
Annual Conference of the Prognostics and Health Management Society, 2011 

 1 

A new method of bearing fault diagnostics in complex 
rotating machines using multi-sensor mixtured hidden 

Markov models 

Z. S. Chen1, Y. M. Yang1, Z. Hu1, Z. X. Ge1 
1 Institute of Mechatronic Engineering, College of Mechatronic Engineering and Automation, National University of 

Defense Technology, Changsha, Hunan, P. R. China, 410073 
czs_study@sina.com   

yangyongmin@yahoo.com  
 
 

ABSTRACT 

Vibration signals from complex rotating machines are 
often non-Gaussian and non-stationary, so it is difficult 
to accurately detect faults of a bearing inside using a 
single sensor. This paper introduces a new bearing fault 
diagnostics scheme in complex rotating machines using 
multi-sensor mixtured hidden Markov model 
(MSMHMM) of vibration signals. Vibration signals of 
each sensor will be considered as the mixture of non-
Gaussian sources, which can depict non-Gaussian 
observation sequences well. Then its parameter learning 
procedure is given in detail based on EM algorithm. In 
the end the new method was tested with experimental 
data collected from a helicopter gearbox and the results 
are very exciting. 

1. INTRODUCTION 

Today’s industry uses increasingly complex rotating 
machines, some with extremely demanding 
performance criteria. Machine failures are significantly 
contributed to both safety incidents and maintenance 
costs.  The root cause of faults in complex rotating 
machines is often faulty bearings. A bearing condition 
monitoring system is therefore necessary to prevent 
major breakdowns due to progression of undetected 
faults. Over the past tens years, much research has been 
focused on vibration-based fault diagnostics techniques 
(Paul and Darryll, 2005). For complex rotating 
machines, however, it is still difficult to achieve a high 
degree of accuracy in classifying faults of a bearing 
inside due to the complexity of vibration signals.  
Hidden Markov Model (HMM) has been a dominant 
method in speech recognition since 1960s and becomes 
very popular in the late 1980s and 1990s (Rabiner, 
1989). The structure of HMM is useful for modeling a 
sequence that has a hidden stochastic process. It has 
become popular in various areas like signal analysis 
and pattern recognition, such as speech processing and 

medical diagnostics. Recently, HMMs have been 
introduced into mechanical diagnostic areas and many 
HMMs were proposed and extended successfully for 
mechanical systems monitoring and diagnostics 
(Baruah and Chinnam, 2005; Leea, et al., 2004; Bunks, 
et al., 2000). In practice, it is an important issue how to 
select an appropriate HMM model. Most existing 
HMM-based fault diagnostic methods mainly assume 
that each state generates observations according to a 
Gaussian or Gaussian mixture model (Baruah and 
Chinnam, 2005; Leea, et al., 2004; Bunks, et al., 2000; 
Wang, et al., 2009). Also these methods often use a 
single sensor system to perform condition monitoring 
and diagnostics. Whereas vibration signals of complex 
rotating machines are often known to be highly non-
Gaussian and non-stationary (Bouillaut and Sidahmed, 
2001), such as a helicopter gearbox. Thus classical 
HMMs with Gaussian or Gaussian-mixtured 
observations have serious limitations for bearing fault 
diagnostics in complex rotating machines.  
Obviously, a multi-sensor fault diagnostic system can 
overcome the limitations of a single sensor system and 
has improved performance. So our motivation is to 
build a novel HMM with non-Gaussian observations 
based on multi-sensor signals and then use it for 
bearing fault diagnostics in complex rotating machines. 
Vibration signals from a sensor on complex rotating 
machines can be looked as emanating from a number of 
sources caused by these components within it. This 
naturally fits an independent component analysis (ICA) 
process (Lee, et al., 2000). By this way, this paper will 
present a multi-sensor mixtured hidden Markov model 
(MSMHMM) for bearing fault diagnostics, which is 
improved on classical HMMs with mixtured non-
Gaussian observation models. 

2. DEFINITION OF MSMHMM 

For a Gaussian observation model, the observation tO  
at time t is assumed to be generated from a Gaussian 
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process, which is a scalar value corresponding to a 
single sensor. While for a multi-sensor system with N 
sensors, the observation tO  at time t will be a vector, 

i.e. T
tNttt xxx ],,,[ 21 …=O . As mentioned before, 

signals from each sensor on a helicopter gearbox can be 
considered to be mixed by M sources caused by its 
inner components. In this paper a linear mixing process 
is considered. Denoting kW  as the mixing matrix at 

state k and T
M ],,,[ 21 sssS …=  as M sources, the 

observation vector at time t for state k can be calculated 
according to an independent component analysis 
process as follows, 

tk
k
t SWO =                               (1) 

Where kW  is the MN × mixing matrix, 

Msss ,,, 21 …  are statistically independent. For the 
sake of simplicity, we only consider MN =  in this 
paper and kW  is a square matrix. Then we have 

k
tkt OVS =                               (2) 

Where kV  is called as the unmixing matrix and 
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Figure 1: A graphical MSMHMM 

