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ABSTRACT Unfortunately, in many cases, the language for ex-
pressing the diagnosis (that we caylpothesis spage

Diagnosis is traditionally defined on a space of is defined in such a way that only little abstraction can
hypotheses (typically, all the combinations of be applied to the model without incurring severe loss
zero or more possible faults). of precision. This problem stems from the fact that,
In the present paper, we argue that a suitable usually, the diagnosis is expressed in terms of detailed
reformulation of this hypothesis space can lead statements about the global system status: for each
to more efficient diagnostic algorithms and more possible fault in the whole system, the diagnosis must
compact diagnoses, most notably by exploiting specify whether such a fault occurred or not. More-
opportunities for various forms of model abstrac- over, all of the faults that occurred within the (possibly
tion. We also study several formal properties re- extended) time interval during which the system has
lated to the correctness and precision of the diag- been observed must be accounted for in the diagnosis.
noses obtained through reformulation. In this article, we study a novel approach to reduce

the complexity of DES diagnosis, based on a reformu-
lation of the hypothesis space. Our approach consists
1 INTRODUCTION in the following main steps:
Eiagnosisf is the problerr(1j of fdete(;:ting abnormgl be- 1. the hypothesis space is formulated differently,
aviour of a system and, after detection, to deter- : . - -
mine the Iocatign and/or the type of system faults that 2. the d|.agn03|_s for this new problem 'S_ c_omputed,
caused the abnormal behaviour (thagnosi3. In this 3. the diagnosis imapped backo the original for-
paper, we focus on Model-Based Diagnosis (MBD) of ~ mulation of the hypothesis space.
Discrete-Event Systems (DESs, d@assandras and The main benefit of this process is that a suitably de-
Lafortune, 1999, where the diagnosis is computed fined new hypothesis space may allow powerful model
by comparing a complete DES model of the systemapstractions. In this paper, we focus on the first and
behaviour with the observation on the actual systemast steps, i.e. on the operations related to the map-
behaviou(Sampatret al, 1999. _ ~ ping from one hypothesis space to another one; how-
Since the size of the search space for diagnosis igver, where appropriate in section 5 we shall also make
usually exponential in the number of different faults, some comments on the potential model abstractions
many recent works in diagnosis of DESs have tried toenabled by reformulation and on the diagnosis of the
tackle this complexity issue, e.gBenvenisteet al,, reformulated problems.
2005; Pencol&t al., 2009. A possible solution al- It is important to note that, in the present proposal,
ready explored in MBD of static system models (e.g.model abstraction is performed ascansequencef
(Sachenbacher and Struss, 2005; Torta and Torassthe problem simplification introduced by the reformu-
2009) is to abstract the model in order to simplify the lation of the hypothesis space; this represents a some-
diagnosis process. The level of abstraction must bevhat reversed view w.r.t. most previous works on ab-
carefully chosen in order to keep the precision to anstraction, which address the abstraction of the system
acceptable level. model and consider the change of the hypothesis space
- for diagnosis as an implicit consequence of the model
*This work is partially supported by a Lagrange fellow- abstraction.
ship provided by Fondazione ISI (Torino, Italy). The reformulation of the hypothesis space may in
TNICTA is funded by the Australian Government as rep- general lead to loss of diagnostic precision.
resented by th®epartment of Broadband, Communication For example, a typical implementation of the scheme
and the Digital Economwgndthe Autralian Research Coun- above is to diagnose every possible system failure sep-
cil through the ICT Centre of Excellence program arately instead of trying to solve the problem globally;



in this way, the original diagnostic problem is mappeding out that most discussions made in the paper would
to a linear number of simpler diagnosis probleiffen-  be unaffected by the adoption of alternative definitions
coléet al, 2006 and, following our approach, a spe- of DES diagnosis hypotheses found in the literature
cific model abstraction can be applied to each of them(most notably the one whereby a diagnosis hypothesis
However, this process may result in the loss of depenis asequencef faults, i.e. H = Eyx wherex is the
dencies among faults, e.g. we may end up knowing thatisual Kleene closure).
each one of the faultg , f> possibly occurred, without _ _
knowing that their occurrences are mutually exclusive.2.2 Model-Based Diagnosis of DES

