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ABSTRACT

Diagnosis is traditionally defined on a space of
hypotheses (typically, all the combinations of
zero or more possible faults).
In the present paper, we argue that a suitable
reformulation of this hypothesis space can lead
to more efficient diagnostic algorithms and more
compact diagnoses, most notably by exploiting
opportunities for various forms of model abstrac-
tion. We also study several formal properties re-
lated to the correctness and precision of the diag-
noses obtained through reformulation.

1 INTRODUCTION

Diagnosis is the problem of detecting abnormal be-
haviour of a system and, after detection, to deter-
mine the location and/or the type of system faults that
caused the abnormal behaviour (thediagnosis). In this
paper, we focus on Model-Based Diagnosis (MBD) of
Discrete-Event Systems (DESs, see(Cassandras and
Lafortune, 1999)), where the diagnosis is computed
by comparing a complete DES model of the system
behaviour with the observation on the actual system
behaviour(Sampathet al., 1995).

Since the size of the search space for diagnosis is
usually exponential in the number of different faults,
many recent works in diagnosis of DESs have tried to
tackle this complexity issue, e.g.(Benvenisteet al.,
2005; Pencoléet al., 2006). A possible solution al-
ready explored in MBD of static system models (e.g.
(Sachenbacher and Struss, 2005; Torta and Torasso,
2008)) is to abstract the model in order to simplify the
diagnosis process. The level of abstraction must be
carefully chosen in order to keep the precision to an
acceptable level.
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Unfortunately, in many cases, the language for ex-
pressing the diagnosis (that we callhypothesis space)
is defined in such a way that only little abstraction can
be applied to the model without incurring severe loss
of precision. This problem stems from the fact that,
usually, the diagnosis is expressed in terms of detailed
statements about the global system status: for each
possible fault in the whole system, the diagnosis must
specify whether such a fault occurred or not. More-
over, all of the faults that occurred within the (possibly
extended) time interval during which the system has
been observed must be accounted for in the diagnosis.

In this article, we study a novel approach to reduce
the complexity of DES diagnosis, based on a reformu-
lation of the hypothesis space. Our approach consists
in the following main steps:

1. the hypothesis space is formulated differently,
2. the diagnosis for this new problem is computed,
3. the diagnosis ismapped backto the original for-

mulation of the hypothesis space.
The main benefit of this process is that a suitably de-
fined new hypothesis space may allow powerful model
abstractions. In this paper, we focus on the first and
last steps, i.e. on the operations related to the map-
ping from one hypothesis space to another one; how-
ever, where appropriate in section 5 we shall also make
some comments on the potential model abstractions
enabled by reformulation and on the diagnosis of the
reformulated problems.

It is important to note that, in the present proposal,
model abstraction is performed as aconsequenceof
the problem simplification introduced by the reformu-
lation of the hypothesis space; this represents a some-
what reversed view w.r.t. most previous works on ab-
straction, which address the abstraction of the system
model and consider the change of the hypothesis space
for diagnosis as an implicit consequence of the model
abstraction.

The reformulation of the hypothesis space may in
general lead to loss of diagnostic precision.
For example, a typical implementation of the scheme
above is to diagnose every possible system failure sep-
arately instead of trying to solve the problem globally;
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in this way, the original diagnostic problem is mapped
to a linear number of simpler diagnosis problems(Pen-
coléet al., 2006) and, following our approach, a spe-
cific model abstraction can be applied to each of them.
However, this process may result in the loss of depen-
dencies among faults, e.g. we may end up knowing that
each one of the faultsf1, f2 possibly occurred, without
knowing that their occurrences are mutually exclusive.

One of the main contributions of this article is to
study some properties of the system model and/or
the applied reformulations which guarantee that an al-
gorithm based on the reformulated hypothesis space
leads to the same diagnosis as a classic MBD algo-
rithm applied to the original hypothesis space.
However, we believe that separating the reformula-
tion and abstraction processes is beneficial even when
the reformulation causes loss of precision. Indeed, in
many cases (e.g. hierarchical diagnosis procedure) it
is acceptable to get an imprecise intermediate result,
which is then used to focus more precise reasoning in
subsequent steps. In this context, the advantage of in-
troducing the concept of reformulation is that, by ex-
plicitly dealing with the transformation of the hypoth-
esis space, it makes it possible to clearly limit and con-
trol the loss of precision due to the transformation of
the problem.

