
Distributed Consistency-Based Diagnosis without Behavior

Gianfranco Lamperti 1, Marina Zanella 1

1 Dipartimento di Ingegneria dell’Informazione, Brescia, 25123, Italy
gianfranco.lamperti@ing.unibs.it

marina.zanella@ing.unibs.it

ABSTRACT

This paper faces the task of distributed diagno-
sis without exploiting any component behavioral
model. A diagnosis problem is specified by an
observation that just states whether each system
output is either correct or incorrect. The system is
split into parts, and a distinct diagnoser, which is
supplied with knowledge that has been compiled
off-line and is capable of communicating with its
neighbors, is assigned to each of them. A fam-
ily of methods is proposed to compute local and
global minimal diagnoses that are consistent with
both the observation and the system description,
the latter being a kind of control flow structure.

1 INTRODUCTION
A consistency-based diagnosis (Reiter, 1987) is a
(minimal) set of system components such that assum-
ing that all the other components are behaving nor-
mally is consistent with the system description and the
observation. This definition, as well other equivalent
ones, requires the model of the normal behavior of ev-
ery component to be available, along with the struc-
ture and observation of the considered system, the lat-
ter encompassing all input and output values. Cannot
the task be simplified just considering the correctness
of the outputs, without taking into account their spe-
cific values? What are the relationships between a val-
ued consistency-based diagnosis and an unvalued one?
What is the impact of an unvalued approach on dis-
tributed diagnosis?

Consistency-based diagnosis exploits the models of
the normal behavior of system components in order to
predict the system correct outputs based on the given
(implicitly correct) inputs so as to find out which are
the incorrect outputs, if any, of the real system to be di-
agnosed. However, this is not the only way to ascertain
the (in)correctness of the output values of a system.
The same result can be obtained by proving whether
preconditions and postconditions hold. Preconditions
constrain the correct input values, and postconditions
link the correct output values to the (correct) input val-
ues. If input values are implicitly correct, only post-

conditions have to be considered. Moreover, there ex-
ist systems for which the (in)correctness of output val-
ues can be stated by an oracle. For instance, in a chore-
ography of business processes, the users are capable of
stating whether an output is either correct or incorrect.
Therefore, if either an oracle or the preconditions and
postconditions of the system are available, the models
of the normal behavior of system components are not
needed to find out which outputs are incorrect. Cannot
we do without them also to compute diagnoses, both
in a centralized and in a distributed way?

This paper raises the above questions and reports
some preliminary thoughts on the topic. The setting
for distributed diagnosis is similar to that dealt with
in (Armant et al., 2008), where peers, that is, rea-
soning agents, each inherent to a subsystem of a dis-
tributed system, only know their neighbors. However,
the quoted work, differently from ours, exploits the
normal behavior of system components.

The present work has been inspired by (Borrego
et al., 2009), from which it borrows the notion of a
signature matrix and (in some respect) a diagnostic
method, while both providing a theoretical foundation
and extending it. In (Borrego et al., 2009) a single
method to compute minimal local diagnoses is pro-
posed, this paper instead proposes a family of meth-
ods to achieve both local and global minimal diag-
noses. The next section describes the adopted mod-
eling primitives, while Section 3 deals with the gen-
eration of compiled knowledge, typically the afore-
mentioned signature matrices. The diagnosis method,
which circumscribes its attention to diagnoses with-
out masking phenomena, is then illustrated both in a
monolithic scenario in Section 4 and in a distributed
scenario in Section 5. Some final remarks are recorded
in the concluding section.

2 SYSTEM MODELING
A composed system consists of components. Each
component has its own behavior, which may be static
or dynamic, possibly a cyclic one; however, no knowl-
edge of the (normal and/or abnormal) behavior is avail-
able to the diagnosis task. The only assumption inher-
ent to the behavior is that any execution of a compo-

1

21st International Workshop on Principles of Diagnosis

nent, which is called an activity, takes a finite time.
Distinct executions of the same component can be rep-
resented as distinct activities. The diagnosis task is
carried out once all the activities relevant to the con-
sidered system input value(s) have finished. A diag-
nosis problem inherent to a given system is specified
by the system observation, which states whether in-
puts and outputs are either correct (OK) or incorrect
(KO). Owing to the lack of any behavioral models, the
diagnosis output can only pinpoint the possibly faulty
activities, not the specific faults affecting components.
The only model that is assumed to be available de-
scribes the control flow between activities. Very few
modeling primitives are needed: the activity, the flow,
a structure for branching a flow into several mutually
exclusive flows, a structure for merging several mutu-
ally exclusive flows into one flow, a structure for fork-
ing a flow into several parallel flows, and a structure for
joining several parallel flows into one flow. A model
resembles a UML (Fowler, 2004) activity diagram, it
has the same meaning and, actually, the same graphics
could be adopted. However, a model is an activity dia-
gram without any guards since the diagnosis task can-
not find out the value of any condition at a branching
point of the execution owing to the lack of the compo-
nent behavioral models. Moreover, a model does not
include any cycle as, for the same reason, the diag-
nostic task cannot devise the values of the cycle (ini-
tial/final) conditions, the number of iterations or which
iteration may have behaved abnormally. Thus, if in the
portion of the real world we are modeling there is a
loop, just its body has to be modeled. In case the loop
execution may amount to no iteration, the model has to
include two mutually exclusive paths: the former con-
taining the sequence of activities representing such a
body and the latter containing just a flow (with no ac-
tivity). An activity has at least an input flow and pro-
duces an output flow. All the input flows of an activ-
ity are implicitly joined. Depending on the modeler’s
purpose, such a model can feature different levels of
generality: it may either represent (in a concise and
acyclic way) all the possible executions of a system or
just some of them. Such executions are triggered by
system inputs.