One of the main contributions of this article is to Let E be a set of labels. Aanguagel on the setF is
study some properties of the system model and/oa set ofwordso € £ defined as sequences of labels:
the applied reformulations which guarantee that an al-£ C Ex.
gorithm based on the reformulated hypothesis space We consider that the system can be accurately mod-
leads to the same diagnosis as a classic MBD algoeled by a finite DES. In practice, the behaviour of the
rithm applied to the original hypothesis space. system is represented by a modél(automaton, Petri
However, we believe that separating the reformula-net, etc.) that defines a languagig on the set of sys-
tion and abstraction processes is beneficial even whetemeventst = E, U E, U E, whereE,, is the set of
the reformulation causes loss of precision. Indeed, irunobservable event®, the set ofobservable events
many cases (e.g. hierarchical diagnosis procedure) iind E; the set of faults. A specific behaviour of the
is acceptable to get an imprecise intermediate resultsystem is represented by a warde L., and gen-
which is then used to focus more precise reasoning irerates an observatiehs(c) defined as the projection
subsequent steps. In this context, the advantage of inProjg, (o) of o on the set of observable events; unob-
troducing the concept of reformulation is that, by ex- servable events and faults are not observed.
plicitly dealing with the transformation of the hypoth- ~ The semanticof hypothesish € H is defined as
esis space, it makes it possible to clearly limit and conthe set of behavioursem(h) C Ex thatagreewith
trol the loss of precision due to the transformation of hypothesish; we say that- € sem(h) belonggo h.
thi?t:e?bilnetrr%ducing the basic concepts on which our In the hypothesis spadé = 1B/, the definition:
work is based (section 2), we precisely define refor- sem(h) ={o € Bx | Vf € By, f € 0 = h(f) =
mulation (section 3) and study some of its properties } . . .
(section 4). Then, we analyze some relevant example$2pPtures the intended meaning of each hypottiesis

of the possible applications of reformulation (section Definition 1 A model-based diagnosis proble(ar

5) and conclude the paper with a discussion. MBD problem) is a tupleP? = (M, 60, H) where M
is a DES model§ € E x is an observation, andf is
2 PRELIMINARIES a space of diagnosis hypotheses.

In this section, we review the classical framework of Themodel-based diagnosisr MBD) A of the prob-

the MBD of DESs, slightly rephrasing it to better fitthe 1em P = (M, 6, H) is defined by:

ggﬂcept of reformulation introduced in the next SEC-Ap ={he H |30 € Lo : o € sem(h)Aobs(o) = 0}.
In the context of this paper, an MBD problem is a

2.1 Diagnosis particular case of a diagnosis problem where the sys-
We consider a system denoted@sBecause of mis- tem is modeled by a DES. The meaning of MBD
conception, misuse or inavoidable failures, the systemAp = {1, ..., hi} is that each one of the hypotheses
may exhibit a number dawltsdenoted by the sef. hi, ..., hy is possibleaccording to the observatigh

The system is monitored lsensorsvhich produce an  and modelM. _ _ _

observatiory. Diagnosisis the problem of using the ~ Animportant point abouf\ p is the following. Con-

observatiory to determine whether the systesnex-  sider a number of sefd, ..., Hy which coverfH (i.e.

hibited faults, and in this case to identify which fault(s) # = U<,y Hi), and compute the diagnosbsy;

did occur. _ _ _ for each problenP; = (M, 6, H;); then, it is easy to
More formally, we calldiagnosis hypothesifor  gee that\ p — Uie{l,...,k} P

simply hypothesis denoted as : E; — B, a func- .
tion that associates a Boolean with each fault. The sel? other words,Ap can be computed by consider-

mantics of hypothesis is that faultf € E; occurred Nd €ach subset of hypothests separately, and then

. o . ; unioning the results. This makes it possible to apply
iff h(f) = T. Thespace of diagnosis hypothesls g ific" model abstractions for each sub-problem

is defined as the s@”s = {(h : By — B)} ofall e will come back to the relevance of this possibility

the possible functions froniy to B. Thediagnosis  when we describe some applications of reformulation

problemis then defined as the tup(&, 0, H). A diag-  in section 5.

nosisA is formally defined as a subset of hypotheses: ) _ )

A C H. Note that the diagnosis is defined with respect2.3  Quality of Diagnosis

to a space of diagnosis hypothegés Let o* € Ly be the representation in our model of
The definition off = B~ provided above focuses the actual (real) behaviour of the system. Ter-

on thesetof faults that occurred in the system, and fect diagnosisA* is defined as the set of diagnosis

is widely adopted in the literature on DES diagnosis.hypotheses matched by this behaviot* = {h €

While such a definition will provide a basis for deriv- H | o* € sem(h)}. Clearly, if the hypotheses i

ing specific results on reformulation, it is worth point- are mutually-exclusive, the real diagno4i$ contains



at most one element; plus, if the set of hypotheses is

coveringthe set of behaviours (foradt € £;;,3h €

H : o € sem(h)), the real diagnosis contains at least
one element; note, however, that our setting is gen
eral enough foA* to contain zero, one or several ele-
ments.

