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ABSTRACT

Constraint sets can become inconsistent in dif-
ferent contexts. For example, during a configu-
ration session the set of customer requirements
can become inconsistent with the configuration
knowledge base. Another example is the engi-
neering phase of a configuration knowledge base
where the underlying constraints can become in-
consistent with a set of test cases. In such situa-
tions we are in the need of techniques that support
the identification of minimal sets of constraints
that have to be adapted or deleted in order to
restore consistency. In this paper we introduce
a divide-and-conquer based diagnosis algorithm
(FastDiag) which identifies minimal sets of faulty
constraints in an over-constrained problem. This
algorithm is specifically applicable in scenarios
where the efficient identification of leading (pre-
ferred) diagnoses is crucial. We compare the per-
formance of FastDiag with the conflict-directed
calculation of hitting sets and present an in-depth
performance analysis that shows the advantages
of our approach.

1 INTRODUCTION
Constraint technologies (Tsang, 1993) are applied in
different areas such as configuration (Fleischanderl
et al., 1998; Mittal and Frayman, 1989; Sinz and
Haag, 2007), recommendation (Felfernig et al., 2009),
and scheduling (Castillo et al., 2005). There are
many scenarios where the underlying constraint sets
can become over-constrained. For example, when
implementing a configuration knowledge base, con-
straints can become inconsistent with a set of test cases
(Felfernig et al., 2004). Alternatively, when interact-
ing with a configurator application (Felfernig et al.,
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2009; O’Sullivan et al., 2007), the given set of cus-
tomer requirements (represented as constraints) can
become inconsistent with the configuration knowledge
base. In both situations there is a need of an intelligent
assistance that actively supports users of a constraint-
based application (end users or knowledge engineers).
A wide-spread approach to support users in the identi-
fication of minimal sets of faulty constraints is to com-
bine conflict detection (see, e.g., (Junker, 2004)) with
a corresponding hitting set algorithm (DeKleer et al.,
1992; Reiter, 1987). In their original form these algo-
rithms are applied for the calculation of minimal di-
agnoses which are typically determined with breadth-
first search. Further diagnosis algorithms have been
developed that follow a best-first search regime where
the expansion of the hitting set search tree is guided by
failure probabilities of components (DeKleer, 1990).
Another example for such an approach is presented in
(Felfernig et al., 2009) where similarity metrics are
used to guide the (best-first) search for a preferred
(plausible) minimal diagnosis (including repairs).

Both, simple breadth-first search and best-first
search diagnosis approaches are predominantly rely-
ing on the calculation of conflict sets (Junker, 2004).
In this context, the determination of a minimal diag-
nosis of cardinality n requires the identification of at
least n minimal conflict sets. In this paper we introduce
a diagnosis algorithm (FastDiag) that allows to deter-
mine one minimal diagnosis at a time with the same
computational effort related to the calculation of one
conflict set at a time. The algorithm supports the iden-
tification of preferred diagnoses given predefined pref-
erences regarding a set of decision alternatives. Fast-
Diag is boosting the applicability of diagnosis meth-
ods in scenarios such as online configuration & recon-
figuration (Felfernig et al., 2004), recommendation of
products & services (Felfernig et al., 2009), and (more
generally) in scenarios where the efficient calculation
of preferred (leading) diagnoses is crucial (DeKleer,
1990). FastDiag is not restricted to constraint-based
systems but it is also applicable, for example, in the
context of SAT solving (Marques-Silva and Sakallah,
1996) and description logics reasoning (Friedrich and
Shchekotykhin, 2005).
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The remainder of this paper is organized as follows.
In Section 2 we introduce a simple example configura-
tion task from the automotive domain. In Section 3 we
discuss the basic hitting set based approach to the cal-
culation of diagnoses. In Section 4 we introduce an al-
gorithm (FastDiag) for calculating preferred diagnoses
for a given over-constrained problem. In Section 5 we
present a detailed evaluation of FastDiag which clearly
outperforms standard hitting set based algorithms in
the calculation of the topmost-n preferred diagnoses.
With Section 6 we provide an overview of related work
in the field. The paper is concluded with Section 7.

