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ABSTRACT

Both  intermittent  and  persistent  faults  may 
occur in a wide range of systems. We present 
in  this  paper the  introduction of  intermittent 
fault handling techniques into ProDiagnose, an 
algorithm  that  previously  only  handled 
persistent faults.  We discuss novel algorithmic 
techniques as well as how our static Bayesian 
networks  help  diagnose,  in  an  integrated 
manner, a range of intermittent and persistent 
faults.  Through  experiments  with  data  from 
the ADAPT electrical power system test bed, 
generated as part of the Second International 
Diagnostic  Competition  (DXC-10),  we  show 
that  this  novel  variant  of  ProDiagnose 
diagnoses  intermittent  faults  accurately  and 
quickly, while maintaining strong performance 
on persistent faults.

1 INTRODUCTION

Quick and accurate diagnosis of faults is important in a 
number  of  applications,  and  may  have  positive 
implications  for  safety,  performance,  economy,  and 
ecology. Clearly, there is a wide range of fault types. 
For the purpose of this paper, we distinguish between 
persistent and intermittent faults. Persistent faults, once 
they appear, do not disappear, while intermittent faults 
do.  Intermittent  faults  pose  difficulties  to  diagnostic 
algorithms, for several reasons including the following. 
First,  if  diagnosis  is  not  performed  continuously,  it 
might  be  that  the  intermittent  faults  are  not  present 
when  diagnosis  is  active.   Second,  when  some 
intermittent  faults  are  present,  they  may  look  like 
persistent  faults.  (In  fact,  intermittent  faults  often 
evolve into more serious persistent faults over time.)  It 

is  then  up  to  a  diagnostic  algorithm  to  catch  the 
intermittent behavior, and also characterize it as such.  

Diagnosis of intermittent faults has been considered 
in several application areas, such as digital circuits and 
systems  (Breuer,  1973;  Varshney,  1979),  sequential 
circuits  (Savir,  1980),  and  wireless  sensor  networks 
(Khilar & Mahapatra,  2007).   Different mathematical 
methods for handling intermittent fault have been used, 
including discrete-time Markov chains (Breuer, 1973), 
continuous-time  Markov  chains  (Su  et  al.,  1978), 
Hidden Markov models (Ying et al., 2000; Daidone et 
al. 2006), and Bayesian methods (Abreu et al., 2009) . 

In this paper, we investigate the use of multivariate 
probabilistic  techniques,  in  particular  Bayesian 
networks  (Pearl,  1988).  With  an  emphasis  on  the 
intermittent  case,  we  present  how  intermittent  and 
persistent faults are represented in Bayesian networks 
and  used  for  fault  diagnosis.  We  discuss  the 
ProDiagnose diagnostic  algorithm  (DA),  which 
originally  handled  persistent  faults  only  (Ricks  & 
Mengshoel,  2009), including how it was expanded to 
handle intermittent faults. In  particular, we combine a 
static Bayesian network with algorithms using various 
thresholds that in effect make the distinction between 
intermittent   and  permanent  faults.    Our  discussion 
includes experiments with data from ADAPT (Poll et 
al., 2007), a real-world electrical power system (EPS) 
located at  the NASA Ames Research Center.   These 
experiments illustrate that our ProDiagnose algorithm, 
when  augmented  with  intermittent  fault  handling, 
performs very well on both intermittent and persistent 
fault scenarios.

A  limitation  of  some  previous  research  is  that  it 
often  makes  a  single-fault  assumption  (Savir,  1980; 
Ying et al.,  2000) or assumes that fault magnitude is 
fixed, reflecting a preponderance of previous work on 
digital circuits and systems, where Boolean logic {0,1} 
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is  used  and  faults  (such  as  stuck-at-0  or  stuck-at-1) 
have  a  fixed  magnitude.  In  contrast,  ProDiagnose 
handles  situations  in  which  faults  have  varying  fault 
magnitudes.   Due  to  our  use  of  Bayesian  networks, 
which  can  decompose  large  systems  containing 
multiple components that might fail (while maintaining 
computational feasibility), we are also not restricted to 
single faults.  Instead, we handle multiple faults, which 
might  interact  in  non-trivial  ways,  and  where  some 
faults  are  intermittent  and  other  faults  might  be 
permanent.   In this respect, our research is similar to 
other work taking a model-based (de Kleer, 2007) or 
Bayesian approach (Abreu et al., 2009). 