Some interconnected activities form a system. The
notion of a system requires that no activity is isolated:
an input flow (at least) of an activity comes from an-
other activity and/or its output flow is directed to an-
other activity. Thus a system model amounts to a
connected DAG (Directed Acyclic Graph) of activi-
ties which is endowed with inputs and outputs, coming
from and directed to outside the system. Each system
input is an input flow of an activity, and each system
output is the output flow of an activity.

The modeling language briefly described above, ow-
ing to its simplicity and generality, can be exploited to
model at a very high abstraction level several (static
and dynamic) systems, such as combinatorial net-
works, software programs, industrial workflows, bio-
logical processes, etc.
Example 1 Figure 1 displays system T , which will
be considered throughout the paper. Square are ac-
tivities, arrows are flows and the diamond is a fork.
This model is compatible with the well known device
introduced in (Davis, 1984) and analyzed in (Reiter,

1987; de Kleer and Williams, 1987), where M1, M2
and M3 are multipliers and A1 and A2 are adders.
However, the approach presented here does not care
whether a component is either a multiplier or an adder
or something else: the same reasoning is performed
for whichever physical device that shares this model,
independently of the specific behavior of the com-
ponents at hand. In particular, in the quoted ref-
erences this is the structural model, where each ar-
row denotes a data transmission, while, according to
the approach described here, an arrow is a control
flow. Thus, out of determinism, each activity has just
one output flow, while a component in (Reiter, 1987;
de Kleer and Williams, 1987) may have several data
outputs. Actually, an activity handles data and a con-
trol flow may imply also a data flow, however, since
the approach does not take into account any data val-
ues, we neither model the data exchange between ac-
tivities nor the production of specific system outputs:
each modeled system output may cumulatively repre-
sent several data outputs. Moreover, the quoted ref-
erences assume that A1 and A2, for instance, are dis-
tinct components while, according to the current ap-
proach, they could be distinct executions (activities) of
the same component. However, with a slight abuse of
terminology, we can interchange the use of the word
component and that of the word activity.

M1

M3

M2

A2

A1

o1

o2

i1

i2

i3

i4

i5

i6

M1

M3

M2

A2

A1

o1

o2

i1

i2

i3

i4

i5

i6

M1

M3

M2

A2

A1

o1

o2

i1

i2

i3

i4

i5

i6

M1

M3

M2

A2

A1

o1

o2

i1

i2

i3

i4

i5

i6

Figure 1: System T

In a distributed perspective, the set of the system
activities can be partitioned into several parts, where
each part is assigned to a process. Each process has its
own inputs and outputs, coming from and directed to
outside the process. A process input is either a system
input or a flow coming from another process. Analo-
gously, a process output is either an output of the sys-
tem or a flow directed to another process.

In (Borrego et al., 2009), the (larger) model of a
business-to-business collaboration, including also the
primitives that are not necessary to model system T ,
can be found. In such a context it is straightforward to
map a process onto a business process and an activity
onto an either automatic or manual operation. This is
quite proper (and intuitive) to model web services.

3 KNOWLEDGE COMPILATION
The method proposed in (Borrego et al., 2009) consists
of both an off-line phase (knowledge compilation) and

2

21st International Workshop on Principles of Diagnosis

an on-line phase (diagnostic problem solving). Here
we adopt the same scheme. The off-line phase takes
as input the system model, including its partition into
processes, if any, and transforms each process into a
set of clusters. If no partition is provided, only one
process is considered, this being the system itself. In
fact, a system is a process (while a process is not nec-
essarily a system since it may be disconnected).

A cluster is a connected (sub)graph of the system
DAG, representing a single execution path within the
considered process, where such a path is triggered by
a process input at least and ends by producing a pro-
cess output, without including any mutually exclusive
activities. The process inputs that trigger the cluster
execution have to be the only input flows of the activ-
ities they feed. There may exist further process inputs
and outputs relevant to a cluster, besides the inputs that
trigger the execution path and the output produced at
the end of the execution path. Since a process may
consist of several disconnected graphs and each graph
may include several mutually exclusive paths, there
may be several clusters belonging to a single process.

