
21st International Workshop on Principles of Diagnosis, 2010

Diagnosing Intermittent and Persistent Faults using Static
Bayesian Networks

Brian W. Ricks1, Ole J. Mengshoel2

1 Carnegie Mellon University, NASA Ames Research Center, Moffett Field, CA 80523 USA
bwr031000@utdallas.edu

2 Carnegie Mellon University, NASA Ames Research Center, Moffett Field, CA 80523 USA
Ole.J.Mengshoel@nasa.gov

ABSTRACT

Both intermittent and persistent faults may
occur in a wide range of systems. We present
in this paper the introduction of intermittent
fault handling techniques into ProDiagnose, an
algorithm that previously only handled
persistent faults. We discuss novel algorithmic
techniques as well as how our static Bayesian
networks help diagnose, in an integrated
manner, a range of intermittent and persistent
faults. Through experiments with data from
the ADAPT electrical power system test bed,
generated as part of the Second International
Diagnostic Competition (DXC-10), we show
that this novel variant of ProDiagnose
diagnoses intermittent faults accurately and
quickly, while maintaining strong performance
on persistent faults.

1 INTRODUCTION

Quick and accurate diagnosis of faults is important in a
number of applications, and may have positive
implications for safety, performance, economy, and
ecology. Clearly, there is a wide range of fault types.
For the purpose of this paper, we distinguish between
persistent and intermittent faults. Persistent faults, once
they appear, do not disappear, while intermittent faults
do. Intermittent faults pose difficulties to diagnostic
algorithms, for several reasons including the following.
First, if diagnosis is not performed continuously, it
might be that the intermittent faults are not present
when diagnosis is active. Second, when some
intermittent faults are present, they may look like
persistent faults. (In fact, intermittent faults often
evolve into more serious persistent faults over time.) It

is then up to a diagnostic algorithm to catch the
intermittent behavior, and also characterize it as such.

Diagnosis of intermittent faults has been considered
in several application areas, such as digital circuits and
systems (Breuer, 1973; Varshney, 1979), sequential
circuits (Savir, 1980), and wireless sensor networks
(Khilar & Mahapatra, 2007). Different mathematical
methods for handling intermittent fault have been used,
including discrete-time Markov chains (Breuer, 1973),
continuous-time Markov chains (Su et al., 1978),
Hidden Markov models (Ying et al., 2000; Daidone et
al. 2006), and Bayesian methods (Abreu et al., 2009) .

In this paper, we investigate the use of multivariate
probabilistic techniques, in particular Bayesian
networks (Pearl, 1988). With an emphasis on the
intermittent case, we present how intermittent and
persistent faults are represented in Bayesian networks
and used for fault diagnosis. We discuss the
ProDiagnose diagnostic algorithm (DA), which
originally handled persistent faults only (Ricks &
Mengshoel, 2009), including how it was expanded to
handle intermittent faults. In particular, we combine a
static Bayesian network with algorithms using various
thresholds that in effect make the distinction between
intermittent and permanent faults. Our discussion
includes experiments with data from ADAPT (Poll et
al., 2007), a real-world electrical power system (EPS)
located at the NASA Ames Research Center. These
experiments illustrate that our ProDiagnose algorithm,
when augmented with intermittent fault handling,
performs very well on both intermittent and persistent
fault scenarios.

A limitation of some previous research is that it
often makes a single-fault assumption (Savir, 1980;
Ying et al., 2000) or assumes that fault magnitude is
fixed, reflecting a preponderance of previous work on
digital circuits and systems, where Boolean logic {0,1}

1

21st International Workshop on Principles of Diagnosis, 2010

is used and faults (such as stuck-at-0 or stuck-at-1)
have a fixed magnitude. In contrast, ProDiagnose
handles situations in which faults have varying fault
magnitudes. Due to our use of Bayesian networks,
which can decompose large systems containing
multiple components that might fail (while maintaining
computational feasibility), we are also not restricted to
single faults. Instead, we handle multiple faults, which
might interact in non-trivial ways, and where some
faults are intermittent and other faults might be
permanent. In this respect, our research is similar to
other work taking a model-based (de Kleer, 2007) or
Bayesian approach (Abreu et al., 2009).