Ideally, the diagnosis procedure should return the
perfect diagnosis. In practice, this may be impossible

reformulation po
yabstraction

- diagnosi P’
) ydiagnosis

Ap 2 AL mapplngAPP

because the observability of the system is incomplet

and the sensors do not provide precise enough an ob-

servation to diagnose perfectly. Moreover, the mode
itself may be imprecise.

Diagnoses can be evaluated and compared thanks
two criteria: d-correctnesslefines the property that
hypotheses € A* are indeed included in the diag-
nosis;d-precisiondefines the property that hypotheses
h ¢ A* are indeed excluded from the diagnosis. In

IFigure 1: Principle of diagnosis through reformulation

to
In this paper we want to argue that it can be benefi-

cial to precede abstraction by a suitable transformation
of the hypothesis space. To this end, we introduce the
notion of reformulation of the hypothesis spakieto

this paper we take the view that bad d-correctness (of New spacéi’, which is expected to allow more effi-

low coverage) is more serious than bad d-precision (o

gient model abstraction.

high false coverage(Krysander and Nyberg, 2008 ~ This idea is depicted Fig. 1. The problemis re-
and therefore focus our interest on d-correct diagnosedormulated in a problen®”” with a new hypothesis

Theorem 1 Given a problemP (M,0,H), the
MBD A p is the most d-precise diagnosis which is cer-
tainly d-correct given the available mod&f and ob-
servationd.

Proof: First, we prove thatp is d-correct, i.e. that
h € A* = h € Ap. We note that it € A* then
o* € sem(h) (wherec* is the actual system trajec-
tory); moreoverpbs(c*) = 6. From definition 1, it
follows thath € Ap.

We now prove thaf\ p is the most d-precise of all d-
correctdiagnoses, i.e. thatfor alle Ap, Ap\{h}is
not d-correct. Indeed, according to definitiondt, €
sem(h): obs(c) = 6. Itis therefore possible that is
the actual system behavior, i.e. thate A*, i.e. that
Ap \ {h} is not d-correctdd

Provided that, among the d-correct diagnogkg,
is the most d-precise diagnosis which can be compute
given an MBD problenP, we will say that a diagnosis
A is d-correct (resp. d-precise) w.r2 if A O Ap
(resp.A C Ap).

3 REFORMULATION

space; the formulation aP” may allow for powerful
abstractions; the diagnosisp, is computed for this
new problem; the diagnosis is mapped back to a diag-
nosisA’, in the original spacéf. An important ques-
tion we shall discuss in the next section is whethér
matches the original diagnostsr (represented by the
qguestion mark in the figure).

Definition 2 Given a hypothesis spadé, a reformu-
lationis a pairp = (g, H'), where H' is a set of hy-
potheses ang is a function that associates with each
hypothesisi € H a set{A],...,A]} of sets of hy-
potheses\; = {hjy,...,hj, twithhi, € H'.

The intended meaning of the reformulatigfh) =
{A1,..., A} of a hypothesig is that whenevet is
possible (i.e. it belongs to the diagnosis), then all
of the hypotheses id/ are possible, at least for some
e {1,...,1}.

d N%te that \}Ne give two degrees of freedom in the def-
inition of a reformulationp = (g, H'): first of all, it

is possible to choose the target set of hypothdées
of the reformulation and their semantics, i.e. for each
h' € H’ the set of behavioursem(h') C Ex that
agree withh/. Moreover, it is possible to choose the

The framework developed in the previous section deway hypotheses il are mapped to hypotheseshH.

fines a diagnosis as a set of hypotheses, each of whichAs we shall see below, our choices may be constrained
is possible according to the model and the observaif we want our reformulation to be correct and precise;
tions. however, this still gives us a lot of freedom in defin-
In particular, each hypothedidgn the hypothesis space ing reformulations. Such a freedom can be exploited
BEr refersto the (non) occurrence of each faulty eventn order to choose a reformulation that makes model

in E; over the entire period of observation. Therefore,
knowing whethef is possible or not requires to reason
globally over the whole system and for the whole time
period during which observations have been collected
A powerful technique for alleviating such a com-
plexity is model abstraction, namely the simplification
of the model by forgettingrelevantdetails. However,
it is usually difficult to apply such a technique to the

abstraction easier.