After introducing the basic concepts on which our
work is based (section 2), we precisely define refor-
mulation (section 3) and study some of its properties
(section 4). Then, we analyze some relevant examples
of the possible applications of reformulation (section
5) and conclude the paper with a discussion.

2 PRELIMINARIES
In this section, we review the classical framework of
the MBD of DESs, slightly rephrasing it to better fit the
concept of reformulation introduced in the next sec-
tion.

2.1 Diagnosis
We consider a system denoted asS. Because of mis-
conception, misuse or inavoidable failures, the system
may exhibit a number offaultsdenoted by the setEf .
The system is monitored bysensorswhich produce an
observationθ. Diagnosisis the problem of using the
observationθ to determine whether the systemS ex-
hibited faults, and in this case to identify which fault(s)
did occur.

More formally, we calldiagnosis hypothesis(or
simply hypothesis), denoted ash : Ef → B, a func-
tion that associates a Boolean with each fault. The se-
mantics of hypothesish is that faultf ∈ Ef occurred
iff h(f) = ⊤. Thespace of diagnosis hypothesesH
is defined as the setBEf = {(h : Ef → B)} of all
the possible functions fromEf to B. The diagnosis
problemis then defined as the tuple〈S, θ, H〉. A diag-
nosis∆ is formally defined as a subset of hypotheses:
∆ ⊆ H . Note that the diagnosis is defined with respect
to a space of diagnosis hypothesesH .

The definition ofH = B
Ef provided above focuses

on theset of faults that occurred in the system, and
is widely adopted in the literature on DES diagnosis.
While such a definition will provide a basis for deriv-
ing specific results on reformulation, it is worth point-

ing out that most discussions made in the paper would
be unaffected by the adoption of alternative definitions
of DES diagnosis hypotheses found in the literature
(most notably the one whereby a diagnosis hypothesis
is a sequenceof faults, i.e. H = Ef⋆ where⋆ is the
usual Kleene closure).

2.2 Model-Based Diagnosis of DES
Let E be a set of labels. AlanguageL on the setE is
a set ofwordsσ ∈ L defined as sequences of labels:
L ⊆ E⋆.

We consider that the system can be accurately mod-
eled by a finite DES. In practice, the behaviour of the
system is represented by a modelM (automaton, Petri
net, etc.) that defines a languageLM on the set of sys-
temeventsE = Eu ∪Eo ∪Ef , whereEu is the set of
unobservable events, Eo the set ofobservable events,
andEf the set of faults. A specific behaviour of the
system is represented by a wordσ ∈ LM, and gen-
erates an observationobs(σ) defined as the projection
ProjEo

(σ) of σ on the set of observable events; unob-
servable events and faults are not observed.

The semanticsof hypothesish ∈ H is defined as
the set of behaviourssem(h) ⊆ E⋆ that agreewith
hypothesish; we say thatσ ∈ sem(h) belongsto h.
In the hypothesis spaceH = B

Ef , the definition:
sem(h) = {σ ∈ E⋆ | ∀f ∈ Ef , f ∈ σ ↔ h(f) =

⊤}
captures the intended meaning of each hypothesish.

Definition 1 A model-based diagnosis problem(or
MBD problem) is a tupleP = 〈M, θ, H〉 whereM
is a DES model,θ ∈ Eo⋆ is an observation, andH is
a space of diagnosis hypotheses.
Themodel-based diagnosis(or MBD) ∆P of the prob-
lemP = 〈M, θ, H〉 is defined by:

∆P = {h ∈ H | ∃σ ∈ LM : σ ∈ sem(h)∧obs(σ) = θ}.

In the context of this paper, an MBD problem is a
particular case of a diagnosis problem where the sys-
tem is modeled by a DES. The meaning of MBD
∆P = {h1, . . . , hk} is that each one of the hypotheses
h1, . . ., hk is possibleaccording to the observationθ
and modelM .

An important point about∆P is the following. Con-
sider a number of setsH1, . . . , Hk which coverH (i.e.
H =

⋃

i∈{1,...,k} Hi), and compute the diagnosis∆P,i

for each problemPi = 〈M, θ, Hi〉; then, it is easy to
see that∆P =

⋃

i∈{1,...,k} ∆P,i.
In other words,∆P can be computed by consider-
ing each subset of hypothesesHi separately, and then
unioning the results. This makes it possible to apply
specific model abstractions for each sub-problemPi;
we will come back to the relevance of this possibility
when we describe some applications of reformulation
in section 5.