The rest of this paper is organized as follows. In
Section 2 we discuss Bayesian networks and their
application in diagnosis. Section 3 briefly presents
intermittent faults, while in Section 4 we discuss
diagnosis of intermittent and persistent faults in the
ProDiagnose algorithm. In Section 5 we present results
from experiments, and Section 6 concludes and
sketches areas of future work.

2 PRELIMINARIES

2.1 Bayesian networks

We use a probabilistic approach to diagnosis, based on
Bayesian networks (BNs) (Lauritzen & Spiegelhalter
1988; Pearl 1988). A BN is a directed acyclic graph
(DAG) in which each node represents a random
variable and has a conditional probability distribution
associated with it. The directed edges typically
represent the causal dependencies between nodes. In
this paper, we consider discrete random variables
where distributions are represented as conditional
probability tables (CPTs). A CPT's size is dependent on
the number of states of this node – its cardinality – as
well as the number of parent nodes and the cardinalities
of these nodes. By clamping, or providing evidence e
to, a subset E of a BN's nodes X, the answer to various
interesting probabilistic queries can be computed.
Formally, we have e = {(E1, e1), (E2, e2), (E3, e3), …}
where E = {E1, E2, E3,, …}. These queries include the
marginal posterior distribution over one node X,
denoted BEL(X, e), a set of nodes X, denoted BEL(X,
e), or most probable explanations over nodes X - E,
denoted MPE(e). The answers to these queries can then
be used to diagnose the system itself.

While dynamic BNs (DBNs) have previously been
used for diagnosis, we focus on static BNs in this
paper. Static BNs are not time-sliced as DBNs are, so
any processing that requires knowledge of time must be
handled externally to the BN, and then reflected in the

evidence e. Even though this external processing is a
complicating factor, there are also several benefits
associated with it. Typically, using a static BN is
computationally faster than using a DBN. Also, static
BNs are perhaps easier develop and maintain, since
they typically are significantly smaller and contain
fewer parameters. Finally, when creating a BN-based
application one often starts with a static BN, and indeed
the BNs discussed in this paper were derived from
static BNs that already handled many of the diagnostic
tasks required of them (Ricks & Mengshoel, 2009).

2.2 Fault Diagnosis Using Bayesian Networks

Fault diagnosis using BNs first requires the creation of
the BN itself, modeled after the physical system that we
are interested in diagnosing. For the purpose of this
paper, we will use electrical power systems (EPSs) as
an example. A typical EPS consists of power sources,
a distribution network, sensors, and various loads.

Figure 1: The Bayesian network representation of a
load, such as a fan, pump or light bulb, with a sensor.

Figure 1 shows a BN fragment that represents a
typical load with a sensor; the sensor is used for
monitoring. A DA will clamp, in the BN, evidence e in
the form of raw and discretized sensor values.
Discretization may be needed for continuous-valued
sensors, such as current, voltage temperature, and light
sensors, since our BN contains discrete nodes only. In
Figure 1, clamping takes place for the sensor node S.
Evidence is also derived from sensor values, giving
clamping of the delta D and stuck ST nodes.

The health nodes H provide the health state of each
sensor and component represented in the BN. A DA,
such as ProDiagnose, will use the posterior distribution
over H, as reflected in answers to BEL(H, e) or
MPE(e) queries, to determine which sensors and
components within the EPS are healthy and which are
faulty at a specific point in time. We will denote the
states for any BN node X by Ω(X) = {x1, … xk}. For a
health node H specifically, we use Ω(H) = {h1, … hk}.

2

S

ST

D

AA

A

A

CL

H
H

Evidence
Health State

Rest
of
BN

21st International Workshop on Principles of Diagnosis, 2010

A state hi ϵ Ω(H) is considered the most probable state
for H if hi has the greatest posterior probability of all
states in Ω(H) in BEL(H, e) or if hi is part of a most
probable explanation as computed by MPE(e).
Informally, hi represents the health state of the sensor
or component represented by H in the BN.