The rest of this paper is organized as follows.  In 
Section  2  we  discuss  Bayesian  networks  and  their 
application  in  diagnosis.   Section  3  briefly  presents 
intermittent  faults,  while  in  Section  4  we  discuss 
diagnosis  of  intermittent  and  persistent  faults  in  the 
ProDiagnose algorithm. In Section 5 we present results 
from  experiments,  and  Section  6  concludes  and 
sketches areas of future work. 

2 PRELIMINARIES

2.1 Bayesian networks

We use a probabilistic approach to diagnosis, based on 
Bayesian  networks  (BNs)  (Lauritzen  & Spiegelhalter 
1988; Pearl 1988).  A BN is a directed acyclic graph 
(DAG)  in  which  each  node  represents  a  random 
variable and has a conditional probability distribution 
associated  with  it.  The  directed  edges  typically 
represent the causal dependencies between nodes.  In 
this  paper,  we  consider  discrete  random  variables 
where  distributions  are  represented  as  conditional 
probability tables (CPTs). A CPT's size is dependent on 
the number of states of this node – its  cardinality – as 
well as the number of parent nodes and the cardinalities 
of these nodes. By  clamping,  or providing evidence  e 
to, a subset E of a BN's nodes X, the answer to various 
interesting  probabilistic  queries  can  be  computed. 
Formally, we have e  =  {(E1, e1), (E2, e2), (E3, e3), …} 
where  E =  {E1, E2, E3,, …}. These queries include the 
marginal  posterior  distribution  over  one  node  X, 
denoted BEL(X, e), a set of nodes  X, denoted BEL(X, 
e),  or  most  probable explanations over nodes  X  -  E, 
denoted MPE(e). The answers to these queries can then 
be used to diagnose the system itself.

While  dynamic BNs (DBNs) have previously been 
used  for  diagnosis,  we  focus  on  static BNs  in  this 
paper.  Static BNs are not time-sliced as DBNs are, so 
any processing that requires knowledge of time must be 
handled externally to the BN, and then reflected in the 

evidence  e.  Even though this external processing is a 
complicating  factor,  there  are  also  several  benefits 
associated  with  it.  Typically,  using  a  static  BN  is 
computationally faster than using a DBN. Also, static 
BNs  are  perhaps  easier  develop  and  maintain,  since 
they  typically  are  significantly  smaller  and  contain 
fewer parameters.  Finally, when creating a BN-based 
application one often starts with a static BN, and indeed 
the  BNs  discussed  in  this  paper  were  derived  from 
static BNs that already handled many of the diagnostic 
tasks required of them (Ricks & Mengshoel, 2009). 

2.2 Fault Diagnosis Using Bayesian Networks

Fault diagnosis using BNs first requires the creation of 
the BN itself, modeled after the physical system that we 
are interested in diagnosing.  For the purpose of this 
paper, we will use electrical power systems (EPSs) as 
an example.  A typical EPS consists of power sources, 
a distribution network, sensors, and various loads.

Figure 1: The Bayesian network representation of a 
load, such as a fan, pump or light bulb, with a sensor. 

Figure  1  shows  a  BN  fragment  that  represents  a 
typical  load  with  a  sensor;  the  sensor  is  used  for 
monitoring.  A DA will clamp, in the BN, evidence e in 
the  form  of  raw  and  discretized  sensor  values. 
Discretization  may be  needed  for  continuous-valued 
sensors, such as current, voltage temperature, and light 
sensors, since our BN contains discrete nodes only. In 
Figure 1, clamping takes place for the sensor node  S. 
Evidence  is  also  derived  from  sensor  values,  giving 
clamping of the delta D and stuck ST  nodes. 