2.3 Quality of Diagnosis
Let σ∗ ∈ LM be the representation in our model of
the actual (real) behaviour of the system. Theper-
fect diagnosis∆∗ is defined as the set of diagnosis
hypotheses matched by this behaviour:∆∗ = {h ∈
H | σ∗ ∈ sem(h)}. Clearly, if the hypotheses inH
are mutually-exclusive, the real diagnosis∆∗ contains

2



21st International Workshop on Principles of Diagnosis

at most one element; plus, if the set of hypotheses is
coveringthe set of behaviours (for allσ ∈ LM , ∃h ∈
H : σ ∈ sem(h)), the real diagnosis contains at least
one element; note, however, that our setting is gen-
eral enough for∆∗ to contain zero, one or several ele-
ments.

Ideally, the diagnosis procedure should return the
perfect diagnosis. In practice, this may be impossible
because the observability of the system is incomplete
and the sensors do not provide precise enough an ob-
servation to diagnose perfectly. Moreover, the model
itself may be imprecise.

Diagnoses can be evaluated and compared thanks to
two criteria: d-correctnessdefines the property that
hypothesesh ∈ ∆∗ are indeed included in the diag-
nosis;d-precisiondefines the property that hypotheses
h /∈ ∆∗ are indeed excluded from the diagnosis. In
this paper we take the view that bad d-correctness (or
low coverage) is more serious than bad d-precision (or
high false coverage)(Krysander and Nyberg, 2008),
and therefore focus our interest on d-correct diagnoses.

Theorem 1 Given a problemP = 〈M, θ, H〉, the
MBD ∆P is the most d-precise diagnosis which is cer-
tainly d-correct given the available modelM and ob-
servationθ.

Proof: First, we prove that∆P is d-correct, i.e. that
h ∈ ∆∗ ⇒ h ∈ ∆P . We note that ifh ∈ ∆∗ then
σ∗ ∈ sem(h) (whereσ∗ is the actual system trajec-
tory); moreover,obs(σ∗) = θ. From definition 1, it
follows thath ∈ ∆P .

We now prove that∆P is the most d-precise of all d-
correct diagnoses, i.e. that for allh ∈ ∆P , ∆P \{h} is
not d-correct. Indeed, according to definition 1,∃σ ∈
sem(h): obs(σ) = θ. It is therefore possible thatσ is
the actual system behavior, i.e. thath ∈ ∆∗, i.e. that
∆P \ {h} is not d-correct.�

Provided that, among the d-correct diagnoses,∆P

is the most d-precise diagnosis which can be computed
given an MBD problemP , we will say that a diagnosis
∆ is d-correct (resp. d-precise) w.r.t.P if ∆ ⊇ ∆P

(resp.∆ ⊆ ∆P ).

3 REFORMULATION

The framework developed in the previous section de-
fines a diagnosis as a set of hypotheses, each of which
is possible according to the model and the observa-
tions.
In particular, each hypothesish in the hypothesis space
B

Ef refers to the (non) occurrence of each faulty event
in Ef over the entire period of observation. Therefore,
knowing whetherh is possible or not requires to reason
globally over the whole system and for the whole time
period during which observations have been collected.

A powerful technique for alleviating such a com-
plexity is model abstraction, namely the simplification
of the model by forgettingirrelevantdetails. However,
it is usually difficult to apply such a technique to the
MBD reasoning task, because abstracting the model
often has undesired effects on the computed diagnosis;
in particular, spurious hypotheses may easily appear
because the abstraction forgot some relevant details of
the model.

P P ρ

P ′

∆P ∆P ρ∆ρ
P

reformulation

diagnosis

abstraction

diagnosis
mapping?