In this paper, we often consider only three states, h1,
h2, h3 ϵ Ω(H): nominal h1 = ν, persistent fault h2 = π,
and intermittent fault h3 = ι. If we have a fault state hi

but do not care whether it is persistent, hi = π, or
intermittent, hi = ι, we say hi = φ. A nominal state ν
represents a healthy sensor or component. A persistent
fault state π represents a condition in which a sensor or
component has been diagnosed with a fault that does
not go away. An intermittent fault state ι describes a
condition where a fault comes and goes. Intermittent
faults are discussed next.

3 THE NATURE OF INTERMITTENT FAULTS

Figure 2: Real-world intermittent fault involving a
faulty load drawing too much current from a source
intermittently.

An example of intermittent fault behavior is shown
in Figure 2. A current of 16-17 A is nominal, so the
figure shows three time intervals with faulty behavior.
However, we note that fault amplitude varies, time
between faulty behavior varies, and time of faulty
behavior may vary as well. In addition, there is noise
both during the nominal and faulty conditions, and one
does not want to classify noise as an intermittent fault.
This example reflects how intermittent fault behavior
may not follow a “nice” pattern. Consequently, it
becomes necessary to develop diagnostic algorithm that
can be adjusted to varying real-world conditions to
accurately diagnose intermittent faults.

Generally, we consider intermittent faults to follow
a square wave pattern. For example, the high parts of
the wave can represent points in time with a fault
condition, and the low parts can represent a healthy

condition. Each high-low pattern represents one cycle
in the wave. Still, there can be ambiguity between
intermittent faults and other fault types. Specifically,
there is often ambiguity when a fault first occurs; it
may be unclear whether it is intermittent or persistent.

Figure 3: Square-wave pattern of an intermittent fault

4 DIAGNOSING INTERMITTENT FAULTS
USING BAYESIAN NETWORKS

Reflecting the difference between intermittent and
persistent faults, somewhat different diagnostic
technique are needed. In this section we discuss the
handling of both fault types in ProDiagnose, but
emphasize intermittent faults.

4.1 The ProDiagnose Algorithm

The fundamental structure of ProDiagnose's on-line
diagnosis process remains (Ricks & Mengshoel, 2009).
Samples and events are input to ProDiagnose, and a set
of diagnosis candidates is output. Each diagnosis
candidate contains zero or more fault pairs {(H1, φ1),
(H2, φ2), …}. Each pair (Hi, φi) consists of a health
node Hi and a fault state φi.. The fault state represents a
persistent or an intermittent fault.

ProDiagnose employs a probabilistic reasoning
engine to compute the candidate set from input
evidence E = {(E1, e1), (E2, e2), …}. In particular,
nodes I ⊆ E play a key role in distinguishing between
intermittent and persistent faults. Using the algorithm
Count (see Section 4.3), we attempt to distinguish
intermittent from persistent faults taking place in H ∈
Η by tracking patterns that are typical of intermittent
fault behavior, and clamp the node I ∈ I accordingly,
where H→ I. There are different ways to form I ⊆ E
such that evidence for or against intermittent behavior
is communicated to the BN, and doing this computation
based on the samples and events input to ProDiagnose
is a major topic of this paper. We discuss two different
ways to integrate I with the remaining evidence E – I
(see Section 4.4 and Section 4.5 respectively). In

3

14

15

16

17

18

19

20
Intermittent current draw

Time

cu
rr

e
n

t

Fault present Fault present

Nominal Nominal

...

M
a

g
n

itu
d

e

Time

M
a

g
n

itu
d

e

M
a

g
n

itu
d

e

21st International Workshop on Principles of Diagnosis, 2010

addition to being an intermittent node I, an evidence
node E ∈ E may be a sensor node S, a change node CH,
a stuck node ST, or a delta node D (Ricks &
Mengshoel, 2009).

Rather than operating directly on a BN, and in order
to decrease computation time and make it more
predictable, this reasoning engine uses an arithmetic
circuit. An arithmetic circuit, which can support both
computation of marginals and most probable
explanations, is compiled from a Bayesian network
(Darwiche 2003; Chavira & Darwiche 2007). The
benefits that arithmetic circuits bring in the areas of
speed and predictability are very important in real-time
systems such as those on-board aircraft or spacecraft.