2 EXAMPLE DOMAIN: CAR
CONFIGURATION

Car configuration will serve as a working example
throughout this paper. Since we exploit configura-
tion problems for the discussion of our diagnosis algo-
rithm, we first introduce a formal definition of a con-
figuration task. This definition is based on (Felfernig
et al., 2004) but is given in the context of a constraint
satisfaction problem (CSP) (Tsang, 1993).

Definition 1 (Configuration Task). A configura-
tion task can be defined as a CSP (V, D, C). V = {v1,
v2, . . . , vn} represents a set of finite domain variables.
D = {dom(v1), dom(v2), . . . , dom(vn)} represents a
set of variable domains dom(vk) where dom(vk) repre-
sents the domain of variable vk. C = CKB ∪ CR where
CKB = {c1, c2, . . . , cq} is a set of domain specific
constraints (the configuration knowledge base) that re-
strict the possible combinations of values assigned to
the variables in V. CR = {cq+1, cq+2, . . . , ct} is a set of
customer requirements also represented as constraints.

A simplified example of a configuration task in the
automotive domain is the following. In this exam-
ple, type represents the car type, pdc is the parc dis-
tance control functionality, fuel represents the fuel
consumption per 100 kilometers, a skibag allows the
ski stowage inside the car, and 4-wheel represents the
corresponding actuation type. These variables de-
scribe the potential set of requirements that can be
specified by the user (customer). The possible com-
binations of these requirements are defined by a set of
constraints which are denoted as configuration knowl-
edge base, CKB = {c1, c2, c3, c4}. Furthermore, we
assume the set of customer requirements CR = {c5, c6,
c7}.
• V = {type, pdc, fuel, skibag, 4-wheel}
• D = {dom(type)={city, limo, combi, xdrive},

dom(pdc)= {yes, no}, dom(fuel) = {4l, 6l, 10l},
dom(skibag)={yes, no}, dom(4-wheel)={yes,
no}
• CKB = {c1: 4-wheel = yes⇒ type = xdrive, c2:

skibag = yes⇒ type 6= city, c3: fuel = 4l⇒ type
= city, c4: fuel = 6l⇒ type 6= xdrive}
• CR = {c5: type = combi, c6: fuel = 4l, c7: 4-wheel

= yes}
On the basis of this configuration task definition, we
can now introduce the definition of a concrete config-
uration (solution for a configuration task).

Definition 2 (Configuration). A configuration for
a given configuration task (V, D, C) is an instantia-

tion I = {v1=ins1, v2=ins2, . . . , vn=insn} where insk
∈ dom(vk).

A configuration is consistent if the assignments in I
are consistent with the ci ∈ C. Furthermore, a configu-
ration is complete if all variables in V are instantiated.
Finally, a configuration is valid if it is consistent and
complete.

3 DIAGNOSING OVER-CONSTRAINED
PROBLEMS

For the configuration task introduced in Section 2 we
are not able to find a solution, for example, a combi-
type car does not support a fuel consumption of 4l
per 100 kilometers. Consequently, we want to identify
minimal sets of constraints (ci ∈ CR) which have to be
deleted (or adapted) in order to be able to identify a so-
lution (restore the consistency). In the example of Sec-
tion 2 the set of constraints CR={c5, c6, c7} is incon-
sistent with the constraints CKB= {c1, c2, c3, c4}, i.e.,
no solution can be found for the underlying configura-
tion task. A standard approach to determine a minimal
set of constraints that have to be deleted from an over-
constrained problem is to resolve all minimal conflicts
contained in the constraint set. The determination of
such constraints is based on a conflict detection algo-
rithm (see, e.g., (Junker, 2004)), the derivation of the
corresponding diagnoses is based on the calculation of
hitting sets (Reiter, 1987). Since both, the notion of a
(minimal) conflict and the notion of a (minimal) diag-
nosis will be used in the following sections, we provide
the corresponding definitions here.

Definition 3 (Conflict Set). A conflict set is a set
CS ⊆ CR s.t. CKB ∪ CS is inconsistent. A conflict
set CS is a minimal if there does not exist a conflict set
CS’ with CS’ ⊂ CS.

In our working example we can identify three
minimal conflict sets which are CS1={c5,c6},
CS2={c5,c7}, and CS3={c6,c7}.