Figure 1: Principle of diagnosis through reformulation

In this paper we want to argue that it can be benefi-
cial to precede abstraction by a suitable transformation
of the hypothesis space. To this end, we introduce the
notion of reformulation of the hypothesis spaceH to
a new spaceH ′, which is expected to allow more effi-
cient model abstraction.
This idea is depicted Fig. 1. The problemP is re-
formulated in a problemP ρ with a new hypothesis
space; the formulation ofP ρ may allow for powerful
abstractions; the diagnosis∆P ρ is computed for this
new problem; the diagnosis is mapped back to a diag-
nosis∆ρ

P in the original spaceH . An important ques-
tion we shall discuss in the next section is whether∆ρ

P
matches the original diagnosis∆P (represented by the
question mark in the figure).

Definition 2 Given a hypothesis spaceH , a reformu-
lation is a pair ρ = 〈g, H ′〉, whereH ′ is a set of hy-
potheses andg is a function that associates with each
hypothesish ∈ H a set{∆′

1, . . . , ∆
′
l} of sets of hy-

potheses∆′
i = {h′

i1, . . . , h
′
iki

} with h′
ij ∈ H ′.

The intended meaning of the reformulationg(h) =
{∆′

1, . . . , ∆
′
l} of a hypothesish is that wheneverh is

possible (i.e. it belongs to the diagnosis∆P ), then all
of the hypotheses in∆′

i are possible, at least for some
i ∈ {1, . . . , l}.

Note that we give two degrees of freedom in the def-
inition of a reformulationρ = 〈g, H ′〉: first of all, it
is possible to choose the target set of hypothesesH ′

of the reformulation and their semantics, i.e. for each
h′ ∈ H ′ the set of behaviourssem(h′) ⊆ E⋆ that
agree withh′. Moreover, it is possible to choose the
way hypotheses inH are mapped to hypotheses inH ′.
As we shall see below, our choices may be constrained
if we want our reformulation to be correct and precise;
however, this still gives us a lot of freedom in defin-
ing reformulations. Such a freedom can be exploited
in order to choose a reformulation that makes model
abstraction easier.

Definition 3 Given a reformulationρ = 〈g, H ′〉 and
an MBD problemP = 〈M, θ, H〉 we define:

1. Reformulated problem: the MBD problemP ρ =
〈M, θ, H ′〉.

2. Reformulated diagnosis: the MBD∆P ρ com-
puted starting from problemP ρ

3. Diagnosis through reformulation: the diagnosis
∆ρ

P obtained by mapping∆P ρ back to the hy-
pothesis spaceH , i.e.:

∆ρ
P = g−1(∆P ρ) =
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{h ∈ H | g(h) = {∆′
1
, . . . , ∆′

l} ∧ ∃i ∈
{1, . . . , l} : ∆′

i ⊆ ∆P ρ}

4 QUALITY OF REFORMULATION
In the following discussion, it will be useful to refer to
thesemanticsof the reformulationg(h) by associating
with g(h) the set of behavioursσ that belong to all the
hypotheses of at least one∆′

i.

Definition 4 Let g(h) = {∆′
1
, . . . , ∆′

l}, ∆′
i =

{h′
i1, . . . , h

′
iki

}; thesemanticsof g(h) is defined as:

sem(g(h)) = {σ ∈ LM |
∃i ∈ {1, . . . , l} : ∀j ∈ {1, . . . , ki}, σ ∈ sem(h′

ij)}.

4.1 Correctness of Reformulation
Definition 5 The reformulationg(h) of a hypothesis
h ∈ H is r-correctiff sem(h) ⊆ sem(g(h)). A refor-
mulationρ = 〈g, H ′〉 is r-correct iff for eachh ∈ H ,
g(h) is r-correct.

The following theorem relates r-correctness with d-
correctness.

Theorem 2 Let ρ = 〈g, H ′〉 be a reformulation ofH
andP = 〈M, θ, H〉 be an MBD problem.
If ρ is r-correct and∆′ is a d-correct diagnosis for
P ρ = 〈M, θ, H ′〉, then∆ = g−1(∆′) is a d-correct
diagnosis forP .

Proof: The diagnosis∆ is d-correct forP if ∆ ⊇ ∆P ,
i.e., eachh in the diagnosis∆P obtained by directly
solving problemP is also in∆.
If h ∈ ∆P , then∃σ ∈ LM : σ ∈ sem(h)∧obs(σ) = θ
(definition 1).
Let g(h) = {∆′

1, . . . , ∆
′
l}. Sinceρ is r-correct, it

follows that∃i ∈ {1, . . . , l}: σ ∈ sem(h′
ij) for all

h′
ij ∈ ∆′

i (definitions 5 and 4).
Moreover, since∆′ is d-correct forP ρ, each suchh′

ij

belongs to∆′ and, therefore,∆′
i ⊆ ∆′.