Definition 3 Given a reformulatiorp = (g, H') and
an MBD problemP = (M, 6, H) we define:

1. Reformulated problem: the MBD probleft =
(M,0,H'").

Reformulated diagnosis: the MBRp, com-
puted starting from problen®”

2.

MBD reasoning task, because abstracting the model 3

often has undesired effects on the computed diagnosis;
in particular, spurious hypotheses may easily appear
because the abstraction forgot some relevant details of
the model.

Diagnosis through reformulation: the diagnosis
Af, obtained by mappind\p, back to the hy-
pothesis spacél, i.e.:

A =g ' (Ape) =



{h € H | glh) = {A},...,A]} AN Ji € d-correctness.

{1,...,1} : AL C Ap»} However, it is possible to identify some important spe-
cial cases and derive interesting properties for each of
4 QUALITY OF REFORMULATION them.

In the following discussion, it will be useful to refer to  Disjunctions
thesemantic®f the reformulatiory(h) by associating  pefinition 7 Given a reformulatiorp = (g, H'), we
with g(h) the set of behaviours that belong to all the say thaty disjunctively decomposés/pothesis € [

hypotheses of at least on¥. if g(h) = {{h},....{h}}}. We also say thaj(h) is
Definition 4 Let g(h) = {A},...,A}}, A, =  adisjunction
{hiy, ..., by, }; thesemanticof g(h) is defined as: A disjunction is a decomposition of a hypothesisf
spaceH into a set of (non-exclusive) alternatives.
) Sem(g(h)) ={oe Ly , In the following theorem (as in subsequent ones),
Jie{l,....1}:Vje{l,... .k}, o € sem(hi;)}.  we assume for simplicity that the reformulatiomaps
. each hypothesig € H to itself, except for the hy-
4.1 Correctness of Reformulation potheses whose mapping is explicitly mentioned in the

Definition 5 The reformulationg(h) of a hypothesis theorem. More complex reformulations can be viewed
h € H isr-correctiff sem(h) C sem(g(h)). Arefor-  just as successive applications of these basic reformu-

mulationp = (g, H') is r-correct iff for eachh € H, lations.
g(h) is r-correct. Theorem 3 Letp = (g, H') be a reformulation off

The following theorem relates r-correctness with d-s.t. ¢(n) is a disjunction{{h}}, ..., {h;}} for some
correctness. . h € H,andletP = (M, 6, H) be an MBD problem.
Theorem 2 Letp = (g, H') be a reformulation of/ i 4(7) is r-precise and\’ is a d-precise diagnosis for
andP = (M, 0, H) be an MBD problem. PP = (M,0,H'), thenA = g=1(A’) is a d-precise

If p is r-correct andA’ is a d-correct diagnosis for  diagnosis forP.

PP = (M,0,H'), thenA = g~'(A’) is a d-correct . . . .
diagnogis’fo’rp_ ) g (A Proof: The diagnosisi is d-precise forP if A C

) o ) Ap, i.e., eachh in A is also in the diagnosi&p ob-
Proof: The diagnosig\ is d-correctfor”if A D Ap,  tained by directly solving problerf.

i.e., eachh in the diagnosisA p obtained by directly T
solving problemP is also inA. ghgfgﬁgr?ﬁﬁi%?&trenh € Ap, because does not

'(Lgfﬁ,iﬁofj; tlr;'enﬂa € L 2 0 € sem(h)Nobs(o) = 6 If h € A, then3h! : b € A’ (by definition of A as
Let g(h) = {A},...,A}}. Sincep is r-correct, it ¢ '(A")). SinceA’is d-precise forP”?, 30 € Lur :
follows thatJi € {1,...,1}: o € sem(h),) forall o € sem(h;) Aobs(o) =0. B
héj € A! (definitions 5 and 4). Since g(h) is r-precise, this |mpl|e_$7 e sem(h).
Moreover, since)\’ is d-correct forP?, each sucth; Therefore, according to Definition &, € Ap, which
belongs toA’ and, thereforep; C A/ " proves the theoreni]

It follows thath € A (definition of g—! in defini- ) )
tion 3), which proves the theorerml Conjunctions

) Definition 8 Given a reformulatiorp = (g, H'), we
) NOte that the theore.m (aS the fO”OW|ng Ones) hQIdSSay thatg COﬂjunctive'y decomposd‘wpothesigl c
in particular for the diagnosis through reformulation f'if ¢(h) = {A’}, with A’ = {n’, ..., h,}. We also
AL = g7'(Ape). So, if p is r-correct, the diagnosis say thatg(h) is aconjunction
through reformulation is d-correct. i o . .