CS1, CS2, CS3 are conflict sets since CS1 ∪ CKB
∨ CS2 ∪ CKB ∨ CS3 ∪ CKB is inconsistent. The
minimality property is fulfilled since there does not
exist a conflict set CS4 with CS4 ⊂ CS1 or CS4 ⊂
CS2 or CS4 ⊂ CS3. The standard approach to resolve
the given conflicts is the construction of a correspond-
ing hitting set directed acyclic graph (HSDAG) (Re-
iter, 1987) where the resolution of all minimal con-
flict sets automatically corresponds to the identifica-
tion of a minimal diagnosis. A minimal diagnosis in
our application context is a minimal set of customer
requirements contained in the set of car features (CR)
that has to be deleted from CR (or adapted) in order to
make the remaining constraints consistent with CKB .
Since we are dealing with the diagnosis of customer re-
quirements, we introduce the definition of a customer
requirements diagnosis problem (Definition 4). This
definition is based on (Felfernig et al., 2004).

Definition 4 (CR Diagnosis Problem). A customer
requirements diagnosis (CR diagnosis) problem is de-
fined as a tuple (CKB , CR) where CR is the set of given
customer requirements and CKB represents the con-
straints part of the configuration knowledge base.

The definition of a CR diagnosis that corresponds
to a given CR Diagnosis Problem is the following (see
Definition 5).
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Definition 5 (CR Diagnosis). A CR diagnosis for
a CR diagnosis problem (CKB , CR) is a set ∆ ⊆ CR,
s.t., CKB ∪ (CR - ∆) is consistent. ∆ is minimal if
there does not exist a diagnosis ∆’ ⊂ ∆ s.t. CKB ∪
(CR - ∆’) is consistent.

The HSDAG algorithm for determining minimal di-
agnoses is discussed in detail in (Reiter, 1987). The
concept of this algorithm will be explained on the basis
of our working example. It relies on a conflict detec-
tion algorithm that is responsible for detecting minimal
conflicts in a given set of constraints (in our case in
the given customer requirements). One conflict detec-
tion algorithm is QuickXplain (Junker, 2004) which is
based on an efficient divide-and-conquer search strat-
egy. For the purposes of our working example let us
assume that the first minimal conflict set determined
by QuickXplain is the set CS1= {c5, c6}. Due to the
minimality property, we are able to resolve each con-
flict by simply deleting one element from the set, for
example, in the case of CS1 we have to either delete
c5 or c6. Each variant to resolve a conflict set is repre-
sented by a specific path in the corresponding HSDAG
– the HSDAG for our working example is depicted in
Figure 1. The deletion of c5 from CS1 triggers the cal-
culation of another conflict set CS3 = {c6, c7} since
CR - {c5} ∪ CKB is inconsistent. If we decide to
delete c6 from CS1, CR - {c6} ∪ CKB remains incon-
sistent which means that QuickXplain returns another
minimal conflict set which is CS2 = {c5, c7}.

The original HSDAG algorithm (Reiter, 1987) fol-
lows a strict breadth-first search regime. Following
this strategy, the next node to be expanded in our work-
ing example is the minimal conflict set CS3 which has
been returned by QuickXplain for CR - {c5} ∪ CKB .
In this context, the first option to resolve CS3 is to
delete c6. This option is a valid one and ∆1= {c5,
c6} is the resulting minimal diagnosis. The second op-
tion for resolving CS3 is to delete the constraint c7. In
this case, we have identified the next minimal diagno-
sis ∆2 = {c5, c7} since CR - {c5, c7} ∪ CKB is con-
sistent. This way we are able to identify all minimal
sets of constraints ∆i that – if deleted from CR – help
to restore the consistency with CKB . If we want to
calculate the complete set of diagnoses for our work-
ing example, we still have to resolve the conflict set
CS2. The first option to resolve CS2 is to delete c5 –
since {c5, c6} has already been identified as a minimal
diagnosis, we can close this node in the HSDAG. The
second option to resolve CS2 is to delete c7. In this
case we have determined the third minimal diagnosis
which is ∆3 = {c6, c7}.

In our working example we are able to enumer-
ate all possible diagnoses that help to restore consis-
tency. However, the calculation of all minimal diag-
noses is expensive and thus in many cases not prac-
ticable for interactive settings. Since users are often
interested in a reduced subset of all the potential diag-
noses, alternative algorithms are needed that are capa-
ble of identifying preferred diagnoses (DeKleer, 1990;
Felfernig et al., 2009; Reiter, 1987). Such approaches
have already been developed (DeKleer, 1990; Felfer-
nig et al., 2009), however, they are still based on the
resolution of conflict sets which is computationally ex-
pensive (see Section 5). Our idea presented in this

paper is a diagnosis algorithm that helps to determine
preferred diagnoses without the need of calculating the
corresponding conflict sets. The basic properties of
FastDiag will be discussed in Section 4.