4.2 Handling Intermittent Faults

We now discuss ProDiagnose's external processing,
which handles intermittent faults and takes place
outside the BN, but provides evidence that is input to
the BN.

If an intermittent fault is present, ProDiagnose will
initially make the more conservative assumption that
the fault is persistent π. As the fault starts to exhibit a
square-wave pattern, ProDiagnose's intermittent fault
handling attempts to detect it. Once this pattern has
been established, a diagnosed fault type may change
from persistent, H = π to intermittent, H = ι.

Figure 4: Diagram of the thresholds used to determine
tolerances of the wave shape.

Figure 4 illustrates different parameters used in
ProDiagnose's tracking of the square-wave patterns
seen for intermittent faults (see Figure 3). The
tracking of a potentially intermittent fault will only
begin if a fault H = π is diagnosed, and if this fault has
possible intermittent behavior, H = ι, associated with it.
If the fault is indeed intermittent, then each transition
from high end to low end will need to occur within the

valid fault interval, inVFI, and each transition from low
end to high end will need to occur within the valid
nominal interval, inVNI. These two time intervals
represent the valid range in which the upper and lower
part of the square wave is considered to fit a square-
wave pattern. Each valid interval is defined by a lower
threshold, τLF and τLN for inVFI and inVNI respectively,
and an upper threshold, τUF and τUN for inVFI and inVNI

respectively.
Our square-wave pattern-matching algorithm,

Count, is presented below. The main idea of the
algorithm, activated for each H ∈ Η , is to count the
number of times an intermittent cycle (part of a square
wave) is consecutively seen, and flag it to ProDiagnose
if this so-called cycle count exceeds a certain threshold.

Count's input parameters, not already discussed, are
as follows: cycle_count is the number of (sequential)
square-wave pattern cycles seen; cycle_threshold trips
to set intermittent state of I once cycle_count ≥
cycle_threshold; is_intermittent = true if intermittent
pattern is found, false otherwise; fault_counter counts
the number of sequential faults for each cycle;
nominal_counter counts the number of sequential
nominal states for each cycle; persistent_faults is a list
of faults that have an intermittent counterpart.

1 Algorithm Count(cycle_count,
 new_cycle, inVFI, inVNI, cycle_threshold,
 is_intermittent, fault_counter,

nominal_counter, persistent_faults, τLF,
τUF, τLN, τUN)

2 wait until fault F Є persistent_faults
 is present
3 if F was present during last call
4 if new_cycle = false AND
 inVFI = true AND
 inVNI = true
5 cycle_count ← cycle_count + 1
6 if cycle_count = cycle_threshold
7 is_intermittent ← true
8 return cycle_threshold
9 if new_cycle = false
10 Reset(new_cycle, inVFI, inVNI,

 fault_counter, nominal_counter)
11 fault_counter ← fault_counter + 1
12 if τLF <= fault_counter <= τUF

13 inVFI ← true
14 else if fault_counter <= τUF

15 inVFI ← false
16 else
17 Reset(new_cycle, inVFI, inVNI,

fault_counter, nominal_counter)
18 else
19 if inVFI = false
20 Reset(new_cycle, inVFI, inVNI,

 fault_counter, nominal_counter)
21 return cycle_count
22 new_cycle ← false
23 nominal_counter ← nominal_counter + 1
24 if τLN <= nominal_counter <= τUN

25 inVNI ← true
26 else if nominal_counter <= τUN

4

Start of fault

τ
LF

End of fault

Valid Fault
Interval

inVFI

Valid Nominal
Interval

in
VNI

High end

Low end

τ
UF

τLN
τUN

time

fault threshold

F
a

u
lt

p
ro

b
a

b
ili

ty

21st International Workshop on Principles of Diagnosis, 2010

27 inVNI ← false
28 else
29 Reset(new_cycle, inVFI, inVNI,

 fault_counter, nominal_counter)
30 return cycle_count

1 Algorithm Reset(new_cycle, inVFI, inVNI,
fault_counter, nominal_counter)

2 new_cycle ← true
3 inVFI ← false
4 inVNI ← false
5 fault_counter ← 0
6 nominal_counter ← 0

The Count algorithm is only invoked by
ProDiagnose when an intermittent fault has not already
been established for a health node H ∈ Η , and when we
have a (persistent) fault H = π, and thus are in the high
end of the square wave, above the fault threshold (see
Figure 4). There are two cases. The first case is that
the fault diagnosis persists. Then, at some point
fault_counter > τLF, and we enter the Valid Fault
Interval. The second case is that the fault diagnosis
disappears before fault_counter > τLF. Now, Count
resets, since the fault duration is too short to be
considered a valid pattern.