Also note that the r-correctness of reformulatipn A conjunction is a decomposition of a hypothelsis

is not, in general, a necessary condition for the d-of spacef into a set of sub-hypotheses. _
correctness oA”,. Unfortunately, an r-precise reformulation which
However, this definition of r-correctness can be eascontains a conjunction, does not guarantee that a di-
ily checked by considering just the hypotheses in theagnosis through reformulatia, = g (Aps) is d-
spacedd, H' and their semantics, and provides an ef-precise, as shown in the following example.
fective sufficient condition to guarantee d-correctnes

of diagnosis through reformulation. Example 1 Let By = {1, f2} (there are two possible

faults), H = B¥s and consider the hypothesisc H

4.2 Precision of Reformulation which states that both faultg and f» occurred (i.e.

Definition 6 The reformulationg(h) of a hypothesis  h(f1) = h(f2) = T).

heHis r-pre<C|senjf sem(h) 2 sem(g(h)). A refor- Now consider the reformulation = (g, H') where

mulationp = (g, H') is r-precise iff for eacth € H, ' — g\ {AY U (W' K. ) = {({n B d

mulation, = (o, - H (B} U {04, 9(R) = (A4, 01} an
g(h) = {{h}} if h # h. The hypothesés, state that

In general, it is not possible to make a statementfault f; occurred (but ignore whether the other fault
about the d-precision of diagnosis through reformula-occurred or not). In a nutshell, after the reformulation
tion analogous to the one made in Theorem 2 about itshe two faultsf; and f> will be tested separately.



The reformulationp = (g, H') is r-precise and r- The algorithm starts with the sét of observations
correct sinceVh € H, sem(h) = sem(g(h)) (in 6 that are not observations &f, and incrementally

particular, sem(R) and sem(g(R)) contain the be- discards from such a set the observations that can-

haviourss where bothf; and f, occurred). not be simultanesously explained with the hypotheses
Consider now a diagnosis problemwhere the ob-  {A1, - - -, h;}, for increasing values afup tok.

servations clearly show that i) each possibly oc- If it ends up with an empty set, it means tht(h)

curred but that ii) only one fault took place. Because coversobs({h},...,h}.}), i.e. thath is decomposable

the two faults did not occur togethér,¢ Ap. How-  in{A},...,h}}.

ever, because each fault possibly happeréd, n}}

is a subset of the reformulated MBRp,. Now, us-

ing g~', we obtain that: € A%, i.e. the diagnosis In practice, an interesting way of ensuring decom-

through reformulation is not d-precise_ posability is through the WeII-knOWIdiagnosabiIity
) property. Let us first recast diagnosability in our
We need to explore more closely what properties offramework.

the system guarantee that the diagnosis through refor-
mulation is d-precise. We therefore introduce the fol-Definition 9 A hypothesish is diagnosable on a
lowing notation: the observations of a hypothdsis  model M if Yo € sem(h), Yo' € Ly, obs(o) =
the set of observations that can be emitted by some bq)-bs(af) = o' € sem(h).
haviour ofh: obs(h) = {0 € Projg,(Ly) | o €
sem(h) : obs(c) = 0}. The observations of a set Note that the original definition of diagnosability
of hypotheseghy, ..., hi} is the set of observations (Sampathet al, 1999 included a delay between the
that belong to the observations of each hypothksis time instant when the hypothesis becomes true and the
obs({hi1,...,hi}) = {0 € Projg,(Lm) | Vi €  time instant when the fault can be diagnosed with cer-
{1,...,k}, 0 € obs(h;)}. tainty. This does not quite fit with our definition of

. hypothesis where the semantiesn(h) of a hypothe-
Theorem 4 Letp = (g, /') be a reformulation ol gjg’y, s not necessarily stable (or g‘ez(tension-closed”)

s.t. g(h) is a conjunction{{A},...,h}.}} for some  (Jéronet al, 2008.
h € H,and letP = (M, 0, H) be a diagnosis prob-
lem. Theorem 5 Let M be a model and lep = (g, H')

If the observations oﬁ cover the observations of be a reformulation offf s.t. g(h) is a conjunction
{n},....h,}, i.e. obs(h) D obs({h},...,h}}) and  {{n},h,}} for someh € H.
A’ is a d-precise diagnosis faP* = (M, 0, H'), then  If p is r-precise andh] is diagnosable on model/,

A = g—1(A’) is a d-precise diagnosis faP. then’ is decomposable ifin}, i)y }.
Proof: DiagnosisA is d-precise forP if A C Ap, — proof:  We prove that the condition of Theorem 4
i.e. eachh in A is also in the diagnosia p obtained . e — . .

