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ABSTRACT 

A simulation method to detect and locate damage in frame 
structures by defining a damage index is proposed. 
Structural members are Timoshenko beam type. The method 
defines a damage index which is the reduction percentage of 
H2 norm of the structure at certain locations in both healthy 
and damaged states. Structure modeling is done by finite 
element method. 

1. INTRODUCTION 

Defining a damage index (D.I.) has been on focus in many 
publications. Extensive literature reviews on vibration-based 
damage detection methods is published by Doebling, Farrar, 
Prime and Shevitz (1996) and Carden and Fanning (2004).  
Looking to these various vibration based techniques, 
particularly those using modal parameters, the D.I. method 
seems more promising. The basic idea behind defining 
damage indices is that changes in physical properties of a 
structure will eventually alter some of the system intrinsic 
properties such as some of natural frequencies, mode shapes 
or mode shape curvatures (Choi & Stubbs, 2004). A 
Damage Index is defined based on the changes of the jth 
mode curvature at location i (Stubbs, Kim, & Farrar, 1995). 
Choi and Stubbs (2004) used the strain energy of pre and 
post damaged structure to define D.I.. Also combination of 
D.I. and neural network method is used to identify damage 
in structures (Dackermann, Li, & Samali, 2010). In mode 
shape curvature based D.I.; changes in the damage index 
and relating these changes with the potential locations are 
assessed by statistical methods. Normal distribution of 
damage indices in different locations is extracted and D.I. 
values which are two or more standard deviation away from 
the mean D.I. value are reported to be most probable 
location 

 

 

of damage (Stubbs, et al., 1995). An extension to mode 
shape curvature method is that one can take into account all 
frequencies in the measurement range and not just the modal 
frequencies. In other words one may use Frequency 
Response Function (FRF) instead of mode shape data. It is 
claimed that this method can detect, localize and assess 
damage extent. The theory is fostered with some 
experimental results (Sampaio, Maia, & Silva, 1999). 

Nevertheless development of suitable and reliable damage 
metrics and identification algorithms is still an issue to be 
investigated. D.I. as a scalar quantity is a damage metric that 
gives a criterion to judge the extent of damage of a structure 
(Giurgiutiu, 2008). Although these methods are well 
applicable in some cases but are not usually applicable to 
the cases that the sizes of cracks are small relative to the 
structure, or the crack is somewhere in a wide area of the 
structure. The main reason is that small cracks do not 
change the lower modal properties appreciably and thus 
they are not easily detectable using experimental data. It 
should be noted that this limitation is not due to lack of 
sensitivity of the method, but it is due to the practical 
limitations of exciting higher modes. Excitation of higher 
modes requires significant amount of energy which may not 
be viable to large structural systems (Ginsberg, 2001).  

2. PROBLEM STATEMENT 

A 2D frame type structure as shown in Figure 1 is studied. 
A D.I. based on H2 norm, as discussed in next section, is 
formulated to compare the healthy and damaged state of the 
structure and localize the damage. The structure is modeled 
using 16 two-node Timoshenko beam element in which 
each node has 3 degrees of freedom (DOF). Timoshenko 
beam theory has proved to give more accurate results when 
the length of the beam element is relatively short (Reddy, 
2004). Damage is modeled by reducing the stiffness in the 
element confined between nodes 11 and 4 by 80%. The
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                                    Figure 1. Frame structure configuration and strain gauge sensors placement 

material properties of the members are considered as: 

           � � 200 ��� , � � 80 ���, � � 7800 ��
��

           (1) 

The cross section of members is 3�� � 3�� and the length 
of each horizontal or vertical member is 1 m (Figure 1). 

The structure is fixed in all DOF ��, �, �� at node 1 and 
only in translational DOF  ��, �� at node 2. Hence the 
structure has 28 free DOFs. There are 12 strain gauge 
sensors placed in different locations of the structure. There 
are relatively more strain gauges near the damaged link to 
have more accuracy in finding damage. The input force is 
applied on node number 3 as shown in the Figure 1. Mass 
and stiffness matrices of the structure are found after 
assembling the global stiffness and consistent mass matrix 
of all elements using finite element technique.   The system 
damping is assumed to be proportional to the system 
stiffness and mass matrices based on Rayleigh damping as: 

                                       � � �� � ��                           (2)                        

The parameters � and � are considered here to be 0 and 
0.001, respectively. 

3. PROBLEM FORMULATION 

The governing equations of a linear structure in the finite 
element form can be described as  (Gawronski, 2004) 

                               ��� � ��� � �� � ��                         (3)      

For the 2D frame structure discussed in previous section, �, � and � are 28 � 28 mass, damping and stiffness 
matrices, respectively. �� is input vector and � is nodal 
displacement vector and both are 28 � 1 vectors.   is the 
input force magnitude. 

The desired output is the strains in specified members. This 
output is a linear combination of system nodal 
displacements.  For example, for the element with strain 
gauge S4: 

                                            "4: %� � �������
����

                          (4)                

��	, ��
: Displacement of node 8 and 9 in x- direction 

&	�
: Length of member 8-9 

%�: Strain in member 8-9 

Thus the output vector y has 12 strain components which 
can be related to the nodal displacement vector q as  

                                              ' � (��                                    (5) 

where (� is a 12 � 28 matrix. 

   

3.1 Modal model 

Modal model in structures is a standard modeling procedure 
in which modal displacement vector ���� is related to the 
original nodal displacement vector q as 

                                           � � Φ��                                      (6) 

in which �Φ) is the system modal matrix whose columns are 
eigenvectors (normal modes) of the system. 