If Count continues past τLF, the pattern is inside a
valid fault interval, reflected by inVFI ← true. If, while
inVFI = true, the fault H = π is no longer diagnosed,
then the high end of this cycle is valid and remembered
by Count. If, however, Count hits the upper fault
threshold, τUF, then the current high end of the square
wave is discarded and inVFI ← false, since a diagnosis
that continues beyond τUF, is considered to be truly
persistent. If this happens, Count simply resets and
tries to establish a lower fault bound τLF again.

If a valid high end is found for the current cycle,
then ProDiagnose tracks the nominal range (low end),
using the lower nominal threshold, τLN, and the upper
nominal threshold, τUN. This works in a similar way to
tracking the high end. If the same fault is diagnosed
either before the lower nominal threshold is reached
(while inVNI = false) or if the upper nominal threshold is
hit, then Count resets. However, if this same fault is
diagnosed while in the valid nominal interval (which in
turn implies a valid high end interval), then we have a
valid cycle, and Count increments the cycle count.

The overall pattern matching follows this procedure
for each cycle sequentially, and if the cycle threshold is
reached, then ProDiagnose will change the state of the I
node to intermittent. If an encountered cycle is not
valid, then Count will reset with a zero cycle count.

The thresholds mentioned above are currently set
manually, based on fault scenarios that ProDiagnose is
likely to encounter. As Section 5 will show, these
thresholds can be set quite loosely without a significant
drop in diagnostic accuracy.

ProDiagnose uses two techniques to input the output
of the Count algorithm to the Bayesian network model.
These techniques are discussed next.

4.3 Bayesian Network External Diagnosis

External diagnosis involves complete detection of an
intermittent fault, outside the BN, and clamping of
evidence I for this fault in the BN. All of this
processing is accomplished through ProDiagnose.

The BN used with the external diagnosis technique
handles clamping of the intermittent node I as
determined by ProDiagnose. The I node has two states,
nominal and faulty. Once ProDiagnose decides that a
fault is intermittent, it will clamp the corresponding I to
its faulty state, otherwise, it is clamped to its nominal
state. The CPT for the intermittent node gives a 100%
probability of the health state (parent) being
intermittent, and this forces the health node to be
intermittent, H = ι.

Figure 5: External diagnosis BN model of a typical
sensor using intermittent diagnosis via the intermittent
node I.

Figure 5 shows the BN configuration for a sensor.
The I node is a direct child of the health node H. This
allows the faulty state to be clamped with a
corresponding probability of an intermittent health state
of 100%.

Figure 6: External diagnosis BN model of a typical
load (component) using intermittent diagnosis via the
intermittent node I.

5

A

A

A

CL

H

Evidence Nodes
Health Node

Rest
of
BN

I

CH

AS

H

Evidence Nodes
Health Node

Rest
of

BN

I ST

21st International Workshop on Principles of Diagnosis, 2010

Figure 6 shows the BN configuration for a typical
load. The change node CH provides extra evidence to
the load to determine its health state. Since we do not
directly receive information about the state of loads,
this is derived from the evidence clamped to the
sensor node S. Change nodes take the cumulative sum
(CUSUM) of a source sensor's values over time and are
useful for measuring small changes in a sensor's
readings (Ricks & Mengshoel, 2009). For CUSUM, it is
preferable to use a sensor that most directly reflects the
behavior of a load, for instance a current sensor directly
upstream of the load. For many loads, this extra
evidence can help detect small changes in the state of
the load itself, which would otherwise be lost due to
discretization for the sensors that affect this load's state
(and this also saves us from having to add more states
to all the sensors in the BN).