A standard MSMHMM is shown as a graphical model 
in Fig. 1. Then based on the maximum likelihood 
framework of an independent component analysis 
process, the multivariate probability of the multi-sensor 
observation vector can be calculated from the source 
densities as follows (W. D. Penny, 1998), 

( ) ( )
|| k

tk
t J

PP SO =                                (3) 
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Then Eq.(3) can be transformed as 
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(4) 
It can be easily seen from Eq.(4) that the probability 
density of each observation sequence is determined by 
the probability density of source components. Thus in 
practice, we should choose proper non-Gaussian source 

density models to represent non-Gaussian observation 
sequence, such as vibration signals of helicopter 
gearboxes. Assuming that non-Gaussian source density 
model at state k is depicted by the parameter set }{ kθ , 
a multi-sensor mixtured hidden Markov model can be 
built by the complete parameter set as follows, 

( )θWA,π ,,MSMHMM =λ                       (5) 
Next we need to train the MSMHMM before using it, 
which refers to the estimation of parameters: π , A , 
W  and θ . 

3. MSMHMM PARAMETERS LEARNING 
BASED ON EM ALGORITHM 

Actually a MSMHMM is improved on a standard 
HMM, so its parameters learning frame is similar to 
that of a standard HMM. Thus expectation 
maximization (EM) algorithm can also be used for 
MSMHMM parameters learning. That is to say, it 
needs to maximize, )ˆ,( MSMHMMMSMHMM λλE , the 
expectation of the joint log likelihood of an observation 
sequence ],,,[ 21 TOOOO …=  and hidden state 
sequence Q . Here  (W. D. Penny, 1998), 
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            (6) 
Obviously, Eq.(6) composes of three terms which can 
be used to train MSMHMM model parameters 
respectively: the first term for the initial state 
probabilities ( π ), the second term for the state 
transition probabilities ( A ) and the third one for the 
observation model parameters, i.e. the mixing matrix 
( W ) and source density parameters (θ ). 

3.1 Initial state probabilities learning ( π ) 

The initial state probabilities iπ  can be updated by 
maximizing the first term,  

)(log)|( 1ˆMSMHMM
qPP
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have, 
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Where the constraints are as follows: 

∑ ∑
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By maximizing Eq.(7), we can get the final update 
formula as  

)(ˆ 1 ii γπ =                              (8) 

Where )(1 iγ  can be calculated using the forward-
backward algorithm.  

3.2 State transition probabilities learning ( A ) 

The state transition probabilities A  can be updated by 
maximizing the second term, 

∑∑
=

−

T

t
tt qqPP

2
1ˆ )|(log)|(

MSMHMM MSMHMM
Q

OQ
λλ . Furthermore we 

have,  

MSMHM

MSMHM

ˆ 1
2

ˆ1 1
1 1 2

1

1 1 1

( | ) log ( | )

( , | ) log ( | )

( ( , )) log( )

T

t t
t

K K T

t t t t
i j t

K K T

t ij
i j t

P P q q

P q j q i P q q

i j a

λ λ

λ λ

ξ

−
=

− −
= = =

−

= = =

= = =

=

∑ ∑

∑∑∑

∑∑ ∑

MSMHM

MSMHM

Q

Q O

O

(9) 

where ∑∑
= =

++

++= K

i

K

j
ttjijt

ttjijt
t

jbai

jbai
ji

1 1
11

11

)()()(

)()()(
),(

βα

βα
ξ

O

O
. 

By maximizing Eq.(9), we can get the final update 
formula as  
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3.3 Mixing matrix ( W ) and source density 
parameters (θ ) learning 

The observation model parameters, i.e. the mixing 
matrix ( W ) and source density parameters (θ ), can 
be updated by maximizing the third term, 

∑∑
=

T

t
tt qPP

１
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Q

λλ . However, 

the update process is determined by the observation 
model. In this paper in order to represent non-Gaussian 
vibration signals of a helicopter gearbox, we need to 
choose proper non-Gaussian source models in 
MSMHMM. (S. J. Roberts, 1998) has pointed out that a 
signal consisting of multiple sinusoids has a 
multimodal probability density function (PDF) and 

generalized autoregressive (GAR) source models can 
provide better unmixing than generalized exponential 
(GE) source models for multimodal PDFs sources. On 
the other hand, as we all know that a rotating machine 
works under periodic motions and its vibration source 
are often multi-frequencies sinusoids, so GAR source 
models will be used in this paper. 
A GAR source model is shown as follows,  
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Where ][⋅k

ic  are the GAR coefficients for the ith 

source at state k and denoted as k
ic , k

ite  is a non-
Gaussian additive noise and p is the model order. In 
practice, k

ite  denotes the GAR prediction error and can 
be calculated as, 
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Then each GAR source density at state k is (S. J. 
Roberts, 1998) 
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Where )(⋅Γ is the gammar function, k
iR , k

iβ  are the 
two density parameter for ith source at state k. 
So in this paper source density parameters ( θ ) 

composes of {p, k
ic , k

iR , k
iβ }. Next we will train 

these parameters according to the third term in Eq.(6). 
Furthermore we have,  
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Where )|(log ˆ kP tO
MSMHMMλ  can be calculated by 

Eq.(4). That is,  
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By substituting Eq.(12), (13), (15) into Eq.(14), 
updating of { W , k

ic , k
iR , k

iβ } can be derived by 
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differentiating Eq.(14) on k
ijW , k

ic , k
iR , k

iβ  
respectively.  
Besides of π , A , W  and θ , there are some other 
parameters needed to be determined, including the 
number of sources, N, the number of states, K, and the 
order of GAR, p. How to select these parameters is a 
problem to be solved, which will not be discussed 
deeply in this paper.  
By now, the algorithm of MSMHMM parameters 
learning can be implemented by Matlab software.   