The health nodes H provide the health state of each 
sensor and component represented in the BN. A DA, 
such as ProDiagnose, will use the posterior distribution 
over  H,  as  reflected  in  answers  to   BEL(H,  e)  or 
MPE(e)  queries,  to  determine  which  sensors  and 
components within the EPS are healthy and which are 
faulty at a specific point in time.  We will denote the 
states for any BN node X by  Ω(X) = {x1, … xk}. For a 
health node H specifically, we use Ω(H) = {h1, … hk}. 
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A state hi  ϵ Ω(H) is considered the most probable state 
for  H if  hi has the greatest posterior probability of all 
states in  Ω(H) in BEL(H, e) or if  hi  is part of a most 
probable  explanation  as  computed  by  MPE(e). 
Informally,  hi represents the health state of the sensor 
or component  represented by  H in the BN.

In this paper, we often consider only three states, h1,  
h2, h3 ϵ Ω(H): nominal h1  = ν, persistent fault h2 = π, 
and intermittent fault  h3  = ι. If we have a fault state hi 

but  do  not  care  whether  it  is  persistent,  hi =  π,  or 
intermittent,  hi  = ι, we say  hi =  φ.  A nominal state  ν 
represents a healthy sensor or component. A persistent 
fault state π represents a condition in which a sensor or 
component has been diagnosed with a fault that does 
not go away. An intermittent fault state  ι  describes a 
condition where a fault comes and goes.  Intermittent 
faults are discussed next.

3 THE NATURE OF INTERMITTENT FAULTS

Figure 2: Real-world intermittent fault involving a 
faulty load drawing too much current from a source 
intermittently.

An example of intermittent fault behavior is shown 
in Figure 2. A current of 16-17 A is nominal, so the 
figure shows three time intervals with faulty behavior. 
However,  we  note  that  fault  amplitude  varies,  time 
between  faulty  behavior  varies,  and  time  of  faulty 
behavior may vary as well.  In addition, there is noise 
both during the nominal and faulty conditions, and one 
does not want to classify noise as an intermittent fault. 
This example reflects how intermittent fault  behavior 
may  not  follow  a  “nice”  pattern.  Consequently,  it 
becomes necessary to develop diagnostic algorithm that 
can  be  adjusted  to  varying  real-world  conditions  to 
accurately diagnose intermittent faults.

Generally, we consider intermittent faults to follow 
a square wave pattern.  For example, the high parts of 
the  wave  can  represent  points  in  time  with  a  fault 
condition,  and  the  low parts  can  represent  a  healthy 

condition.  Each high-low pattern represents one cycle 
in  the  wave.   Still,  there  can  be  ambiguity  between 
intermittent  faults  and  other  fault  types.  Specifically, 
there is often ambiguity when a fault first  occurs;  it 
may be unclear whether it is intermittent or  persistent.
 

Figure 3: Square-wave pattern of an intermittent fault 

4 DIAGNOSING INTERMITTENT FAULTS 
USING BAYESIAN NETWORKS

Reflecting  the  difference  between  intermittent  and 
persistent  faults,  somewhat  different  diagnostic 
technique are needed.  In this section we discuss the 
handling  of  both  fault  types  in  ProDiagnose,  but 
emphasize intermittent faults. 

4.1 The ProDiagnose Algorithm 

The  fundamental  structure  of  ProDiagnose's  on-line 
diagnosis process remains (Ricks & Mengshoel, 2009). 
Samples and events are input to ProDiagnose, and a set 
of  diagnosis  candidates  is  output.  Each  diagnosis 
candidate contains zero or more fault pairs  {(H1,  φ1),  
(H2,  φ2), …}.  Each  pair  (Hi,  φi) consists of a health 
node Hi  and a fault state φi.. The fault state represents a 
persistent or an intermittent fault.  