A cluster can be concisely represented as a set of
internal subsets, each associated with its input(s) and
output. An internal subset is inherent to a single dis-
tinct output of the cluster at hand, and includes all and
only the activities (belonging to the cluster) on which
such an output depends. Thus a cluster includes as
many internal subsets as the number of its outputs.
Moreover, the output relevant to an internal subset de-
pends on an input of the cluster at least.

Example 2 System T is connected (in compliance
with the notion of a system) and does not include any
mutually exclusive paths, therefore it corresponds to
just one cluster, represented in Table 1, where each row
is an internal subset.

Table 1: The only cluster of system T

Input(s) Activities Output
i1, i2, i3, i4 M1, M2, A1 o1
i3, i4, i5, i6 M2, M3, A2 o2

The knowledge inherent to each cluster can be com-
piled into a signature matrix (Borrego et al., 2009),
where each row is an internal subset and each column
is an activity. A cell of the matrix is checked if the
row internal subset includes the column activity. Such
a matrix does not include any information about inputs
if they are assumed to be correct.

Example 3 The compilation of the knowledge about
T leads to the matrix in Table 2, where the output rele-
vant to each row is the header of the row itself, and the
activity relevant to each column is the header of such
a column. The six cluster inputs are not represented in
the matrix since they are assumed to be all OK.

4 DIAGNOSIS
In consistency-based diagnosis a conflict is a set of
components such that assuming that all of them are
working normally is inconsistent with the conjunction

Table 2: Matrix corresponding to the cluster in Table 1

M1 M2 M3 A1 A2
o1

√ √ √

o2
√ √ √

of the system description and observation. A conflict
is minimal if no proper subset of its is a conflict. In
unvalued consistency-based diagnosis, in case an out-
put is incorrect, it is impossible that all the components
such an output depends on, that is, those belonging to
its internal subset, behave normally. Let us call such
a set a structural conflict since it can quite efficiently
be drawn from the system model. All other (minimal)
conflicts are called non-structural and, as it will be
shown later, they exist only if there is some correct
system output.

Proposition. A structural conflict either equals a
minimal conflict of valued consistency-based diagno-
sis or is a superset of its.

This proposition can be justified by considering that
a structural conflict is a conflict of consistency-based
diagnosis if an implicit model of normal behavior is
assigned to every component, according to which the
value of its (only) output is OK if all its inputs are
OK, while the output is KO if an input at least is
KO. If a system output is KO, either the component
producing such an output is faulty (having all OK in-
puts) or any of its inputs i is KO. This in turn means
that either the component generating i is faulty or any
of its inputs is KO, and so on, till the system inputs
are reached, which are assumed to be OK. Thus, if
a system output is KO, each component in its inter-
nal subset may be responsible for it, and, as such, it
belongs to a conflict, the so-called structural conflict.
In valued consistency-based diagnosis, instead, some
components in the internal subset may be exonerated.
For instance, assume that the incorrect output value of
a system is 0, this being the output o of an OR gate, and
that an input of this gate, i, is generated by a compo-
nent c. If the correct value of i, predicted given the sys-
tem input values, is 0, c does not belong to any minimal
conflict of valued consistency-based diagnosis since, if
it were the only faulty component of the conflict, then
its output would be 1, which is inconsistent with the
observation (as it would force o to 1 while its observed
value is 0). Therefore, a structural conflict is a con-
flict also for valued consistency-based diagnosis but it
is not a minimal conflict if some components can be
exonerated based on the predicted values.

Roughly speaking, cluster level diagnoses can be
computed as the hitting sets of the structural conflicts
relevant to the incorrect cluster outputs. The method
proposed in (Borrego et al., 2009) first considers as
normally working all the activities belonging to in-
ternal subsets relevant to correct outputs (this means
eliminating the matrix columns representing such ac-
tivities and the row columns representing such out-
puts), then computes the minimal hitting sets of the
remaining internal subsets (they are actually structural
conflicts from which the activities that are assumed to
work correctly have been removed). In this section
we show that this corresponds to computing diagnoses

3

21st International Workshop on Principles of Diagnosis

without masking phenomena, and then throughout the
paper we will consider just this kind of diagnoses.
Example 4 If output o1 of T is incorrect and o2 is
correct, which is expressed as OBS(T) = {KO o1,
OK o2}, row o1 of the matrix relevant to T is marked
with KO, while row o2 is marked with OK along with
all the activities that affect o2. The marked matrix
is displayed in Table 3. The set of candidate diag-
noses consists of the minimal hitting sets of the un-
marked activities of the KO rows (here row o1 only),
that is candidates(T ; KO o1, OK o2) = {{M1},
{A1}}, where the parameters of candidates represent
the diagnosis problem, the first being the relevant sys-
tem and the following the observation. If the obser-
vation is instead OBS(T) = {KO o1, KO o2}, both
matrix rows are marked with KO while all columns
are left unmarked. Then the minimal hitting sets of
the two conflicts C1 = {M1, M2, A1} and C2 =
{M2, M3, A2} have to be computed, thus produc-
ing candidates(T ; KO o1, KO o2)= {{M2}, {M1,
M3}, {A1, M3}, {M1, A2}, {A1, A2}}.