4.4 Bayesian Network Internal Diagnosis

Internal diagnosis consists of combining the external
processing integrated into ProDiagnose and Bayesian
reasoning to determine the intermittent state for any
sensor or component. The primary difference,
compared to external diagnosis, is that the intermittent
state probability is determined by the BN, as opposed
to this state being forced from ProDiagnose.

Figure 7: Internal diagnosis BN model of a typical
sensor, using intermittent diagnosis via the intermittent
node I.

With internal diagnosis, ProDiagnose's external
processing will still use Count to compute the cycle
count. However, unlike the approach discussed in
Section 4.3, each cycle count may be represented by a
different state within I, and consequently this count is
used by the BN computation to determine the
probability of an intermittent fault state H = ι. Since
ProDiagnose is aware of the number of discrete states
for the cycle count in the BN, once the last threshold,

corresponding to the final state of I, has been tripped,
then this state will be clamped for all future inferences
to prevent the DA from backtracking due to noisy or
bad sensor data. However, this will not force H = ι;
H's state will also depend on other evidence.

State nominal faulty

one 0.6 0.05

two 0.39 0.05

twoGreater 0.01 0.9

Table 1: The conditional probability P(I | H) for an
intermittent I node in an internal diagnosis BN.

Figure 7 depicts a sensor configuration using a
Bayesian network for the internal diagnosis technique.
In an internal diagnosis BN, the intermittent I node
contains states that represents the number of cycles,
detected by Count, for an intermittent state. As the
number of cycles computed by Count increases,
different states of the I node are clamped accordingly.
The probability of an intermittent state for the health H
node increases as the cycle count increases (Table 1).

Figure 8: Internal diagnosis BN model of a typical load
(component), using intermittent diagnosis via the
intermittent node I.

Loads in internal diagnosis BNs are modeled in a
similar way as in external diagnosis BNs, except with
the I node structure presented in Figure 8.

5 EXPERIMENTS

ProDiagnose was tested against a set of scenarios taken
from the ADAPT testbed, more specifically the DXC-
10 DP1 training set. These scenarios consisted of
nominal runs, in which no faults were injected into the
EPS, faulty runs involving persistent faults, and faulty
runs involving intermittent faults. In judging the

6

A

A

A

CL

H

Evidence Nodes
Health Node

Rest
of

BN

ACH

I

AS

H

Evidence Nodes
Health Node

Rest
of
BN

ST

I

A

21st International Workshop on Principles of Diagnosis, 2010

correctness of the diagnosis by ProDiagnose, two
metrics were used: fault detection and fault isolation.
Fault detection involves the time that a fault from the
correct faulty sensor or component is initially
diagnosed, and fault isolation involves the time in
which the correct fault from the correct faulty sensor or
component is initially diagnosed. For intermittent fault
runs, when the persistent fault (or what looks like one)
is initially diagnosed, this will constitute our fault
detection. Once ProDiagnose has tracked enough
consecutive cycles to trip the cycle threshold, then the
diagnosis changes to to the intermittent fault, and the
moment that this happens constitutes our fault isolation.
We also give the total number of misclassified faults
and the total number of intermittent classification
errors. Each mis-diagnosis of a fault will usually result
in 2 classification errors: one for missing the correct
fault, and one for (incorrectly) diagnosing another fault
instead.

5.1 Methodology

Multiple configurations of ProDiagnose were used in
the experiments. The internal diagnosis technique,
which never clamps with 100% intermittent probability,
is potentially more powerful in more ambiguous
scenarios, since other evidence input to the BN can
override evidence that is highly suggestive of an
intermittent fault. Because none of the intermittent
scenarios available to us showcased this behavior, the
results from the internal diagnosis BN were in
preliminary experiments almost indistinguishable from
those of the external diagnosis BN. Consequently, we
opted to report, in this section, on experimental results
for the internal diagnosis BN only. Here, our goal is to
find a ProDiagnose configuration that minimized both
false positives and false negatives in terms of
intermittent faults.

5.2 ProDiagnose Configurations

The baseline ProDiagnose refers to the diagnostic
algorithm used in the DXC-09 rematch competition.
This ProDiagnose revision does not support
intermittent fault detection inherently, and so it is to be
expected that this baseline will perform poorly on
intermittent fault diagnosis. We will refer to the
baseline ProDiagnose in the results as ProDiagnose I.