ProDiagnose  employs  a  probabilistic  reasoning 
engine  to  compute  the  candidate  set  from   input 
evidence  E =  {(E1,  e1),  (E2,  e2),  …}.   In  particular, 
nodes I ⊆ E play a key role in distinguishing between 
intermittent and persistent faults. Using the algorithm 
Count  (see  Section  4.3),  we  attempt  to  distinguish 
intermittent from persistent faults taking place in  H ∈ 
Η  by tracking patterns that are typical of intermittent 
fault behavior, and clamp the node I ∈ I  accordingly, 
where  H→ I. There are different ways to form I  ⊆ E 
such that evidence for or against intermittent behavior 
is communicated to the BN, and doing this computation 
based on the samples and events input to ProDiagnose 
is a major topic of this paper.  We discuss two different 
ways to integrate I with the remaining evidence E – I  
(see  Section  4.4  and  Section  4.5  respectively).   In 
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addition to being an intermittent node  I,  an evidence 
node E ∈ E may be a sensor node S, a change node CH, 
a  stuck  node  ST,  or  a  delta  node  D (Ricks  & 
Mengshoel, 2009). 

Rather than operating directly on a BN, and in order 
to  decrease  computation  time  and  make  it  more 
predictable,  this  reasoning  engine  uses  an  arithmetic 
circuit.  An arithmetic circuit, which can support both 
computation  of  marginals  and  most  probable 
explanations,  is  compiled  from  a  Bayesian  network 
(Darwiche  2003;  Chavira  &  Darwiche  2007).   The 
benefits  that  arithmetic  circuits  bring  in  the  areas  of 
speed and predictability are very important in real-time 
systems such as those on-board aircraft or spacecraft. 

4.2 Handling Intermittent Faults

We  now  discuss  ProDiagnose's  external  processing, 
which  handles  intermittent  faults  and  takes  place 
outside the BN, but provides evidence that is input to 
the BN. 

If an intermittent fault is present, ProDiagnose will 
initially  make the  more  conservative  assumption that 
the fault is persistent π. As the fault starts to exhibit a 
square-wave  pattern,  ProDiagnose's  intermittent  fault 
handling  attempts  to  detect  it.  Once  this  pattern  has 
been  established,  a  diagnosed fault  type  may change 
from persistent, H = π  to intermittent, H = ι.

Figure 4: Diagram of the thresholds used to determine 
tolerances of the wave shape.

Figure  4  illustrates  different  parameters  used  in 
ProDiagnose's   tracking  of  the  square-wave  patterns 
seen  for  intermittent  faults  (see  Figure  3).   The 
tracking  of  a  potentially  intermittent  fault   will  only 
begin if a fault H = π  is diagnosed, and if this fault has 
possible intermittent behavior, H = ι, associated with it. 
If the fault is indeed intermittent, then each transition 
from high end to low end will need to occur within the 

valid fault interval, inVFI, and each transition from low 
end to  high  end  will  need  to  occur  within the  valid  
nominal  interval,  inVNI.   These  two  time  intervals 
represent the valid range in which the upper and lower 
part of the square wave is considered to fit a square-
wave pattern.  Each valid interval is defined by a lower 
threshold,  τLF and  τLN  for  inVFI and  inVNI respectively, 
and an upper threshold,  τUF and τUN  for inVFI  and inVNI  

respectively.
Our  square-wave  pattern-matching  algorithm, 

Count,  is  presented  below.   The  main  idea  of  the 
algorithm, activated for each  H  ∈  Η ,  is  to count the 
number of times an intermittent cycle (part of a square 
wave) is consecutively seen, and flag it to ProDiagnose 
if this so-called cycle count exceeds a certain threshold. 