It follows that h ∈ ∆ (definition of g−1 in defini-
tion 3), which proves the theorem.�

Note that the theorem (as the following ones) holds
in particular for the diagnosis through reformulation
∆ρ

P = g−1(∆P ρ). So, if ρ is r-correct, the diagnosis
through reformulation is d-correct.

Also note that the r-correctness of reformulationρ
is not, in general, a necessary condition for the d-
correctness of∆ρ

P .
However, this definition of r-correctness can be eas-
ily checked by considering just the hypotheses in the
spacesH , H ′ and their semantics, and provides an ef-
fective sufficient condition to guarantee d-correctness
of diagnosis through reformulation.

4.2 Precision of Reformulation
Definition 6 The reformulationg(h) of a hypothesis
h ∈ H is r-preciseiff sem(h) ⊇ sem(g(h)). A refor-
mulationρ = 〈g, H ′〉 is r-precise iff for eachh ∈ H ,
g(h) is r-precise.

In general, it is not possible to make a statement
about the d-precision of diagnosis through reformula-
tion analogous to the one made in Theorem 2 about its

d-correctness.
However, it is possible to identify some important spe-
cial cases and derive interesting properties for each of
them.

Disjunctions
Definition 7 Given a reformulationρ = 〈g, H ′〉, we
say thatg disjunctively decomposeshypothesish ∈ H
if g(h) = {{h′

1
}, . . . , {h′

l}}. We also say thatg(h) is
a disjunction.

A disjunction is a decomposition of a hypothesish of
spaceH into a set of (non-exclusive) alternatives.

In the following theorem (as in subsequent ones),
we assume for simplicity that the reformulationρ maps
each hypothesish ∈ H to itself, except for the hy-
potheses whose mapping is explicitly mentioned in the
theorem. More complex reformulations can be viewed
just as successive applications of these basic reformu-
lations.

Theorem 3 Let ρ = 〈g, H ′〉 be a reformulation ofH
s.t. g(h) is a disjunction{{h′

1}, . . . , {h
′
l}} for some

h ∈ H , and letP = 〈M, θ, H〉 be an MBD problem.
If g(h) is r-precise and∆′ is a d-precise diagnosis for
P ρ = 〈M, θ, H ′〉, then∆ = g−1(∆′) is a d-precise
diagnosis forP .

Proof: The diagnosis∆ is d-precise forP if ∆ ⊆
∆P , i.e., eachh in ∆ is also in the diagnosis∆P ob-
tained by directly solving problemP .
If h ∈ ∆ andh 6= h, thenh ∈ ∆P , becauseρ does not
change anything forh.
If h ∈ ∆, then∃h′

i : h′
i ∈ ∆′ (by definition of∆ as

g−1(∆′)). Since∆′ is d-precise forP ρ, ∃σ ∈ LM :
σ ∈ sem(h′

i) ∧ obs(σ) = θ.
Since g(h) is r-precise, this impliesσ ∈ sem(h).
Therefore, according to Definition 1,h ∈ ∆P , which
proves the theorem.�

Conjunctions
Definition 8 Given a reformulationρ = 〈g, H ′〉, we
say thatg conjunctively decomposeshypothesish ∈
H if g(h) = {∆′}, with ∆′ = {h′

1, . . . , h
′
k}. We also

say thatg(h) is aconjunction.

A conjunction is a decomposition of a hypothesish
of spaceH into a set of sub-hypotheses.

Unfortunately, an r-precise reformulation which
contains a conjunction, does not guarantee that a di-
agnosis through reformulation∆ρ

P = g−1(∆P ρ) is d-
precise, as shown in the following example.

Example 1 LetEf = {f1, f2} (there are two possible
faults),H = B

Ef and consider the hypothesish ∈ H
which states that both faultsf1 and f2 occurred (i.e.
h(f1) = h(f2) = ⊤).