Figure 1: HSDAG (Hitting Set Directed Acyclic
Graph) for the CR diagnosis problem (CR={c5, c6,
c7}, CKB={c1, c2, c3, c4}). The sets {c5, c6}, {c6,
c7}, and {c5, c7} are the minimal diagnoses - the con-
flict sets CS1, CS2, and CS3 are determined on the ba-
sis of QuickXplain .

4 CALCULATING PREFERRED DIAGNOSES
WITH FASTDIAG

Users typically prefer to keep the important require-
ments and to change or delete (if needed) the less
important ones (Junker, 2004). The major goal of
(model-based) diagnosis tasks is to identify the pre-
ferred (leading) diagnoses which are not necessarily
minimal cardinality ones (DeKleer, 1990). For the
characterization of a preferred diagnosis we will rely
on the definition of a total ordering of the given set of
constraints in C (respectively CR). Such a total order-
ing can be achieved, for example, by directly asking
the customer regarding the preferences, by applying
multi-attribute utility theory (Ardissono et al., 2003;
Winterfeldt and Edwards, 1986) where the determined
interest dimensions correspond with the attributes of
CR or by applying the rankings determined by conjoint
analysis (Belanger, 2005). The following definition of
a lexicographical ordering (Definition 6) is based on
total orderings for constraints (Junker, 2004) for the
determination of preferred conflict sets.

Definition 6 (Total Lexicographical Ordering).
Given a total order < on C, we enumerate the con-
straints in C in increasing < order c1.. cn starting with
the least important constraints (i.e., ci < cj ⇒ i < j).
We compare two subsets X and Y of C lexicographi-
cally as follows:

X >lex Y iff
∃k: ck ∈ Y - X and

X ∩ {ck+1, ..., ct} = Y ∩ {ck+1, ..., ct}.
Based on this definition of a lexicographical order-

ing, we can now introduce a preferred diagnosis.
Definition 7 (Preferred Diagnosis). A minimal

diagnosis ∆ for a given CR diagnosis problem (CR,
CKB) is a preferred diagnosis for (CR, CKB) iff there
does not exist a minimal diagnosis ∆′ with ∆′ >lex ∆.

In our working example we assumed the lexico-
graphical ordering (c5 < c6 < c7), i.e., the most im-
portant customer requirement is c7 (the 4-wheel func-
tionality). If we assume that X = {c5, c7} and Y =
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{c6, c7} then Y -X = {c6} and X ∩ {c7} = Y ∩ {c7}.
Intuitively, {c5, c7} is a preferred diagnosis compared
to {c6, c7} since both diagnoses include c7 but c5 is
less important than c6. If we change the ordering to
(c7 < c6 < c5), FastDiag would then determine {c6,
c7} as the preferred minimal diagnosis.

4.1 FastDiag Approach
For the following discussions we introduce the set AC
= CKB ∪ CR which represents the union of customer
requirements (CR) and the configuration knowledge
base (CKB). The basic idea of the FastDiag algorithm
(Algorithm 1) is the following.1 In our working ex-
ample, the set of customer requirements CR = {c5, c6,
c7} includes at least one minimal diagnosis since CKB
is consistent and CKB ∪ CR is inconsistent. In the
worst case CR itself represents the minimal diagnosis
which would mean that all constraints in CR are part of
the diagnosis, i.e., each ci ∈ CR represents a singleton
conflict. In our case CR obviously does not represent a
minimal diagnosis – the set of diagnoses in our work-
ing example is {∆1 = {c5, c6}, ∆2 = {c5, c7}, ∆3 =
{c6, c7}} (see Section 3).