Table 3: Annotated matrix for system T

OK OK OK
M1 M2 M3 A1 A2

KO o1
√ √ √

OK o2
√ √ √

Proposition. Each minimal non-structural con-
flict is the union of two (disjoint) parts, Ci/ISj and
ISj/Ci, where Ci is a structural conflict, inherent to
an incorrect output oi, and ISj is an internal subset,
inherent to a correct output oj, and Ci∩ ISj 6= ∅, that
is, there exists a component at least that affects both
outputs oi and oj.

Proof (sketch). A minimal non-structural conflict
C is bound to include both
• a component cj ∈ ISj, as it can be proved by

contradiction. Assume that no components in C
affect a correct output, that is, all components in
C are relevant to incorrect outputs. No structural
conflict Ci can be a subset of C since C is min-
imal, hence for each Ci having a non-empty in-
tersection with C, there necessarily exists a com-
ponent ci ∈ Ci at least that is not included in C.
Since such an excluded component ci is the pos-
sible reason for output oi being incorrect, all the
components in Ci∩C may be working normally.
As a consequence, all components in C may be
working normally, which means that C is not a
conflict;

• and a component ci ∈ Ci, as it can be proved by
contradiction. Assume that C does not include
any component ci that belongs to a structural con-
flict. Then, all the components in C affect cor-
rect outputs only and, as such, all of them may be
working normally. Hence C is not a conflict.

Potentially any single component in a minimal con-
flict may be the only component working abnormally
in the conflict itself.

Suppose that ci ∈ Ci, where Ci is a structural con-
flict, is the only component in C that works abnor-
mally. The abnormal behavior of ci causes output oi
to be incorrect. This is consistent with the observation
iff ci does not affect any correct output. As a conse-
quence, a non-structural conflict can include a compo-
nent ci belonging to a structural conflict only if ci does
not belong to an internal subset ISj inherent to a cor-
rect output. In particular, if ISj is overlapping Ci, ci
cannot belong to Ci ∩ ISj, which amounts to stating
that ci has to belong to Ci/ISj. On the other hand, C
is bound to include all the components ci in Ci/ISj
since there is no selection criteria among them, all of
them producing the same effects on the observed out-
put oi.

Dually, suppose that cj ∈ ISj, where ISj is an in-
ternal subset inherent to a correct output oj, is the only
component in C that works abnormally. The abnormal
behavior of cj causes output oj to be incorrect unless
the misbehavior of cj is masked by the misbehavior
of another component affecting oj, that is by another
component belonging to ISj. Since all the other com-
ponents in C are assumed to work normally, this com-
ponent does not belong to C. Therefore, the compo-
nents of ISj that do not belong to C are (all and only)
those that affect the incorrect output oi, that is, those
in Ci ∩ ISj (where Ci and ISj have a non-empty in-
tersection). On the other hand, C is bound to include
all the components cj in ISj/Ci since there is no se-
lection criteria among them, all of them producing the
same effects on the observed output oj.

Definition. A (minimal) diagnosis d is with masking
phenomena if there exists an internal subset ISj (in-
herent to a correct output oj) such that |d ∩ ISj| = 2.
All the other (minimal) diagnoses are without masking
phenomena.

A diagnosis is with masking phenomena if an out-
put at least (oj in the definition) is correct owing to
a fault masking another fault. The faults have to af-
fect distinct components belonging to the set of com-
ponents on which the output depends (ISj in the def-
inition). The faulty components are required to be
two owing to minimality: a diagnosis including more
than two faulty components affecting a correct output
would not be minimal since a subset of its (including
just two faulty components belonging to ISj) is a di-
agnosis. According to the same definition, a (minimal)
diagnosis d is without masking phenomena if there ex-
ists no ISj inherent to a correct output oj such that
|d∩ISj|= 2. However, as explained above, a minimal
diagnosis cannot include more than two components
of ISj. Moreover, d cannot include just one compo-
nent of ISj, since assuming that a single component of
ISj is faulty is inconsistent with the observation that
oj is correct. Therefore a diagnosis d is without mask-
ing phenomena if it has an empty intersection with all
the internal subsets inherent to correct outputs, which
means that a diagnosis is without masking phenomena
if it assumes that all the components correct outputs
depend on are not faulty.