ProDiagnose configurations II-V are designed to
work with the DXC-10 evaluator, which means that the
DA itself is aware of the two different fault types
(persistent and intermittent) involved and will diagnose
the appropriate fault based on the input data given.
This is in stark contrast to the baseline ProDiagnose

which is unaware of intermittent fault behavior in
general. For DXC-10, the DA itself must make the
distinction and diagnose a fault as incorrect for the
diagnosis to be considered correct.

ProDiagnose II represents a safe implementation of
the intermittent pattern matching, with very tight
lower/upper fault and nominal thresholds. Ideally
ProDiagnose II should have a very low false positive
rate. This configuration also uses a high cycle
thresholds to further decrease the chances of false
positive intermittent faults.

ProDiagnose III and ProDiagnose IV represent
configurations of the intermittent pattern matching that
use trade-offs between lower/upper fault/nominal
thresholds and the cycle threshold. ProDiagnose III
uses a higher cycle count whereas ProDiagnose IV uses
looser upper and lower fault/nominal thresholds.

ProDiagnose V uses an aggressive configuration for
intermittent fault detection. The upper and lower fault
and nominal thresholds are set loosely (not quite as
loose as configuration IV), and the cycle threshold is
set low to maximize the chances of catching an
intermittent fault.

5.3 Experimental Results

ProDiagnose
Configuration

Classification
errors

Intermittent
Classification

Errors

Detection
time (ms)

Isolation
time
(ms)

I 65 18 17969 85444

II 57 8 17969 88008

III 55 6 17970 83190

IV 53 4 17969 72266

V 53 4 17970 72266

Table 2: Results from the five different ProDiagnose
configurations (external diagnosis)

The results, reported in Table 2, matched what we
expected. ProDiagnose I did not correctly diagnose any
of the intermittent fault scenarios at all, which resulted
in 18 classification errors and the second highest
isolation times from the 5 configurations.
Configurations IV and V showed the quickest isolation
times and had the fewest intermittent classification
errors, which is a direct result of the loose intermittent
tracking thresholds and low cycle threshold.
Configuration IV may be more prone to misdiagnosing
persistent faults as intermittent, though, especially in
scenarios where the persistent fault disappears
momentarily due to sensor noise or other anomalies.
Note, however, that none of the configurations

7

21st International Workshop on Principles of Diagnosis, 2010

produced intermittent false positives. Configuration V,
which tightens the intermittent tracking thresholds
relative to configuration IV, would be a safe alternative
in this regard. The detection times were nearly
identical for all the configurations due to the initial
fault diagnosis being outside the scope of our
intermittent extensions to ProDiagnose.

6 CONCLUSION AND FUTURE WORK

Intermittent faults present a new challenge to diagnostic
algorithms that were originally designed with persistent
faults in mind. In this paper we have presented the
integration of techniques that handle intermittent faults
into ProDiagnose. Using data from the ADAPT
electrical power system, we have shown experimentally
that ProDiagnose now handles both persistent and
intermittent faults with high accuracy, and can also
differentiate between these two fault types.

Future work includes research into dynamic
Bayesian networks (DBNs), which likely would be able
to perform intermittent diagnosis with lesser demands
on external ProDiagnose algorithms. Much of this
research will be focused on implementing DBN models
from current static BNs, as well as possible
computational challenges associated with DBNs.

ACKNOWLEDGMENT

This work was, in part, supported by NASA grant
NNA08205346R as well as NSF grants CCF-0937044
and ECCS-093197. We would also like to thank Scott
Poll, David Garcia, David Nishikawa, Craig Harrison
and numerous others at the NASA Ames Research
Center for generating the ADAPT data for our
experiments, and for helping in many other ways.

REFERENCES

(Abreu et al., 2009) R. Abreu, P. Zoeteweij, and A. J. C.
Van Gemund. A new Bayesian approach to multiple
intermittent fault diagnosis. In Proc. of IJCAI-09, pp.
653-658, Pasadena, CA, 2009.

(Breuer, 1973) M. A. Breuer. Testing for Intermittent Faults
in Digital Circuits. IEEE Trans. Comput. Vol C-22, No. 3,
pp. 241-246, 1973.