The next step in Algorithm 1 is to divide the set of
customer requirements CR = {c5, c6, c7} into the two
sets C1 = {c5} and C2 = {c6, c7} and to check whether
AC - C1 is already consistent. If this is the case, we can
omit the set C2 since at least one minimal diagnosis
can already be identified in C1. In our case, AC - {c5}
is inconsistent, which means that we have to consider
further elements from C2. Therefore, C2 = {c6, c7} is
divided into the sets {c6} and {c7}. In the next step
we can check whether AC – (C1 ∪ {c6}) is consistent
– this is the case which means that we do not have
to further take into account {c7} for determining the
diagnosis. Since {c5} does not include a diagnosis but
{c5} ∪ {c6} includes a diagnosis, we can deduce that
{c6} must be part of the diagnosis. The final step is to
check whether AC – {c6} leads to a diagnosis without
including {c5}. We see that AC – {c6} is inconsistent,
i.e., ∆ = {c5, c6} is a minimal diagnosis for the CR
diagnosis problem (CR = {c5, c6, c7}, CKB = {c1, . . . ,
c4}). An execution trace of the FastDiag algorithm in
the context of our example is shown in Figure 2.

Figure 2: FastDiag execution trace for the CR diagno-
sis problem (CR={c5, c6, c7}, CKB={c1, c2, c3, c4}).

1In Algorithm 1 we use the set C instead of CR since the
application of the algorithm is not restricted to inconsistent
sets of customer requirements.

Algorithm 1 − FastDiag

1 func FastDiag(C ⊆ AC,AC = {c1..ct}) : ∆
2 if isEmpty(C) or inconsistent(AC−C) return ∅
3 else return FD(∅, C,AC);

4 func FD(D,C = {c1..cq}, AC) : diagnosis ∆
5 if D 6= 0 and consistent(AC) return ∅;
6 if singleton(C) return C;

7 k =
n

2
;

8 C1 = {c1..ck};C2 = {ck+1..cq};
9 D1 = FD(C1, C2, AC − C1);

10 D2 = FD(D1, C1, AC −D1);
11 return(D1 ∪D2);

4.2 Calculating n>1 Diagnoses
In order to be able to calculate n>1 diagnoses2 with
FastDiag we have to adopt the HSDAG construction
introduced in (Reiter, 1987) by substituting the reso-
lution of conflicts (see Figure 1) with the deletion of
elements ci from CR (C) (see Figure 3). In this case,
a path in the HSDAG is closed if no further diagnoses
can be identified for this path or the elements of the
current path are a superset of an already closed path
(containment check). Conform to the HSDAG pre-
sented in (Reiter, 1987), we expand the search tree in a
breadth-first manner. In our working example, we can
delete {c5} (one element of the first diagnosis ∆1 =
{c5, c6}) from the set CR of diagnosable elements and
restart the algorithm for finding another minimal diag-
nosis for the CR diagnosis problem ({c6, c7}, CKB).
Since AC - {c5} is inconsistent, we can conclude that
CR = {c6, c7} includes another minimal diagnosis (∆2
= {c6, c7}) which is determined by FastDiag for the
CR diagnosis problem (CR - {c5}, CKB). Finally, we
have to check whether the CR diagnosis problem ({c5,
c7}, CKB) leads to another minimal diagnosis. This
is the case, i.e., we have identified the last minimal di-
agnosis which is ∆3 = {c5, c7}. The calculation of
all diagnoses in our working example on the basis of
FastDiag is depicted in Figure 3.

Note that for a given set of constraints (C) FastDiag
always calculates the preferred diagnosis in terms of
Definition 7. If ∆1 is the diagnosis returned by Fast-
Diag and we delete one element from ∆1 (e.g., c5),
then FastDiag returns the preferred diagnosis for the
CR diagnosis problem ({c5, c6, c7}-{c5}, {c1, ..., c7})
which is ∆2 in our example case, i.e., ∆1 > lex∆2.
Consequently, diagnoses part of one path in the search
tree (such as ∆1 and ∆2 in Figure 3) are in a strict
preference ordering. However, there is only a partial
order between individual diagnoses in the search tree
in the sense that a diagnosis at level k is not necessarily
preferable to a diagnosis at level k+1.