Proposition. A minimal diagnosis with masking
phenomena is the hitting set of the ISj/Ci part of a
non-structural conflict, of Ci∩ ISj, and of all the dif-
ference sets Ch/∪IS, where Ch, h 6= i, is a structural
conflict, and ∪IS is the union of all internal subsets in-

4

21st International Workshop on Principles of Diagnosis

herent to all correct outputs.
Proof (sketch). A (minimal) diagnosis d with mask-

ing phenomena, being a diagnosis, is a (minimal) hit-
ting set of all (structural and non-structural) conflicts.
However, since d is with masking phenomena, it has
necessarily to hit a non-structural conflict in its part
ISj/Ci, and it has necessarily to hit also Ci ∩ ISj.
In fact, by including a component ci ∈ Ci ∩ ISj, d
assumes that such a faulty component is the cause for
the incorrect output oi, and, by including a component
cj ∈ ISj/Ci, d assumes that such a faulty component
masks the fault in ci as far as output oj is concerned.
All the incorrect outputs oh other than oi are caused by
a faulty component ch ∈ Ch/ ∪ IS, that is, by a com-
ponent that influences output ch only. By hitting the
ISj/Ci part of a non-structural conflict, d hits such
a non-structural conflict; by hitting Ci ∩ ISj, d hits
structural conflict Ci; by hitting each difference set
Ch/ ∪ IS, d hits both each structural conflict Ch and
all the non-structural conflicts that include a Ch/ISr
part (where Ch ∩ ISr 6= ∅), that is, d hits all the re-
maining structural and non-structural conflicts. There-
fore d is a minimal diagnosis.

Example 5 Given OBS(T) = {KO o1, OK o2}, the
only non-structural conflict of system T is C1/IS2 ∪
IS2/C1 = {M1, A1, A2,M3}, where C1 = {M1,
M2, A1} is the structural conflict inherent to o1, and
IS2 = {M2, M3, A2} is the internal subset inherent
to o2. There are two diagnoses with masking phenom-
ena, {M3, M2} and {A2, M2}, each being a hitting
set of IS2/C1 and C1 ∩ IS2, and having an intersec-
tion with IS2 whose cardinality is 2.

Proposition. A minimal diagnosis without masking
phenomena is the minimal hitting set of the difference
sets between each structural conflict and all the inter-
nal subsets inherent to correct outputs.

Proof (sketch). A (minimal) diagnosis d without
masking phenomena, being a diagnosis, is a (minimal)
hitting set between all (structural and non-structural)
conflicts. However, since d is without masking phe-
nomena, it does not include any component belonging
to an internal subset inherent to a correct output: thus
diagnosis d necessarily hits each non-structural con-
flict in its part Ci/ISj. Therefore, diagnosis d hits all
Ci/∪j ISj, where ∪jISj is the union of all the inter-
nal subsets relevant to correct outputs. As such, d is a
hitting set also of the sets Ci/ ∪j ISj.

Corollary. The diagnosis method adopted in Ex-
ample 4 and in the remaining of this paper computes
minimal diagnoses without masking phenomena.

5 DISTRIBUTED DIAGNOSIS
The distributed approach assumes that, at the begin-
ning of each diagnosis session, each diagnoser is sup-
plied with the compiled knowledge (the unmarked ma-
trices) relevant (only) to the process clusters to be con-
sidered, which is important if the process contains sev-
eral mutually exclusive clusters. First a setup is carried
out, wherein each local diagnoser annotates its matri-
ces based on the given observation. Afterwards, in-
formation about the annotation of matrices is possi-
bly propagated between diagnosers. A local diagno-
sis phase ensues. Once local candidate diagnoses have

been computed, information about them is possibly ex-
changed between diagnosers. Finally, global candidate
diagnoses are drawn. The method is quite flexible,
the only standpoints being the setup, the local diag-
nosis computation, and the global diagnosis computa-
tion. Information exchange between diagnosers is not
mandatory: either or neither or both exchange phases
may be performed.

5.1 Setup
Each diagnoser takes into account the projection of
the system observation on the relevant process clus-
ters, which, however, does not include any information
about the correctness of the process inputs that are the
outputs of other processes. Thus, the matrix relevant
to a cluster has to include also a column for each in-
put which is not a system input, since the possible in-
correctness of such an input, due to a fault in another
process, may be the cause of some incorrect outputs of
the current cluster.
Example 6 In Fig. 2, system T is split into three pro-
cesses, P1, P2, and P3, respectively, where both P1
and P2 include just one cluster, while P3 includes two
clusters, say P32 and P33, the former encompassing
component M2 only and the latter component M3.

Let us cope with the diagnosis problem where
the observation (already considered in Example 4) is
OBS(T) = {KO o1, OK o2}, whose projections
on the three processes are OBS(P1) = {KO o1},
OBS(P2) = {OK o2}, and OBS(P3) = ∅. The an-

m3

M1

M3

M2

A2

A1

o1

o2

i1
i2

i3
i4

i5

i6

P1

P2

m2

P3

Figure 2: System T split into three processes

notations of the matrices of all clusters, after setup has
been completed, are shown in Tables 4, 5 and 6. Matri-
ces P32 and P33 are completely unmarked since di-
agnoser P3 has no knowledge about the correctness
of the relevant outputs (m2 and m3). Diagnoser P2,
instead, has a complete knowledge about the relevant
output, and, consequently, also of its inputs. Matrices
P1 and P2 are oriented also to the diagnosis of inputs
that are not system inputs, that is, m2 for P1 and both
m2 and m3 for P2.