Now consider the reformulationρ = 〈g, H ′〉 where
H ′ = H \ {h} ∪ {h′

1, h
′
2}, g(h) = {{h′

1, h
′
2}} and

g(h) = {{h}} if h 6= h. The hypothesesh′
i state that

fault fi occurred (but ignore whether the other fault
occurred or not). In a nutshell, after the reformulation
the two faultsf1 andf2 will be tested separately.
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The reformulationρ = 〈g, H ′〉 is r-precise and r-
correct since∀h ∈ H, sem(h) = sem(g(h)) (in
particular, sem(h) and sem(g(h)) contain the be-
havioursσ where bothf1 andf2 occurred).

Consider now a diagnosis problemP where the ob-
servations clearly show that i) eachfi possibly oc-
curred but that ii) only one fault took place. Because
the two faults did not occur together,h /∈ ∆P . How-
ever, because each fault possibly happened,{h′

1, h
′
2}

is a subset of the reformulated MBD∆P ρ . Now, us-
ing g−1, we obtain thath ∈ ∆ρ

P , i.e. the diagnosis
through reformulation is not d-precise.

We need to explore more closely what properties of
the system guarantee that the diagnosis through refor-
mulation is d-precise. We therefore introduce the fol-
lowing notation: the observations of a hypothesish is
the set of observations that can be emitted by some be-
haviour ofh: obs(h) = {θ ∈ ProjEo

(LM ) | ∃σ ∈
sem(h) : obs(σ) = θ}. The observations of a set
of hypotheses{h1, . . . , hk} is the set of observations
that belong to the observations of each hypothesishi:
obs({h1, . . . , hk}) = {θ ∈ ProjEo

(LM ) | ∀i ∈
{1, . . . , k}, σ ∈ obs(hi)}.

Theorem 4 Let ρ = 〈g, H ′〉 be a reformulation ofH
s.t. g(h) is a conjunction{{h′

1
, . . . , h′

k}} for some
h ∈ H , and letP = 〈M, θ, H〉 be a diagnosis prob-
lem.
If the observations ofh cover the observations of
{h′

1
, . . . , h′

k}, i.e. obs(h) ⊇ obs({h′
1
, . . . , h′

k}) and
∆′ is a d-precise diagnosis forP ρ = 〈M, θ, H ′〉, then
∆ = g−1(∆′) is a d-precise diagnosis forP .

Proof: Diagnosis∆ is d-precise forP if ∆ ⊆ ∆P ,
i.e. eachh in ∆ is also in the diagnosis∆P obtained
by directly solving problemP .
If h ∈ ∆ andh 6= h, thenh ∈ ∆P , becauseρ does not
change anything forh.
If h ∈ ∆, then∀i ∈ {1, . . . , k}, h′

i ∈ ∆′ (by definition
of ∆). Since∆′ is d-precise, for alli = 1, . . . , k,
∃σi ∈ LM : σi ∈ sem(h′

i) ∧ obs(σi) = θ.
Because the observations ofh cover the observations
of {h′

1, . . . , h
′
k}, ∃σ ∈ LM : σ ∈ sem(h) ∧ obs(σ) =

θ. According to definition 1 of MBD,h ∈ ∆P , which
proves the theorem.�

Because of Theorem 4, we say thath is (conjunc-
tively) decomposablein {h′

1
, . . . , h′

k} if the observa-
tions ofh cover the observations of{h′

1
, . . . , h′

k}.
In principle, decomposability of h into

{h′
1, . . . , h

′
k} can be tested with a procedure such as

the one illustrated in algorithm 1.

Algorithm 1 Testing decomposability.
input : modelM , hypothesish, set of hypotheses
{h′

1, . . . , h
′
k}

L := ProjEo
(LM ) \ obs(h)

for i = 1 . . . k do
L := L ∩ ProjEo

(sem(h′
i))

end for
return L

?
= ∅

The algorithm starts with the setL of observations
θ that are not observations ofh, and incrementally
discards from such a set the observations that can-
not be simultanesously explained with the hypotheses
{h′

1
, . . . , h′

i}, for increasing values ofi up tok.
If it ends up with an empty set, it means thatobs(h)
coversobs({h′

1
, . . . , h′

k}), i.e. thath is decomposable
in {h′

1
, . . . , h′

k}.

In practice, an interesting way of ensuring decom-
posability is through the well-knowndiagnosability
property. Let us first recast diagnosability in our
framework.