Count's input parameters, not already discussed, are 
as follows: cycle_count is  the number of (sequential) 
square-wave pattern cycles seen; cycle_threshold trips 
to  set  intermittent  state  of  I once  cycle_count  ≥ 
cycle_threshold;  is_intermittent  =  true  if  intermittent 
pattern is found, false otherwise; fault_counter counts 
the  number  of  sequential  faults  for  each  cycle; 
nominal_counter  counts  the  number  of  sequential 
nominal states for each cycle; persistent_faults is a list 
of faults that have an intermittent counterpart.  

1  Algorithm Count(cycle_count,
   new_cycle, inVFI, inVNI, cycle_threshold, 
   is_intermittent, fault_counter,  

nominal_counter, persistent_faults, τLF, 
τUF,  τLN, τUN)

2      wait until fault F Є persistent_faults 
       is present
3        if F was present during last call
4          if new_cycle = false AND
              inVFI = true AND
              inVNI = true
5             cycle_count ← cycle_count + 1 
6            if cycle_count = cycle_threshold 
7              is_intermittent ← true
8              return cycle_threshold
9          if new_cycle = false
10           Reset(new_cycle, inVFI, inVNI,  

          fault_counter, nominal_counter)
11         fault_counter ← fault_counter + 1
12         if τLF <= fault_counter <= τUF

13           inVFI ← true
14         else if fault_counter <= τUF

15          inVFI ← false
16         else
17           Reset(new_cycle, inVFI, inVNI, 

fault_counter, nominal_counter)
18       else 
19         if inVFI = false
20           Reset(new_cycle, inVFI, inVNI,  

          fault_counter, nominal_counter)
21           return cycle_count
22       new_cycle ← false
23       nominal_counter ← nominal_counter + 1
24         if  τLN <= nominal_counter <= τUN

25           inVNI ← true
26         else if nominal_counter <= τUN
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27           inVNI ← false
28         else
29           Reset(new_cycle, inVFI, inVNI,  

          fault_counter, nominal_counter)
30   return cycle_count

1  Algorithm Reset(new_cycle, inVFI, inVNI,  
fault_counter, nominal_counter)

2    new_cycle ← true
3    inVFI ← false
4    inVNI ← false
5    fault_counter ← 0
6    nominal_counter ← 0

The  Count  algorithm  is  only  invoked  by 
ProDiagnose when an intermittent fault has not already 
been established for a health node H ∈ Η , and when we 
have a (persistent) fault H = π, and thus are in the high 
end of the square wave, above the fault threshold  (see 
Figure 4).  There are two cases.  The first case is that 
the  fault  diagnosis  persists.  Then,  at  some  point 
fault_counter  >   τLF,  and  we  enter  the  Valid  Fault 
Interval.  The  second  case  is  that  the  fault  diagnosis 
disappears  before  fault_counter  >  τLF.  Now,  Count 
resets,  since  the  fault  duration  is  too  short  to  be 
considered a valid pattern.

If Count continues past  τLF, the pattern is inside a 
valid fault interval, reflected by inVFI ← true.    If, while 
inVFI =  true,  the fault  H =  π is  no longer diagnosed, 
then the high end of this cycle is valid and remembered 
by  Count.   If,  however,  Count  hits  the  upper  fault  
threshold,  τUF, then the current high end of the square 
wave is discarded and  inVFI ← false, since  a diagnosis 
that  continues  beyond  τUF, is  considered  to  be  truly 
persistent.   If  this  happens,  Count  simply  resets  and 
tries to establish a lower fault bound τLF again.

If a valid high end is found for the current cycle, 
then ProDiagnose tracks the nominal range (low end), 
using the lower nominal threshold,  τLN,  and the upper 
nominal threshold, τUN.  This works in a similar way to 
tracking the high end.  If the same fault is diagnosed 
either  before  the  lower  nominal  threshold  is  reached 
(while inVNI  = false) or if the upper nominal threshold is 
hit,  then Count resets.  However,  if  this same fault  is 
diagnosed while in the valid nominal interval (which in 
turn implies a valid high end interval), then we have a 
valid cycle, and Count increments the cycle count.