4.3 FastDiag Properties
A detailed listing of the basic operations of FastDiag
is shown in Algorithm 1. First, the algorithm checks
whether the constraints in C contain a diagnosis, i.e.,

2Typically a CR diagnosis problem has more than one
related diagnosis.
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Figure 3: FastDiag: calculating the complete set of
minimal diagnoses.

whether AC - C is consistent – the function assumes
that it is activated in the case that AC is inconsistent.
If AC - C is inconsistent or C = ∅, FastDiag returns
the empty set as result (no solution can be found). If
at least one diagnosis is contained in the set of con-
straints C, FastDiag activates the FD function which
is in charge of retrieving a preferred diagnosis. Fast-
Diag follows a divide-and-conquer strategy where the
recursive function FD divides the set of constraints (in
our case the elements of CR) into two different sub-
sets (C1 and C2) and tries to figure out whether C1
already contains a diagnosis. If this is the case, Fast-
Diag does not further take into account the constraints
in C2. If only one element is remaining in the current
set of constraints C and the current set of constraints in
AC is still inconsistent, then the element in C is part of
a minimal diagnosis. FastDiag is complete in the sense
that if C contains exactly one minimal diagnosis then
FD will find it. If there are multiple minimal diagnoses
then one of them (the preferred one – see Definition 7)
is returned. The recursive function FD is triggered if
AC-C is consistent and C consists of at least one con-
straint. In such a situation a corresponding minimal
diagnosis can be identified. If we assume the existence
of a minimal diagnosis ∆ that can not be identified by
FastDiag, this would mean that there exists at least one
constraint ca in C which is part of the diagnosis but not
returned by FD. The only way in which elements can
be deleted from C (i.e., not included in a diagnosis) is
by the return ∅ statement in FD and ∅ is only returned
in the case that AC is consistent which means that the
elements of C2 (C1) from the previous FD incarnation
are not part of the preferred diagnosis. Consequently,
it is not possible to delete elements from C which are
part of the diagnosis. FastDiag computes only minimal
diagnoses in the sense of Definition 5. If we assume
the existence of a non-minimal diagnosis ∆ calculated
by FastDiag, this would mean that there exists at least
one constraint ca with ∆ - {ca} is still a diagnosis.
The only situation in which elements of C are added
to a diagnosis ∆ is if C itself contains exactly one el-
ement. If C contains only one element (let us assume
ca) and AC is inconsistent (in the function FD) then ca
is the only element that can be deleted from AC, i.e.,
ca must be part of the diagnosis.

5 EVALUATION
5.1 Performance of FastDiag
In this subsection we compare the performance of
FastDiag with the performance of the hitting set
algorithm (Reiter, 1987) in combination with the
QuickXplain conflict detection algorithm introduced

in (Junker, 2004).
The worst case complexity of FastDiag in terms of

the number of consistency checks needed for calculat-
ing one minimal diagnosis is 2d·log2(nd )+2d, where d
is the minimal diagnoses set size and n is the num-
ber of constraints (in C). The best case complexity is
log2(nd )+2d. In the worst case each element of the di-
agnosis is contained in a different path of the search
tree: log2(nd ) is the depth of the path, 2d represents
the branching factor and the number of leaf-node con-
sistency checks. In the best case all elements of the
diagnosis are contained in one path of the search tree.

The worst case complexity of QuickXplain in terms
of consistency checks needed for calculating one min-
imal conflict set is 2k·log2(nk )+2k where k is the min-
imal conflicts set size and n is again the number of
constraints (in C) (Junker, 2004). The best case com-
plexity of QuickXplain in terms of the number of con-
sistency checks needed is log2(nk )+2k (Junker, 2004).
Consequently, the number of consistency checks per
conflict set (QuickXplain) and the number of consis-
tency checks per diagnosis (FastDiag) fall into a loga-
rithmic complexity class.

Let ncs be the number of minimal conflict sets in a
constraint set and ndiag be the number of minimal di-
agnoses, then we need ndiag FD calls (see Algorithm
1) plus ncs additional consistency checks and ncs ac-
tivations of QuickXplain with ndiag additional consis-
tency checks for determining all diagnoses. The re-
sults of a performance evaluation of FastDiag are de-
picted in the Figures 4–7. The basis for these eval-
uations were generated constraint sets (t = 100 con-
straints with a randomized lexicographical ordering
and n = 100 variables) with a varying number of con-
flict sets (of cardinality 1–4) and corresponding diag-
noses (#diagnoses between 3 – 22). The constraint
solver used for consistency checking was CHOCO
(choco.emn.fr) and the tests have been executed on a
standard desktop computer (Intel(R) Core(TM)2 Quad
CPU QD9400 CPU with 2.66Ghz and 2GB RAM).
Figure 4 shows a comparison between the hitting set
based diagnosis approach (denoted as HSDAG) and
the FastDiag algorithm (denoted as FastDiag) in the
case that only one diagnosis is calculated. FastDiag
clearly outperforms the HSDAG approach indepen-
dent of the way in which diagnoses are calculated
(breadth-first or best-first). Figure 5 shows the perfor-
mance evaluation for calculating the topmost-5 min-
imal diagnoses. The result is similar to the one for
calculating the first diagnosis, i.e., FastDiag outper-
forms the two HSDAG versions. Our evaluations show
that FastDiag is very efficient in calculating preferred
minimal diagnoses. In contrast to the HSDAG-based
best-first search mode FastDiag has a performance that
makes it an excellent choice for interactive settings.