Definition 9 A hypothesish is diagnosable on a
modelM if ∀σ ∈ sem(h), ∀σ′ ∈ LM , obs(σ) =
obs(σ′) ⇒ σ′ ∈ sem(h).

Note that the original definition of diagnosability
(Sampathet al., 1995) included a delay between the
time instant when the hypothesis becomes true and the
time instant when the fault can be diagnosed with cer-
tainty. This does not quite fit with our definition of
hypothesis where the semanticssem(h) of a hypothe-
sis h is not necessarily stable (or “extension-closed”)
(Jéronet al., 2006).

Theorem 5 Let M be a model and letρ = 〈g, H ′〉
be a reformulation ofH s.t. g(h) is a conjunction
{{h′

1, h
′
2}} for someh ∈ H .

If ρ is r-precise andh′
1

is diagnosable on modelM ,
thenh is decomposable in{h′

1
, h′

2
}.

Proof: We prove that the condition of Theorem 4
is satisfied byh, i.e. that for any observationθ, it
holds that the condition∀i ∈ {1, 2}, ∃σi ∈ LM :

σi ∈ sem(h′
i) ∧ obs(σi) = θ implies∃σ ∈ sem(h) :

obs(σ) = θ.
Consider an observationθ = obs(σ) for someσ ∈ LM

s.t. the condition of the implication above holds.
Sinceh′

1
is diagnosable,σ2 ∈ sem(h′

1
) and, therefore,

σ2 ∈ sem(h′
1
) ∩ sem(h′

2
) = sem(g(h)). From the r-

precision ofρ (definition 6) comes thatσ2 ∈ sem(h),
which proves the theorem.�

This result can be easily extended for a decomposi-
tion in more than two elements.

Combining theorem 4 and theorem 5, it follows
that, if hypothesish is reformulated in a conjunction
{h′

1
, . . . , h′

k} s.t. all the (possibly but one) hypotheses
h′

i are diagnosable, then the diagnosis through refor-
mulation is still precise.
Note that the condition on diagnosability we have dis-
cussed is sufficient but not necessary.

Diagnosability was already identified as an impor-
tant feature for diagnosis: being able to determine
without ambiguity whether a specific behaviour occurs
on a system is quite useful for the operator in charge
of the system. We just showed here that this prop-
erty is also useful to decompose the diagnosis prob-
lem: all diagnosable faults may be diagnosed indepen-
dently from the other faults.
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Aggregations
Definition 10 Given a reformulationρ = 〈g, H ′〉, we
say thatg aggregateshypothesesh1, . . . , hm ∈ H if
g(h1) = . . . = g(hm) = {{h′}}. We also say that
{{h′}} is anaggregationof h1, . . . , hm.
An aggregation is said to beoverall precise if
sem(h′) ⊆ sem(h1) ∪ . . . ∪ sem(hm).

An aggregationis a composition of two or more hy-
potheses of spaceH into a single hypothesis in another
spaceH ′.

Note that the notion of overall precision is weaker
than that of precision, i.e. a precise aggregation is also
overall precise but not viceversa.

Before providing a sufficient condition for d-precise
diagnosis through reformulation in the presence of ag-
gregations, we introduce the notion ofindistinguisha-
bility between hypotheses.

Definition 11 Two hypothesesh1, h2 are said to
be indistinguishable w.r.t. a modelM if ∀σ1 ∈
sem(h1), ∃σ2 ∈ sem(h2): obs(σ1) = obs(σ2), and
viceversa.

It is easy to see that ifh1, h2 are indistinguishable,
then obs(h1) = obs(h2). Moreover, if {{h′}} =
g(h1) = g(h2) is an overall precise aggregation
of such indistinguishable hypotheses, alsoobs(h′) is
equal toobs(hi), i ∈ {1, 2}.

Theorem 6 Let ρ = 〈g, H ′〉 be a reformulation ofH
s.t.{{h′}}, h′ ∈ H ′ is an overall precise aggregation
of h1, h2 ∈ H , andP = 〈M, θ, H〉 be a diagnostic
problem.
If h1, h2 are indistinguishable w.r.t.M and ∆′ is a
d-precise diagnosis forP ρ = 〈M, θ, H ′〉, then∆ =
g−1(∆′) is a d-precise diagnosis forP .