5.2 Propagation
In this phase, pieces of information inherent to shared
variables marked as OK are exchanged between di-
agnosers. A shared variable is an input of a process,

5

21st International Workshop on Principles of Diagnosis

Table 4: Annotated matrix for process P1
A1 M1 m2

KO o1
√ √ √

Table 5: Annotated matrix for process P2
OK OK OK
A2 m2 m3

OK o2
√ √ √

called the predecessor process, that is the output of an-
other, called the successor process. A process may be
both a predecessor and a successor of another. Con-
versely, a process may be neither a predecessor nor a
successor of another, in which case the two processes
are not neighbor. There may be no propagation steps
or several ones, since each diagnoser progressively up-
dates its session knowledge based on the pieces of in-
formation it receives, and any update may cause in turn
another propagation step. The number of steps is fi-
nite owing to the finite number of shared variables of
the whole system. Three propagation versions are sup-
ported: backward, forward and back-and-forth.

Backward propagation
According to backward propagation, if, in the setup
or in any propagation step, a diagnoser has marked an
input of its (which is a shared variable) as OK, then
it has to notify it to the diagnoser of the predecessor
process that generated such an input.
Example 7 In system T , variable m2 is shared among
all processes, being an output of P3 and an input of
both P1 and P2. Variable m3 is instead shared be-
tween P2 and P3 only. Let us resume the distributed
method to solve the diagnosis problem of Example 6
by performing a backward propagation. Since, in the
setup phase, diagnoser P2 has marked both m2 and
m3 as OK, it notifies it to diagnoser P3 (that is, the di-
agnoser of the predecessor process that generated such
shared variables). Hence, diagnoser P3 annotates its
matrices as shown in Table 7. This finalizes the prop-
agation phase since there are no more pieces of infor-
mation to be backward propagated.

Forward propagation
Dually, according to forward propagation, if, in the
setup or in any propagation step, a diagnoser has
marked as OK an output of its that is a shared variable,
then it has to notify it to the diagnoser of the successor
process which is the target of such an output.
Example 8 Let us consider again the diagnosis prob-
lem of Example 6 by performing a forward propaga-
tion, as an alternative to the backward propagation de-
scribed in Example 7. The only process that has any
successors is P3, therefore only P3 can perform a for-
ward propagation. However, given the situation at the
end of the setup described in Table 6, no information
can be forward propagated since diagnoser P3 has no
knowledge about the correctness of shared variables
(m2 and m3). Thus, forward propagation ends with-
out adding any further annotation to the matrices.

Table 6: Matrices P32 and P33
M2

m2
√

M3
m3

√

Table 7: Annotated matrices for process P3
OK
M2

OK m2
√

OK
M3

OK m3
√

Back-and-forth propagation
Back-and-forth propagation allows information about
shared variables that have been marked as OK to be
exchanged between neighbor diagnosers in both direc-
tions, that is, a diagnoser can send/receive information
to/from the diagnosers of both successor and predeces-
sor processes.

Example 9 Let us continue the distributed solution of
the diagnosis problem of Example 6 by performing a
back-and-forth propagation, as an alternative to both
the backward propagation in Example 7 and the for-
ward propagation in Example 8. Within back-and-
forth propagation, first the backward propagation step
described in Example 7 is performed (since it is the
only feasible step), matrices P32 and P33 thus reach-
ing the situation depicted in Table 7. Since, in this
step, diagnoser P3 has marked row m2 of matrix P32
as OK, it has to notify diagnoser P1 (the target pro-
cess of m2) that m2 is OK, which brings diagnoser
P1 to update its matrix (that is, Table 4) as shown in
Table 8.

Table 8: Matrix P1 after back-and-forth propagation

OK
A1 M1 m2

KO o1
√ √ √

5.3 Local diagnosis
The phase of local diagnosis applies to each cluster and
it is basically carried out as explained in Section 4 for
a single cluster that equals the whole system. How-
ever, when a cluster does not equal the whole system,
also the diagnosis of input shared variables has to be
encompassed. Every cluster candidate diagnosis has to
be consistent with the given cluster observation as well
as with the marked cluster inputs and outputs. Since a
diagnoser does not know whether an unmarked pro-
cess input/output is either correct or incorrect, either

6

21st International Workshop on Principles of Diagnosis

assumptions that it is OK and that it is KO have to be
made. Different assumptions lead to different sets of
(minimal) cluster candidate diagnoses. A set of cluster
candidates of a successor process is unbound if it de-
pends on a set of unknown candidates of a predecessor
owing to shared variables.
Example 10 Let us consider the local diagnosis phase
following the forward propagation phase in Exam-
ple 8. Local candidate diagnoses are computed based
on Tables 4, 5, and 6, whose situation is the same as
the one at the end of the setup. Diagnoser P1 draws
(from Table 4) two sets of candidate diagnoses (con-
sistent with the given observation OBS(P1) = {KO
o1}):
candidates(P1; KO o1, OK m2) = {{A1}, {M1}},

candidates(P1;KO o1,KO m2) = (1)
candidates(P3; KO m2).