Now by substituting Eq. (6) into Eq. (3) an then multiplying 
the resulting equation from left side by transpose of �Φ), 
one may write: 

                           ����� � ����� � ���� � Φ���           (7) 

in which  

�� � Φ�MΦ 

                                          �� � Φ�DΦ                                 (8) 

�� � Φ�KΦ 
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are modal mass, modal damping and modal stiffness 
matrices which are diagonal due to orthogonality of 
eigenvectors.  (Rao, 2007) 

Also the output vector described in Eq. (5) can be written 
as:  

                                         ' � (����                                        �9� 

 in which  (��  is the modal system output matrix written as: 

                                   (�� � (�Φ                                   (10) 

Multiplying Eq. (7) by the inverse if the modal mass, ����, 
from the left side yields: 

            ��� � ��������� � �������� � ����Φ���      (11) 

or  

                    ��� � 2ZΩ��� � Ω
�� � ��                        (12) 

in which 0 � ����/
���/
 is the diagonal matrix of 
eigenvalues (natural frequencies): 

                                    Ω � 12� 3 04 5 40 3 2�
6                          (13) 

and 7  is the diagonal modal damping matrix defined as: 

                                    7 � ��

�����                                 (14) 

Modal system input matrix �� is also defined by 

                                  �� � ����Φ���                                 (15)         

3.2 H2 norm 

Based on modal representation of the linear system, and 
derived system modal matrices, the H2 norm of the system 
is defined. Norms are employed to quantify the intensity of 
system response to standard excitations, such as unit 
impulse, or white noise of unit standard deviation. H2 norm 
is used to compare two different situations. It should be 
noted that H2 norm of a mode with multiple inputs (or 
outputs) can be broken down into the rms sum of norms of 
that mode with a single input (or output) (Gawronski, 
2004).  

Now let us consider a flexible structure with one actuator 
(or one input) and n modes (n=system DOF), the modal 
input matrix B is then: 

                                    �� �
89
99
9:
�����
...���<=

==
=>
                                      (16) 

For the 2D frame structure discussed before, �� has 28 
rows and one column and ��� corresponds to the actuator 
effect on ?th mode.  

Similar to the actuator properties,  for @ sensors installed on 
a A DOF structure, the output matrix is as follows: 

B                        (�|��� � D(�� , (�
, … , (��  F               (17) 

For mode number G 

                               (�� �
89
99
9:
(���(�
�...(���<=

==
=>
                                    (18) 

The H2 norm of the ?th mode of a structure with a set of @ 
sensors is the rms sum of the H2 norms of the mode with 
each single sensor from this set. Norm of a structure with 
one actuator and multiple sensors is defined as (Gawronski, 
2004) 

                            H���H
 I ������������

�����

                            (19) 

The Gth sensor H2 norm of the structure corresponding to 
each sensor could be derived similar to modal H2 norm as 
(Gawronski, 2004): 

                           J���J
 I ���	�����
	��

��	�	

                            (20) 

4. DAMAGE INDEX (D.I.) 

To localize damaged elements of a structure, a damage 
index attributed to the sensor (sensor damage index) is 
defined (Gawronski, 2004). By denoting the norm of the Gth 
sensor of the healthy structure by J��� J
, and the norm of 

the Gth sensor of the damaged structure by J���! J
. The Gth 

sensor index of the structural damage is defined as a 
weighted difference between the Gth sensor norms of a 
healthy and damaged structure as: 

                       �K�� � L"#
	� "���"#
	� "��"#
	� "�
� L                                   (21) 
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                       Figure 2.  Sensor damage indices 

5. RESULTS 

The H2 norm damage index defined in Section 4 has been 
evaluated for the 2D frame structure as described before in 
section 2. Using the modal finite element formulation 
elaborated in Section 3, Figure 2 indicates the sensor D.I. in 
all 12 sensors. 

 As it can seen from Figure 2,  the sensor number 6 (S6) has 
the highest D.I. value indicating that the most probable 
place to have damage is member between nodes 4 and 11 
(member 11-4) which is indeed the location of the defined 
damage. 
The developed algorithm can be easily applied to identify 
multiple damage locations in the case that structure has 
more than one damaged spot. Naturally, more sensors 
should be added to reasonably accurate results and increase 
the algorithm sensitivity.  

In this example it is assumed that the structural member 
between nodes 5 and 7 (member 5-7) is divided into 4 
elements and members 5-6 and 5-8 are also divided into 3 
elements and new strain gauges are installed on these new 
elements as shown in Figure 3. Damage is introduced to 
element 13-14 (S14) as well as previous member 11-4 (S5).  

 
Figure 4. Sensor damage index for structure with two 

damage spots. 

It is assumed that both members have 80% reduction in 
stiffness �K. Figure 4 indicates the sensor D.I. for this new 
damage configuration. It could be seen that the algorithm 
has accurately identified the exact damage locations 
because the damage index in 5th and 14th locations are the 
two highest. 

6. CONCLUSION 

A methodology to detect and locate damage in frame 
structures by defining a damage index is formulated. 
Structural members are modeled as Timoshenko beams 
type. The method defines a damage index which is the 
reduction percentage of H2 norm of the structure at certain 
locations where strain gauges are installed and compares 
both healthy and damaged states. However to have accurate 
results one should install enough number of sensors. There 
is room to extend this work by installing different types of 
sensors such as accelerometers or to find the minimum 
number of required sensors to have accurate results as 
possible.  

  

 
Figure 3. Frame structure with two damage spots 
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