is satisfied byh, i.e. that for any observatio#, it

by directly solving problenP. h L
= olds that the conditiowi € {1,2}, 3o, € Ly :
If h € A andh # h, thenh € Ap, because does not o5 € sem(h!) A obs(o:) = 0 implies o € sem(R) :

change anything fok. bs(o) = b

N . / / e oos(o) = 0.
Ifthe A,St_henVAz/e_ {1d’ ook}, h% < A”i(tﬁ/ dleflmtlzn Consider an observatigh= obs(c) for somes € L
g )'L, InceA™ 1S -}E)Iremsg, or al ,~ ™ st the condition of the implication above holds.

i € Ly : 05 € sem(h;) A obs(o;) = 0. Sinceh is diagnosabler, € sem(h)) and, therefore,

Because the observations lofcover the observations / N > .
of {h},...,h}.}, 3o € Lo : 0 € sem(h) A obs(o) = o2 E.s-em(hl) : S?m.(h“‘) = sem(g(h)). From the r

: - - . precision ofp (definition 6) comes that, € sem(h),
6. According to definition 1 of MBD/ € Ap, which  \yhich proves the theorerfll

proves the theorenfl

This result can be easily extended for a decomposi-

Because of Theorem 4, we say thats (conjunc- tion in more than two elements.

. h , A
e e K™ Combinng teorem 4 and teorem 5, 1 folows
In _ principle decomposability}’ Cof hk into tha}t, if hyp/)othe5|sh is reformulated in a conjunction
{Ry, ..., h.} can be tested with a procedure such as P, ...} st allthe (possibly but one) hypotheses
thelbne’illl]jstrated in algorithm 1 ; are diagnosable, then the diagnosis through refor-
' mulation is still precise.
i i _ Note that the condition on diagnosability we have dis-
Algorithm 1 Testing decomposability. cussed is sufficient but not necessary.
input: model M, hypothesish, set of hypotheses  Diagnosability was already identified as an impor-
{Rh, .. h} tant feature for diagnosis: being able to determine
L := Projg, (L) \ obs(h) without ambiguity whether a specific behaviour occurs
fori=1.. . kdo on a system is quite useful for the operator in charge
L := LN Projg, (sem(h})) of the system. We just showed here that this prop-
end for ’ ! erty is also useful to decompose the diagnosis prob-
return £ = lem: all diagnosable faults may be diagnosed indepen-

dently from the other faults.




Aggregations

Definition 10 Given a reformulatiorp = (g, H’'), we
say thatg aggregatebypothese#, ..., h,, € H if
glhy) = ... = g(hm) = {{F'}}. We also say that
{{r'}} is anaggregationf iy, ..., hy,.

An aggregation is said to beoverall preciseif
sem(h’) C sem(h1) U...Usem(hp).

An aggregatioris a composition of two or more hy-
potheses of spadé into a single hypothesis in another
spaceH’.

However, one of the important features of such net-
works is their distributive aspect; there are no “central”
components in the network, which means that any de-
fect from some component can usually be confined to
a relatively small part of the network.

In this context, we envision an important use of re-
formulation related to the decomposition of global hy-
potheses into sets of local hypotheses.

Consider a problem wherH = BF/, i.e. each hy-
pothesis contains information about all possible faults.

Note that the notion of overall precision is weaker Now, considerS C 277, a collection of subsets of
than that of precision, i.e. a precise aggregation is alsd?s that coversE; (i.e. (Uges E) = Ey). Define

overall precise but not viceversa.

Before providing a sufficient condition for d-precise
diagnosis through reformulation in the presence of ag
gregations, we introduce the notioninflistinguisha-
bility between hypotheses.

Definition 11 Two hypotheses:;, ho are said to
be indistinguishable w.rt. a modell if Vo; €
sem(h1), oo € sem(hz): obs(o1) = obs(o2), and
viceversa.

Itis easy to see that #i1, ho are indistinguishable,
then obs(h1) = obs(hs). Moreover, if {{h'}} =
g(h1) = g(he) is an overall precise aggregation
of such indistinguishable hypotheses, al$a(h') is
equal toobs(h;),1 € {1,2}.

Theorem 6 Letp = (g, H') be a reformulation off
s.t.{{n'}},h € H'is an overall precise aggregation
of hi,he € H,andP = (M, 0, H) be a diagnostic
problem.

If hi,ho are indistinguishable w.r.tA/ and A’ is a
d-precise diagnosis foP? = (M, 0, H'), thenA =
g~ 1(A’) is a d-precise diagnosis fap.