The overall pattern matching follows this procedure 
for each cycle sequentially, and if the cycle threshold is 
reached, then ProDiagnose will change the state of the I 
node  to  intermittent.  If  an  encountered  cycle  is  not 
valid, then Count will reset with a zero cycle count.

The  thresholds  mentioned  above are  currently  set 
manually, based on fault scenarios that ProDiagnose is 
likely  to  encounter.   As  Section  5  will  show,  these 
thresholds can be set quite loosely without a significant 
drop in diagnostic accuracy.

ProDiagnose uses two techniques to input the output 
of the Count algorithm to the Bayesian network model. 
These techniques are discussed next.

4.3 Bayesian Network External Diagnosis

External  diagnosis  involves  complete  detection  of  an 
intermittent  fault,  outside  the  BN,  and  clamping  of 
evidence  I for  this  fault  in  the  BN.   All  of  this 
processing is accomplished through ProDiagnose.

The BN used with the external diagnosis technique 
handles  clamping  of  the  intermittent  node  I as 
determined by ProDiagnose.  The I node has two states, 
nominal and faulty.  Once ProDiagnose decides that a 
fault is intermittent, it will clamp the corresponding I to 
its faulty state, otherwise, it is clamped to its nominal 
state.  The CPT for the intermittent node gives a 100% 
probability  of  the  health  state  (parent)  being 
intermittent,  and  this  forces  the  health  node  to  be 
intermittent, H = ι.

Figure 5: External diagnosis BN  model of a typical 
sensor using intermittent diagnosis via the intermittent 
node I.

Figure 5 shows the BN configuration for a sensor. 
The I node is a direct child of the health node H.  This 
allows  the  faulty  state  to  be  clamped  with  a 
corresponding probability of an intermittent health state 
of 100%.

Figure 6: External diagnosis BN  model of a typical 
load (component) using intermittent diagnosis via the 
intermittent node I.
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Figure 6 shows the BN configuration for a typical 
load.  The change node CH provides extra evidence to 
the load to determine its health state.  Since we do not 
directly  receive  information  about  the  state  of  loads, 
this  is  derived  from  the  evidence  clamped  to  the 
sensor node S.  Change nodes take the cumulative sum 
(CUSUM) of a source sensor's values over time and are 
useful  for  measuring  small  changes  in  a  sensor's 
readings  (Ricks  & Mengshoel,  2009).  For  CUSUM,  it  is 
preferable to use a sensor that most directly reflects the 
behavior of a load, for instance a current sensor directly 
upstream  of  the  load.   For  many  loads,  this  extra 
evidence can help detect small changes in the state of 
the load itself,  which would otherwise be lost  due to 
discretization for the sensors that affect this load's state 
(and this also saves us from having to add more states 
to all the sensors in the BN).

4.4 Bayesian Network Internal Diagnosis

Internal  diagnosis  consists  of  combining  the  external 
processing  integrated  into ProDiagnose  and Bayesian 
reasoning  to  determine  the  intermittent  state  for  any 
sensor  or  component.   The  primary  difference, 
compared to external diagnosis, is that the intermittent 
state probability is determined by the BN, as opposed 
to this state being forced from ProDiagnose.

Figure 7: Internal diagnosis BN model of  a typical 
sensor,  using intermittent diagnosis via the intermittent 
node I.

With  internal  diagnosis,  ProDiagnose's  external 
processing  will  still  use  Count  to  compute  the  cycle 
count.   However,  unlike  the  approach  discussed  in 
Section 4.3, each cycle count may be represented by a 
different state within  I, and consequently this count is 
used  by  the  BN  computation  to  determine  the 
probability of an intermittent fault state  H = ι.  Since 
ProDiagnose is aware of the number of discrete states 
for the cycle count in the BN, once the last threshold, 

corresponding to the final state of  I, has been tripped, 
then this state will be clamped for all future inferences 
to prevent the DA from backtracking due to noisy or 
bad sensor data.  However, this will not force  H =  ι; 
H's state will also depend on other evidence.