The set of candidates diagnoses in Eq. (1), which
is relevant to observation OBS(P1) = {KO o1, KO
m2}, is unbound: it equals the unknown set(s) of can-
didate diagnoses inherent to observation(s) of P3 (that
is, of the predecessor process that generates m2) con-
sistent with OBS(P3) = {KO m2}.

Diagnoser P2, since all its relevant outputs are OK,
draws a set of candidate diagnoses that includes the
empty diagnosis only, that is,
candidates(P2; OK o2, OK m2, OK m3) = {∅}.

Diagnoser P3 generates the following sets of diag-
noses:
candidates(P32; OK m2) = {∅},
candidates(P32; KO m2) = {{M2}},
candidates(P33; OK m3) = {∅},
candidates(P33; KO m3) = {{M3}}.
Example 11 Let us consider the local diagnosis phase
following the backward propagation phase in Exam-
ple 7. Local candidate diagnoses are computed based
on Tables 4, 5, and 7. Only the situation of diagnoser
P3 is different with respect to Example 10, therefore
P1 and P2 draw the same local candidate diagnoses
as in Example 10, while P3 draws
candidates(P32; OK m2) = {∅},
candidates(P33; OK m3) = {∅}.
Proposition. A local diagnosis phase carried out after
a back-and-forth propagation leads to globally consis-
tent minimal local diagnoses.

A global diagnosis is monolithically computed
based on the system matrix, after all the activities that
belong to internal subsets relevant to OK outputs have
been marked as OK. In a distributed setting, local di-
agnoses are globally consistent if the same activities
as above along with the shared variables that are their
input/output flows have been annotated as OK within
the cluster matrices. This is achieved by a back-and-
forth propagation. In fact, backward steps reach all
the ‘ancestors’ of the processes containing OK sys-
tem outputs, while forward steps reach all the remain-
ing processes.

5.4 Candidate exchange
Information about local candidate diagnoses may now
be exchanged between neighbor diagnosers accord-
ing to either a push or a pull mode. The aim of the

current phase is binding the unbound sets of candi-
dates. Whichever the version adopted for the propaga-
tion phase, and even if such a phase has been skipped,
there may be unbound sets of local candidate diag-
noses. Binding them means replacing each of the RHS
of equations such as Eq. (1) with a known set of can-
didate diagnoses (that is, a set of sets of faulty compo-
nents), and properly updating the LHS so as it reflects
both the observation of the current cluster and that of
the cluster that actually generated the non-local RHS
candidates. This, however, means recording within the
session knowledge of a diagnoser some candidate di-
agnoses produced by another. There may be several
sets of candidate diagnoses that can bind an unbound
set: all the distinct bindings have to be accomplished.

Push mode
The push mode comes in two forms: backward and
forward. In the push backward mode, the unbound
candidates of a successor process are pushed to a pre-
decessor process, so as the predecessor can bind them.
A set of cluster candidate diagnoses, whose assump-
tion about a cluster output which is a shared variable
is KO, is instead pushed from a predecessor to a suc-
cessor to which such an output is directed if the push
forward mode is adopted. Such transmitted candidates
are those that can be used by the successor diagnoser
to bind possibly unbound diagnoses of its.
Example 12 Let us consider the local diagnoses as
computed in Example 10, and let us suppose that a
push backward is now performed. The only diagnoser
having a set of unbound diagnoses is P1, which re-
moves the following set of candidates from its own
knowledge and pushes it to diagnoser P3:
candidates(P1; KO o1, KO m2) = candidates(P3;
KO m2).

Diagnoser P3, based on its local knowledge that
candidates(P32; KO m2) = {{M2}}, draws that
candidates(P1, P32; KO o1, KO m2) = {{M2}},

which is added to its previously computed local di-
agnoses. No further push backward step is feasible.

Pull mode
The pull mode supports candidate exchange between
neighbor diagnosers only on demand. In other words,
each successor diagnoser pulls the candidates it needs
from its predecessor diagnosers. The pull mode is
based on a bidirectional communication between pairs
of neighbor diagnosers since each diagnoser can both
receive a request and reply to it. A pull mode session
can either be triggered by all the diagnosers that have
some unbound sets of local candidates or only by the
diagnosers among them that are inherent to processes
having incorrect system outputs.
Example 13 Let us now apply the pull mode after lo-
cal candidate diagnoses have been computed as in Ex-
ample 11. The only diagnoser having an unbound set
of diagnoses, this being that in Eq. (1), is P1 (which
is also the only process having incorrect system out-
puts). Therefore diagnoser P1 asks diagnoser P3 for
candidates(P3; KO m2). Diagnoser P3, since it has
no set of candidate diagnoses for observation KO m2,
replies that candidates(P3; KO m2) = ∅. Hence, di-
agnoser P1 should update its own unbound set of local
diagnoses as follows:

7

21st International Workshop on Principles of Diagnosis

candidates(P1; KO o1, KO m2) = ∅.
This, however, means removing equality (1) from

the sets of candidate diagnoses of P1, since an empty
set of candidate diagnoses denotes the inconsistency
of the assumptions (in this case, the inconsistency of
OBS(P1) = {KO o1,KO m2}).