Proof: DiagnosisA is d-precise forP if A C Ap,
i.e. eachh in A is also in diagnosig\p obtained by
directly solving problenP.

If h € A, h # hy,ho thenh € Ap , because does
not change anything far.

If hy € A (the casehy € A is analogous), then
R e A’ sinceg(hy) = {{h'}} (definition 3). Then,
because of the d-precision &f and the overall preci-
sion of the aggregatiodlc € sem(hy) : obs(o) = 0
or 3o € sem(he) : obs(o) = 0.

In the first caseh; € Ap immediately follows from
definition 1. In the second case, we conclides Ap
for the same reason; but, sinég, hs are indistin-
guishable, this impliead; € Ap, which concludes the
proof. ]

the hypothesis spadé¢’ asH’ = (|Jcq H};), Where

-~ = B¥. Each hypothesia’; belonging to a sub-
spaceH, of H’' contains information about all faults
in subsetE’; we letsem(hly) = {0 | Vf € E, f €
o < Wg(f) = T}. Definep betweernH andH’ s.t. for
all h, g(h) is the conjunctiod {A’}} of the set of hy-
potheseg\’ C H' consistent withh.

This reformulation yields two benefits. First, the
number of hypotheses is shrinked frogh®s! to
Y res2!El which can be very beneficial, especially if
foreachE, |E| < |Ey|.

Second, following our discussion in section 2,
it is possible to solve the reformulated problem
pr (M,0,H’) by solving sub-problems’”,
(M,0,Hy). The main benefit of this is that specific
abstractions can be applied to the modélfor each
problemP?,, and such model abstractions can be ex-
tremely powerful if the sefy contains only a small
subset of all the fault&’;.

Let us now consider if (and when) diagnosis through
this kind of reformulation is d-correct and d-precise.
D-correctness is guaranteed by theorem 2, since it is
easy to see that the definition pfgiven above is r-
correct.

D-precision can be guaranteed by theorem 4, provided
that eachh € H s.t.g(h) = {{A’}} is decomposable

in A’. Since decomposability is related to diagnosabil-
ity by theorem 5, a possible technique to ensure the
required decomposability of ea¢he H is to decide
the sensors that will be placed on the sysf@&randan
Brioneset al,, 2009.

A previous work that proposes a technique close to
this kind of reformulation i§Pencoléet al., 2009. In
the paper, the authors refuse the global picture of diag-
nosis and propose to test each fault separately with a
specialised diagnosers$n terms of reformulation, the
set of faultsE; Is split into subsets; = {f;}, each

It is easy to extend this result to the aggregation ofone containing just one faul. Consequently, the

m indistinguishable hypothesaés, . . ., h,.

5 EXAMPLES OF REFORMULATIONS
5.1 Spatial decomposition

reformulated spacé/’ is defined as(UfieEf Hb)

and a specialized diagnoser is built for diagnosing each
fault separately.

The approach ir{Pencoléet al, 2006 highly re-

Very large networks — such as the Internet or electricityduces the complexity, making it linear in the num-
distribution networks — encompass thousands of interber of possible faults. However, as the authors ac-
connected components. A priori, the behaviour of anyknowledge, thénformation about fault correlations is
component and any sensor in the network may providéost by the specialised diagnosgsse illustrated this
relevant information for the diagnosis task, so that apfact in Example 1 where the fault correlation corre-
plying model abstraction to alleviate complexity is all sponds tal-precision. Such a loss of precision may be
but trivial. studied (and possibly avoided) by applying the frame-



work developed in this paper. In particular, reasoningfurther reasoning in the original spagg as it is typi-
in terms of reformulation may suggest that the set ofcally done in hierarchical diagnosis. Also in this case
faults £y should be better split in (small) subsets thatthe reformulation framework can be helpful, because
are not necessary singletons; moreover, it may help irthe explicit definition ofy gives us important informa-
the choice of additional sensors that ensure precisiontion on how (computationally) easy will be the refine-
- ment step.
5.2 Temporal decomposition In (Cordieret al,, 2007, the authors definmacro-
When the temporal window on which the diagnosis isfaults which correspond to sets of behaviours for
defined is large, it may be more convenient to split itwhich a similar recovery procedure can be taken.
in smaller windows that can be diagnosed separatelyl hese macro-faults cover but, as in the present work,
Consider on the one hand a hypothésis H which do not form a partition of the set of behaviours, as a
states that a specific fauftoccurred in the time win-  single behaviour may be recovered from by different
dow W during which the whole observatighwas col- ~ procedures. The macro-faults correspond to aggrega-
lected; it is possible to define two hypothegésand  tions of hypotheses, and do not need to be mapped
hl, each of which states thgtoccurred during a sub- back. The authors put emphasis on precision at the
windowsW; andWW, respectively. level of macro faults: the diagnoser should return
The reformulationg(k) could be a disjunction a macro-fault only if the system behaviour actually
({h,}, {h,}}, as it suffices that ong, is true forh ~ Matches the macro-fault. Interestingly, the correctness
to be true. property, as defined in the present paper, is not consid-