State nominal faulty

one 0.6 0.05

two 0.39 0.05

twoGreater 0.01 0.9

Table 1: The conditional probability P(I | H) for an 
intermittent I node in an internal diagnosis BN.

Figure  7  depicts  a  sensor  configuration  using  a 
Bayesian network for the internal diagnosis technique. 
In  an  internal  diagnosis  BN,  the  intermittent  I node 
contains  states  that  represents  the  number  of  cycles, 
detected  by  Count,  for  an  intermittent  state.   As the 
number  of  cycles  computed  by  Count  increases, 
different states of the  I node are clamped accordingly. 
The probability of an intermittent state for the health H 
node increases as the cycle count increases (Table 1).   

Figure 8: Internal diagnosis BN model of a typical load 
(component),  using intermittent diagnosis via the 
intermittent node I.

Loads in internal diagnosis BNs are modeled in a 
similar way as in external diagnosis BNs, except with 
the I node structure presented in Figure 8.

5 EXPERIMENTS

ProDiagnose was tested against a set of scenarios taken 
from the ADAPT testbed, more specifically the DXC-
10  DP1  training  set.   These  scenarios  consisted  of 
nominal runs, in which no faults were injected into the 
EPS, faulty runs involving persistent faults, and faulty 
runs  involving  intermittent  faults.   In  judging  the 
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correctness  of  the  diagnosis  by  ProDiagnose,  two 
metrics were used: fault detection and fault  isolation. 
Fault detection involves the time that  a fault from the 
correct  faulty  sensor  or  component  is  initially 
diagnosed,  and  fault  isolation  involves  the  time  in 
which the correct fault from the correct faulty sensor or 
component is initially diagnosed.  For intermittent fault 
runs, when the persistent fault (or what looks like one) 
is  initially  diagnosed,  this  will  constitute  our  fault 
detection.   Once  ProDiagnose  has  tracked  enough 
consecutive cycles to trip the cycle threshold, then the 
diagnosis changes to to the intermittent fault, and the 
moment that this happens constitutes our fault isolation. 
We also give the total number of misclassified faults 
and  the  total  number  of  intermittent  classification 
errors. Each mis-diagnosis of a fault will usually result 
in  2 classification errors:  one for  missing the correct 
fault, and one for (incorrectly) diagnosing another fault 
instead.

5.1 Methodology

Multiple configurations of  ProDiagnose were used in 
the  experiments.  The  internal  diagnosis  technique, 
which never clamps with 100% intermittent probability, 
is  potentially  more  powerful  in  more  ambiguous 
scenarios,  since  other  evidence  input  to  the  BN can 
override  evidence  that  is  highly  suggestive  of  an 
intermittent  fault.  Because  none  of  the  intermittent 
scenarios available to us showcased this behavior, the 
results  from  the  internal  diagnosis  BN  were  in 
preliminary experiments almost indistinguishable from 
those of the external diagnosis BN. Consequently, we 
opted to report, in this section, on experimental results 
for the internal diagnosis BN only.  Here, our goal is to 
find a ProDiagnose configuration that minimized both 
false  positives  and  false  negatives  in  terms  of 
intermittent faults.

5.2 ProDiagnose Configurations

The  baseline  ProDiagnose  refers  to  the  diagnostic 
algorithm  used  in  the  DXC-09  rematch  competition. 
This  ProDiagnose  revision  does  not  support 
intermittent fault detection inherently, and so it is to be 
expected  that  this  baseline  will  perform  poorly  on 
intermittent  fault  diagnosis.   We  will  refer  to  the 
baseline ProDiagnose in the results as ProDiagnose I.

