwich structure are shown in comparison with the
experimental results forf = 100kHz for a much longer time
period, and they are presented in Fig. 14. You can see that
when the time is longer we have stronger discrepancy be-
tween the theoretical and the experimental results even for
the pristine panel without any damage. This is probably due
to imperfections in the panel manufacturing and nonperfect
boundary conditions in experiment in contrast to perfect ge-
ometry we use in numerical simulation.

7. CONCLUSION

We have investigated the wave propagation in sandwich hon-
eycomb panels. A narrowband excitation waveform is em-
ployed to study wave propagation and damage detection in
CSP. The new detailed model of SCP is developed. Computer
simulation of the wave propagation is performed and results
of the strains are compared with those obtained by experimen-
tal testing. For this the PZT sensors mounted on a composite
facesheet plate are used. It has been demonstrated that ini-
tial stages of the propagating pulse practically always fit each
other. For much longer time intervals many reflections from
the boundaries change the phases of the strain oscillations,
and it is not always possible to fit theoretical and experimen-
tal signals well. The conducted analysis has shown that in
thick (1in core) sandwich panels withAl honeycomb struc-
ture acoustic signal generated by the PZT actuator can be eas-
ily detected. Simulations have demonstrated practically the
same response of the sensors we have in the experiment. The
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Figure 14: The results of the simulations of the wave propa-
gation in honeycomb structure are shown in comparison with
the experimental results measured for 100 kHz on (a) sensor
# 3 and (b) sensor # 4. The blue line corresponds to FE mod-
eling, Black one to experimental results and dashed red line
to the modes calculated by Mindlin plate theory approach.

obtained results allow us to use FE methods for simulation
of the acoustic waves propagating in the panel. The obtained
results open up the prospect of the development of the SHM
methods for advanced composite panels. This study makes it
possible to deeper understand the physics based processes for
the development of SHM methods. It should be pointed out
that the FE model developed in this study has only been tested
on one sample CSP and additional study will be necessary.

This paper addresses the different approaches to simulation
of the guided wave propagation in sandwich structures with
the emphasis given to the properties which can be used for
SHM. The analytical investigation of dispersion curves, the
plate wave using the Mindlin plate theory and the numerical
simulations shows the main features we come across when
developing real SHM methods. An analytical study is carried
out to find the solution for transient wave propagation. The
obtained analytical solutions are compared to the FE analysis
as well as the experimental data.
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