(Chavira & Darwiche, 2007) M. Chavira and A. Darwiche.
Compiling Bayesian Networks using Variable
Elimination. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence
(IJCAI-07), (Hyderabad, India), pp. 2443-2449, 2007.

(Daidone et al., 2006) A. Daidone, F. Di Giandomenico, A.
Bondavalli, and S. Chiaradonna. Hidden Markov Models

as a Support for Diagnosis: Formalization of the Problem
and Synthesis of the Solution. In Proc. IEEE Symposium
on Reliable Distributed Systems, pp. 245-256, 2006,

(Darwiche, 2003) A. Darwiche. A Differential Approach to
Inference in Bayesian Networks. Journal of the ACM, vol.
50, no. 3, pp. 280-305, 2003.

(de Kleer, 2007) J. de Kleer. Diagnosing Intermittent Fault. In
Proc. of 18th International Workshop on Principles of
Diagnosis (DX-07), 2007.

(Khilar & Mahapatra, 2007) P. M. Khilar and S. Mahapatra.
Intermittent Fault Diagnosis in Wireless Sensor Networks.
In Proc. International Conference on Information
Technology, pp. 145-147, 2007.

(Lauritzen & Spiegelhalter, 1988) S. Lauritzen and D. J.
Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert
systems (with discussion), Journal of the Royal Statistical
Society series B, vol. 50, no. 2, pp. 157-224.

(Pearl, 1988) J. Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. San Mateo,
CA: Morgan Kaufmann.

(Poll et al., 2007) S. Poll, A. Patterson-Hine, J. Camisa, D.
Garcia, D. Hall, C. Lee, O. J. Mengshoel, C. Neukom, D.
Nishikawa, J. Ossenfort, A. Sweet, S. Yentus, I.
Roychoudhury, M. Daigle, G. Biswas, and X.
Koutsoukos. Advanced Diagnostics and Prognostics
Testbed. In Proceedings of the 18th International
Workshop on Principles of Diagnosis (DX-07),
(Nashville, TN), pp. 178-185, 2007.

(Ricks & Mengshoel, 2009) B. Ricks and O. J. Mengshoel.
The diagnostic challenge competition: Probabilistic
Techniques for Fault Diagnosis in Electrical Power
Systems. In Proceedings of 20th International Workshop
on Principles of Diagnosis (DX-09), (Stockholm, SE), pp.
415–422, 2009.

(Savir, 1980) J. Savir. Detection of Single Intermittent Faults
in Sequential Circuits. IEEE Transactions on Computers,
Volume 29, pp. 673-678,1980,

(Su et al., 1978), S.Y.H. Su, I. Koren, and Y.K. Malaiya. A
Continuous-Parameter Markov Model and Detection
Procedures for Intermittent Faults. IEEE Transactions on
Computers, Volume C-27, Number 6, pp. 567 -570,
1978.

(Ying et al., 2000) J. Ying, T. Kirubarajan, K. R. Pattipati,
and A. Patterson-Hine. A Hidden Markov Model-Based
Algorithm for Fault Diagnosis with Partial and Imperfect
Tests. IEEE Trans. on SMC, Part C, Vol. 30, No. 4, pp.
463-473, 2000.

(Varshney, 1979) P. K. Varshney. On Analytical Modeling of
Intermittent Faults in Digital Systems. IEEE Transactions
on Computers. Volume C-28, Number 10, pp. 786 -791,
1979.

8

	1 INTRODUCTION
	2 PRELIMINARIES
	2.1 Bayesian networks
	2.2 Fault Diagnosis Using Bayesian Networks

	3 THE NATURE OF INTERMITTENT FAULTS
	4 DIAGNOSING INTERMITTENT FAULTS USING BAYESIAN NETWORKS
	4.1 The ProDiagnose Algorithm
	4.2 Handling Intermittent Faults
	4.3 Bayesian Network External Diagnosis
	4.4 Bayesian Network Internal Diagnosis

	5 EXPERIMENTS
	5.1 Methodology
	5.2 ProDiagnose Configurations
	5.3 Experimental Results

	6 CONCLUSION AND FUTURE WORK