ProDiagnose  configurations  II-V  are  designed  to 
work with the DXC-10 evaluator, which means that the 
DA  itself  is  aware  of  the  two  different  fault  types 
(persistent and intermittent) involved and will diagnose 
the  appropriate  fault  based  on  the  input  data  given. 
This  is  in  stark  contrast  to  the  baseline ProDiagnose 

which  is  unaware  of  intermittent  fault  behavior  in 
general.   For  DXC-10,  the  DA itself  must  make the 
distinction  and  diagnose  a  fault  as  incorrect  for  the 
diagnosis to be considered correct.

ProDiagnose II represents a safe implementation of 
the  intermittent  pattern  matching,  with  very  tight 
lower/upper  fault  and  nominal  thresholds.   Ideally 
ProDiagnose  II should have a very low false positive 
rate.   This  configuration  also  uses  a  high  cycle 
thresholds  to  further  decrease  the  chances  of  false 
positive intermittent faults.

ProDiagnose  III and  ProDiagnose  IV  represent 
configurations of the intermittent pattern matching that 
use  trade-offs  between  lower/upper  fault/nominal 
thresholds  and  the  cycle  threshold.   ProDiagnose  III 
uses a higher cycle count whereas ProDiagnose IV uses 
looser upper and lower fault/nominal thresholds.

ProDiagnose V uses an aggressive configuration for 
intermittent fault detection.  The upper and lower fault 
and  nominal  thresholds  are  set  loosely  (not  quite  as 
loose as configuration IV), and the cycle threshold is 
set  low  to  maximize  the  chances  of  catching  an 
intermittent fault.

5.3 Experimental Results

ProDiagnose 
Configuration

Classification 
errors

Intermittent 
Classification 

Errors

Detection 
time (ms)

Isolation 
time 
(ms)

I 65 18 17969 85444

II 57 8 17969 88008

III 55 6 17970 83190

IV 53 4 17969 72266

V 53 4 17970 72266

Table 2: Results from the five different ProDiagnose 
configurations (external diagnosis)

The results, reported in Table 2, matched what we 
expected.  ProDiagnose I did not correctly diagnose any 
of the intermittent fault scenarios at all, which resulted 
in  18  classification  errors  and  the  second  highest 
isolation  times  from  the  5  configurations. 
Configurations IV and V showed the quickest isolation 
times  and  had  the  fewest  intermittent  classification 
errors, which is a direct result of the loose intermittent 
tracking  thresholds  and  low  cycle  threshold. 
Configuration IV may be more prone to misdiagnosing 
persistent  faults  as  intermittent,  though,  especially  in 
scenarios  where  the  persistent  fault  disappears 
momentarily  due to  sensor  noise  or  other  anomalies. 
Note,  however,  that  none  of  the  configurations 
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produced intermittent false positives.  Configuration V, 
which  tightens  the  intermittent  tracking  thresholds 
relative to configuration IV, would be a safe alternative 
in  this  regard.   The  detection  times  were  nearly 
identical  for  all  the  configurations  due  to  the  initial 
fault  diagnosis  being  outside  the  scope  of  our 
intermittent extensions to ProDiagnose.

6 CONCLUSION AND FUTURE WORK

Intermittent faults present a new challenge to diagnostic 
algorithms that were originally designed with persistent 
faults  in  mind.   In  this  paper we have presented the 
integration of techniques that handle intermittent faults 
into  ProDiagnose.  Using  data  from  the  ADAPT 
electrical power system, we have shown experimentally 
that  ProDiagnose  now  handles  both  persistent  and 
intermittent  faults  with  high  accuracy,  and  can  also 
differentiate between these two fault types. 

Future  work  includes  research  into  dynamic 
Bayesian networks (DBNs), which likely would be able 
to perform intermittent diagnosis with lesser demands 
on  external  ProDiagnose  algorithms.  Much  of  this 
research will be focused on implementing DBN models 
from  current  static  BNs,  as  well  as  possible 
computational challenges associated with DBNs. 
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