4. A CASE OF BEARING FAULT DIAGNOSTI-
CS IN A HELICOPTER GEARBOX 

In the experiment, a bearing in a helicopter gearbox is 
selected and two classical faults are seeded on it, i.e. 
rolling element fault and outer race fault, shown in Fig. 
2. Then vibration signals are collected from five 
sensors under normal and faulty conditions respectively. 
The sampling frequency is 10 KHz at each channel. 

 
(a)  Rolling element fault 

  
(b) Outer race fault 

Figure 2: Two kinds of faults on the bearing 

4.1 MSMHMMs training 

In the scheme of MSMHMM-based fault diagnostics, 
firstly it needs to determine the number of sources, the 
number of states and the order of GAR. Because the 
gearbox consists of five main components in this paper, 
the number of sources is selected as N=5 here. Then 
five vibration sensors for observations are mounted on 
the gearbox. The number of states is selected as K=4 
and the order of GAR is selected as p=6 artificially. 
The length of observation sequence is selected as 
T=512.  
By initializing initial probabilities, 1×Kπ , transition 

matrix, KK×A , mixing matrix, NNK ××W , source 

density parameters, pNK ××c , NKR × , NK×β , different 
MSMHMMs under three conditions are trained based 

on 10 training samples respectively. After training, we 
can get three MSMHMMs (MSMHMM1 for normal, 
MSMHMM2 for rolling element fault and 
MSMHMM3 for outer race fault) and the 
corresponding state sequences are shown in Fig. 3. 
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(a) Normal 
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(b) Rolling element fault 
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(c) Outer race fault 
Figure 3: State sequences for different bearing 

conditions after training 

4.2 MSMHMMs-based bearing faults identification 

After three MSMHMMs has been built and trained, we 
can use them to isolate different conditions using 
testing samples. The number of testing samples under 
each condition is selected as 15. Then each MSMHMM 
is used to analyze normal, rolling element fault and 
outer race fault samples to test its classification ability 
respectively, and then the corresponding results are 
shown as Fig. 4~Fig. 6. In Fig. 4, MSMHMM1 is used 
and the maximum log-likelihood corresponds to normal 
condition, so MSMHMM1 identify health condition of 
the bearing accurately. Similar results can be obtained 
in Fig. 5 and Fig. 6. Thus it demonstrates that 
MSMHMMs can identify faults in the helicopter 
gearbox accurately.   
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Figure 4: Identified results based on MSMHMM1 
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Figure 5: Identified results based on MSMHMM2 
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Figure 6: Identified results based on MSMHMM3 
 
In order to testify that Gaussian observation HMM 
(GHMM) may not fit for bearing fault diagnostics in 
the helicopter gearbox, we will use the above training 
samples to build and train three GHMMs (GHMM1 for 
normal, GHMM2 for rolling element fault and GHMM3 
for outer race fault)), where the number of states is also 
selected as K=4. Then three GHMMs are used to 
analyze normal, rolling element fault and outer race 
fault testing samples, and then the corresponding 
results are shown as Fig. 7~Fig. 9 respectively. It can 
be seen that GHMMs cannot identify the anticipated 
condition and provide mistaken results. The reason may 
be that observation sequences from the helicopter 
gearbox are truly non-Gaussian and non-stationary. 
Also we can find the log-likelihood values in Fig. 7~ 
Fig. 9 fluctuate more than those in Fig. 4~Fig. 6. The 

reason may be that the observation sequences are non-
stationary. Thus it testifies that the proposed 
MSMHMM is a better tool than traditional GHMM for 
bearing fault diagnostics. 
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Figure 7: Identified results based on GHMM1 
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Figure 8: Identified results based on GHMM2 
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Figure 9: Identified results based on GHMM3 

5. CONCLUSION 

This paper has presented a MSMHMM-based bearing 
fault diagnostics method for complex rotating machines 
using multi-sensor observation signals. Each sensor 
signals was considered as the mixture of non-Gaussian 
sources, which can depict non-Gaussian observation 
sequences well. Then its parameter learning algorithm 
was proposed based on EM algorithm. In the end 
through the experimental study on a bearing in a 
helicopter gearbox, we have testified that MSMHMMs 
can identify bearing faults more accurately than 
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traditional GHMMs. Furthermore, the proposed 
MSMHMMs can be extended for fault diagnostics of 
other complex rotating machines. 
Future work will include how to determine the number 
of states and the order of GAR models in MSMHMMs 
theoretically, which may be solved by understanding 
particular mechanical systems and their working 
processes. 
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