5.2 Prediction Quality of FastDiag
On the basis of interaction data collected with a com-
puter configuration environment we also analyzed the
prediction quality of FastDiag. We measured the qual-
ity of the algorithm in terms of precision (see Formula
1): how often a diagnosis that leads to a selected con-
figuration (selected by the user) is among the topmost-
n diagnoses ranked (predicted) by FastDiag.
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Figure 4: Calculating the first min. diagnosis with FastDiag vs. hitting set based diagnosis with QuickXplain.

Figure 5: Calculating topmost-5 min. diagnoses with FastDiag vs. hitting set based diagnosis with QuickXplain.

precision =
|correctly predicted diagnoses|

|predicted diagnoses|
(1)

The major result of this study was that we could not
detect any signficant difference in prediction quality
between FastDiag and best-first search based HSDAG.
Due to space limitations a detailed characterization of
the study results will be provided in an extended ver-
sion of this paper.

5.3 A Simple Extension: FlexDiag
We now introduce a simple modification of FastDiag
(FlexDiag) which allows us to further reduce the num-
ber of consistency checks in the case we want to cal-
culate exactly one (preferred) diagnosis. This can be
achieved with the tradeoff of loosing the minimality
property (see Definition 5). Note that further evalua-
tions and extensions of FlexDiag are within the scope
of future work.

A reduction of the number of consistency checks
can be achieved by changing the singleton(C) state-
ment in line 6 of Algorithm 1 to size(C) ≤ m. If we
check the current set of constraints C for the contain-
ment of ≤m elements (for m>1), the modified algo-
rithm (FlexDiag) determines a constraint set which in-
cludes the minimal diagnosis (but itself is not neces-
sarily minimal). Consequently, there is a tradeoff: if
we increase m, we decrease the number of consistency
checks and vice-versa.

FlexDiag calculates a set of constraints CD where
CD = ∆ ∪ Coffset. ∆ is the minimal (and preferred)
diagnosis calculated by Algorithm 1 and Coffset is a
set of constraints which are not part of ∆. We eval-
uated this approach w.r.t. the relevance (see Formula
2) of CD. We define relevance as the share of relevant

constraints (all constraints in ∆) w.r.t. the constraints
in CD (see Formula 2):

relevance(CD) =
|∆|
|CD|

(2)

We calculated the average relevance of diagnoses
determined by FlexDiag for our dataset (see Section
5.1). The relevance for m=2 is around 60% which
means that 40% of the constraints are not part of the
minimal (and preferred) diagnosis, on an average (cal-
culated from 100 runs with randomized constraint or-
der). Further increasing the value of m (for m = 3, 4,
and 5) significantly decreases the relevance of the cor-
responding diagnoses CD (see Figure 8). Lower rel-
evance values correlate with decreasing runtimes (see
Table 1).

m=2 m=3 m=4 m=5
16.6% 33.8% 35.5% 41.1%

Table 1: Runtime improvements achieved with Flex-
Diag, for example, with m=2 we can reduce the aver-
age runtime for calculating one diagnosis by 16.6%.

6 RELATED WORK
The authors of (Felfernig et al., 2004) introduce an al-
gorithm for the automated debugging of configuration
knowledge bases. The idea is to combine a conflict de-
tection algorithm such as QuickXplain (Junker, 2004)
with the hitting set algorithm used in model-based di-
agnosis (MBD) (Reiter, 1987) for the calculation of
minimal diagnoses. In this context, conflicts are in-
duced by test cases (examples) that, for example, are
stemming from previous configuration sessions, have
been automatically generated, or have been explicitly

6
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Figure 6: Calculating topmost-10 min. diagnoses with FastDiag vs. hitting set based diagnosis with QuickXplain.