Each hypothesis!, is concerned with the occurrence €red by the authors; if a behaviour belongs to several
of eventf during windowlV;, but some other observa- macro-faults, the diagnoser needs to return only one of
tions received i/ might be required for a precise di- these macro-faults. .

agnosis; however, it should be possible to ignore most In (Perrot and Travé-Massuyes, 200the authors
observation fragments in the subwindows associate@ddress the abstraction of static systems; their abstrac-
with n/; # /. tions are defined as the aggregation of states (complete
This rJ\as azlready been done in the chronicle—base@SSignments of health variables), which constitute their

: i tic hypothesis space. Therefore, the abstrac-
approach(Cordier and Dousson, 20Q)0where only ~ ¢1&gnostc hyp ! » U
contextual observation fragments are used:; it also ret-'onsb studied dln(Pe][rot a?d.Trave-Massuye.fs, 2”007
lates tofinite trackabilityin (gGrastien and Anbulagan, ¢anbe viewed as reformulations (more specifically, ag-

2009, where a decision about the behaviour at someJrégations). . .
time can be made within a limited time window. n such a context, the notions @oncrete Solution

IncreasingandConcrete Solution Decreasirapstrac-
5.3 Aggregated faults tions (taken from the literature on abstraction and men-

. . . . . tioned by the authors) closely match our notions of r-
Consider that, in order to build a hierarchical model of recision and r-correctness of reformulations.

the system, we wabnt to aggregatﬁ a sekt offcomplonen S

1, ..., c into a subsyster. For the sake of simplic-

iti/: let 7uskassume tha}{ the model of each compopn,ent 6 CONCLUSION
has its own fault event; which represents the failure |n this paper, we have presented a framework for refor-
of ¢;, and let us ignore multiple fault hypotheses. ~ mulating diagnosis hypotheses in the context of DES
If hypotheses:; € H represent the occurrence of sin- diagnosis.

gle faults f;, we may want to map all the hypotheses As discussed in the examples, reformulations can open
h; to the same hypothests, € H' which represents  the way to performing powerful model abstractions,

the failure of the subsystem If we let sem(h;) =  thus improving diagnosis efficiency; moreover, the
U,=1... . sem(h;), such a reformulation is a correct possibility of explicitly mapping an hypothesis space
and overall precise aggregation (section 4.2). into another one allows an improved control of the rel-

From theorem 2, we know that diagnosis throughevant diagnostic information that is (is not) lost with
this kind of reformulation is d-correct. Moreover, the- the transformation, and of the (computational) cost of
orem 6 tells us that, if hypothesgs are mutually in-  retrieving such information if desired.
distinguishable, it is also d-precise. We have paid a particular attention to reformula-
It is important to note that we may not be interested intions that fully preserve the correctness and precision
the precision of diagnosis (i.e. we may be willing to of diagnosis, identifying a number of sufficient condi-
apply reformulation even if hypothesksare not mu-  tions which guarantee that a diagnosis procedure based
tually indistinguishable). on reformulation exhibits such properties. In future
One reason is because we may not have a practical irwork, we would like to explore additional conditions
terest in distinguishing the exact fault that occurred inrelated to correctness and precision, focusing on effi-
subsystenms (see also the discussion below); in this cient ways of testing their truth for given diagnostic
case, the reformulation framework gives us the formalproblems; we would like to include in our study also
means to express our desired level of granularity ofcases when it is not convenient (or desired) to com-
diagnosis, which should be taken into account for perpletely preserve the correctness and/or precision of di-
forming useful model abstractiofSachenbacher and agnosis across the reformulation.

Struss, 200B Another future direction of the present research will
Another reason why we may accept imprecise diag-be to study more deeply the relation between reformu-
nosis is because, after computing the diagndsjs lations and the opportunities for model abstraction, so
through reformulation, we may want to refine it with that the choice of a reformulation can be guided not



only in terms of the preservation of precision and cor-
rectness of diagnosis, but also in terms of the benefits
of the subsequent simplification of diagnostic reason-

ing.
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