5.5 Global diagnosis
Whichever the method followed to arrive at this phase,
each set of global diagnoses can be computed as the
hitting set of consistent sets of candidate diagnoses
of all the clusters. A pair of sets of candidate diag-
noses is consistent if there is no logical conflict in their
assumptions (the bracketed observation). If the pull
mode has been applied, global diagnoses can simply
be computed as the hitting sets of consistent sets of lo-
cal diagnoses inherent only to clusters having incorrect
system outputs.

Example 14 Let us now compute global candidate di-
agnoses at the end of the push backward steps of Ex-
ample 12. The only consistent sets of local candidate
diagnoses of all clusters are
candidates(P1; KO o1, OK m2) = {{A1}, {M1}},
candidates(P2; OK o2, OK m2, OK m3) = {∅},
candidates(P32; OK m2) = {∅},
candidates(P33; OK m3) = {∅},

whose hitting set is the same set of global candidate
diagnoses obtained in Example 4, that is
candidates(P1, P2, P32, P33; KO o1, OK o2, OK
m2, OKm3) = {{A1}, {M1}}.

Example 15 The sets of global diagnoses, after the
pull mode in Example 13 has been applied, can be
computed as the hitting sets of the consistent sets of
local diagnoses of clusters belonging to processes hav-
ing incorrect system outputs. There is just one such
cluster, P1, whose only left set of local diagnoses is
candidates(P1; KO o1, OK m2) = {{A1}, {M1}},
which therefore are also global diagnoses, where the
observation is implicitly OK for all the system outputs
of the processes that are not mentioned in the candidate
assumptions.

6 CONCLUSION
This paper is an attempt to apply consistency-based di-
agnosis both in an abstract and in a distributed way, the
former meaning that no component behavioral model
is adopted, the latter that distinct reasoning agents,
the diagnosers, are in charge of computing the local
diagnoses of arbitrary parts, called processes, of the
considered system. Each diagnoser is provided with
compiled knowledge inherent to the execution paths
of the relevant process. There is not just one method
for achieving the diagnostic results but several meth-
ods since three mandatory phases are interleaved with
two optional ones, and each optional phase can be per-
formed in several different ways. The specific versions
(if any) adopted for the optional phases affect the ac-
complishment of the last phase, that is, the computa-
tion of global diagnoses. This consists in the compu-
tation, possibly performed by an additional reasoning
agent, of the hitting sets of mutually consistent sets of
local candidate diagnoses. Some interesting outcomes
are listed here below.

• Global diagnoses can be obtained even if no in-
formation exchange has taken place between di-
agnosers.

• In case there is just one process having incor-
rect system outputs (as, for instance, all the sys-
tem outputs have purposely been assigned to just
one process), at the end of some specific meth-
ods (that necessarily encompass information ex-
change between neighbor diagnosers) the diag-
noser of such a process knows all the global di-
agnoses, without any need for an additional agent
to compute the hitting sets of local diagnoses.

• The nature of the information exchanged be-
tween (neighbor) diagnosers in the two (optional)
phases of the proposed approach is twofold: in-
formation about the correctness of shared vari-
ables in the former phase, and information about
local candidate diagnoses in the latter. If the for-
mer phase is carried out, the amount of informa-
tion exchanged in the latter phase is smaller than
that needed if the former phase is skipped.

• The effort for the final phase of global diagno-
sis computation depends on the amount of ex-
changed information: if no information has been
exchanged, the larger the number of local candi-
date diagnoses and the heavier the work to sort
out consistent sets of local candidate diagnoses.

The proposed approach has been described along
with examples embodying it. A more formal presen-
tation, including the proof of the correctness of the
method in computing a sound and complete set of local
and global minimal diagnoses without masking phe-
nomena is needed. Future work will extend the dis-
tributed approach to the computation of diagnoses with
masking phenomena.

REFERENCES
(Armant et al., 2008) V. Armant, P. Dague, and L. Si-

mon. Distributed consistency-based diagnosis with-
out conflicts. In 19th International Workshop on
Principles of Diagnosis –DX’08, Blue Mountains,
AU, 2008.

(Borrego et al., 2009) D. Borrego, R.M. Gasca,
M.T. Gómez López, and I. Barba. Choreography
analysis for diagnosing faulty activities in business-
to-business collaboration. In 20th International
Workshop on Principles of Diagnosis – DX’09,
pages 171–178, Stockholm, S, 2009.

(Davis, 1984) R. Davis. Diagnostic reasoning based
on structure and behavior. Artificial Intelligence,
24(1):347–410, 1984.

(de Kleer and Williams, 1987) J. de Kleer and B.C.
Williams. Diagnosing multiple faults. Artificial In-
telligence, 32(1):97–130, 1987.

(Fowler, 2004) M. Fowler. UML Distilled: a brief
guide to the standard object modeling language.
Addison-Wesley, 2004.

(Reiter, 1987) R. Reiter. A theory of diagnosis from
first principles. Artificial Intelligence, 32(1):57–95,
1987.

8