Figure 7: Calculating all min. diagnoses with FastDiag vs. hitting set based diagnosis with QuickXplain.

Figure 8: Relevance of diagnoses CD (see Formula 2)
calculated by FlexDiag.

defined by domain experts. Further applications of
MBD in constraint set debugging are introduced in
(Felfernig et al., 2007) where diagnosis concepts are
used to identify minimal sets of faulty transition con-
ditions in state charts and in (Felfernig et al., 2008)
where MBD is applied for the identification of faulty
utility constraint sets in the context of knowledge-
based recommendation. In contrast to (Felfernig et
al., 2007; 2004; 2008), our work provides an algorithm
that allows to directly determine diagnoses without the
need to determine corresponding conflict sets. Fast-
Diag can be applied in knowledge engineering sce-
narios for calculating preferred diagnoses for faulty
knowledge bases given that we are able to determine
reasonable ordering for the given set of constraints –
this could be achieved, for example, by the application
of corresponding complexity metrics (Chen and Suen,
2003).

In contrast to the algorithm presented in this paper,
calculating diagnoses for inconsistent requirements
typically relies on the existence of (minimal) conflict
sets. A well-known algorithm with a logarithmic num-
ber of consistency checks depending on the number of
constraints in the knowledge base and the cardinality
of the minimal conflicts QuickXplain (Junker, 2004)
has made a major contribution to more efficient inter-
active constraint-based applications. QuickXplain is
based on a divide-and-conquer strategy. FastDiag re-
lies on the same principle of divide-and-conquer but
with a different focus, namely the determination of
minimal diagnoses. QuickXplain calculates minimal
conflict sets based on the assumption of a linear prefer-
ence ordering among the constraints. Similarly – if we
assume a linear preference ordering of the constraints
in C – FastDiag calculates preferred diagnoses.

The authors of (O’Sullivan et al., 2007) focus on in-
teractive settings where users of constraint-based ap-
plications are confronted with situations where no so-
lution can be found. In this context, (O’Sullivan et al.,
2007) introduce the concept of minimal exclusion sets
which correspond to the concept of minimal diagnoses
as defined in (Reiter, 1987). As mentioned, the ma-
jor focus of (O’Sullivan et al., 2007) are interactive
settings where the proposed algorithm supports users
in the identification of acceptable exclusion sets. The
authors propose an algorithm (representative explana-
tions) that helps to improve the quality of the presented
exclusion set and thus increases the probability of find-
ing an acceptable exclusion set for the user. Our diag-
nosis approach calculates preferred diagnoses in terms
of a predefined ordering of the constraint set. Thus –
compared to the work of (O’Sullivan et al., 2007) – we
follow a different approach in terms of focusing more
on preferences than on the degree of representative-
ness.

7
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Many of the existing diagnosis approaches do not
take into account the need for personalizing the set of
diagnoses to be presented to a user. Identifying di-
agnoses of interest in an efficient manner is a clear
surplus regarding the acceptance of the underlying ap-
plication. A first step towards the application of per-
sonalization concepts in the context of knowledge-
based recommendation is presented in (Felfernig et al.,
2009). The authors introduce an approach that calcu-
lates leading diagnoses on the basis of similarity mea-
sures used for determining n-nearest neighbors. A gen-
eral approach to the identification of preferred diag-
noses is introduced in (DeKleer, 1990) where proba-
bility estimates are used to determine the leading diag-
noses with the overall goal to minimize the number of
measurements needed for identifying a malfunction-
ing device. We see our work as a major contribution
in this context since FastDiag helps to identify leading
diagnoses more efficiently – further empirical studies
in different application contexts are within the major
focus of our future work.

7 CONCLUSION
In this paper we have introduced a new diagnosis al-
gorithm (FastDiag) which allows the efficient calcula-
tion of one diagnosis at a time with logarithmic com-
plexity in terms of the number of consistency checks.
Thus, the computational complexity for the calculation
of one minimal diagnosis is equal to the calculation of
one minimal conflict set in hitting set based diagnosis
approaches. The algorithm is especially applicable in
settings where the number of conflict sets is equal to
or larger than the number of diagnoses, or in settings
where preferred (leading) diagnoses are needed.
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