Proof: Diagnosis∆ is d-precise forP if ∆ ⊆ ∆P ,
i.e. eachh in ∆ is also in diagnosis∆P obtained by
directly solving problemP .
If h ∈ ∆, h 6= h1, h2 thenh ∈ ∆P , becauseρ does
not change anything forh.
If h1 ∈ ∆ (the caseh2 ∈ ∆ is analogous), then
h′ ∈ ∆′ sinceg(h1) = {{h′}} (definition 3). Then,
because of the d-precision of∆′ and the overall preci-
sion of the aggregation,∃σ ∈ sem(h1) : obs(σ) = θ
or ∃σ ∈ sem(h2) : obs(σ) = θ.
In the first case,h1 ∈ ∆P immediately follows from
definition 1. In the second case, we concludeh2 ∈ ∆P

for the same reason; but, sinceh1, h2 are indistin-
guishable, this impliesh1 ∈ ∆P , which concludes the
proof.�

It is easy to extend this result to the aggregation of
m indistinguishable hypothesesh1, . . . , hm.

5 EXAMPLES OF REFORMULATIONS
5.1 Spatial decomposition
Very large networks – such as the Internet or electricity
distribution networks – encompass thousands of inter-
connected components. A priori, the behaviour of any
component and any sensor in the network may provide
relevant information for the diagnosis task, so that ap-
plying model abstraction to alleviate complexity is all
but trivial.

However, one of the important features of such net-
works is their distributive aspect; there are no “central”
components in the network, which means that any de-
fect from some component can usually be confined to
a relatively small part of the network.

In this context, we envision an important use of re-
formulation related to the decomposition of global hy-
potheses into sets of local hypotheses.
Consider a problem whereH = B

Ef , i.e. each hy-
pothesis contains information about all possible faults.
Now, considerS ⊂ 2Ef , a collection of subsets of
Ef that coversEf (i.e.

(
⋃

E∈S E
)

= Ef ). Define
the hypothesis spaceH ′ asH ′ =

(
⋃

E∈S H ′
E

)

, where
H ′

E = B
E . Each hypothesish′

E belonging to a sub-
spaceH ′

E of H ′ contains information about all faults
in subsetE; we let sem(h′

E) = {σ | ∀f ∈ E, f ∈
σ ↔ h′

E(f) = ⊤}. Defineρ betweenH andH ′ s.t. for
all h, g(h) is the conjunction{{∆′}} of the set of hy-
potheses∆′ ⊆ H ′ consistent withh.

This reformulation yields two benefits. First, the
number of hypotheses is shrinked from2|Ef | to
ΣE∈S2|E| which can be very beneficial, especially if
for eachE, |E| ≪ |Ef |.
Second, following our discussion in section 2,
it is possible to solve the reformulated problem
P ρ = 〈M, θ, H ′〉 by solving sub-problemsP ρ

E =
〈M, θ, H ′

E〉. The main benefit of this is that specific
abstractions can be applied to the modelM for each
problemP ρ

E , and such model abstractions can be ex-
tremely powerful if the setE contains only a small
subset of all the faultsEf .

Let us now consider if (and when) diagnosis through
this kind of reformulation is d-correct and d-precise.
D-correctness is guaranteed by theorem 2, since it is
easy to see that the definition ofρ given above is r-
correct.
D-precision can be guaranteed by theorem 4, provided
that eachh ∈ H s.t.g(h) = {{∆′}} is decomposable
in ∆′. Since decomposability is related to diagnosabil-
ity by theorem 5, a possible technique to ensure the
required decomposability of eachh ∈ H is to decide
the sensors that will be placed on the system(Brandán
Brioneset al., 2008).

A previous work that proposes a technique close to
this kind of reformulation is(Pencoléet al., 2006). In
the paper, the authors refuse the global picture of diag-
nosis and propose to test each fault separately with a
specialised diagnosers. In terms of reformulation, the
set of faultsEf is split into subsetsEi = {fi}, each
one containing just one faultfi. Consequently, the

reformulated spaceH ′ is defined as
(

⋃

fi∈Ef
H ′

Ei

)

,

and a specialized diagnoser is built for diagnosing each
fault separately.

The approach in(Pencoléet al., 2006) highly re-
duces the complexity, making it linear in the num-
ber of possible faults. However, as the authors ac-
knowledge, theinformation about fault correlations is
lost by the specialised diagnosers; we illustrated this
fact in Example 1 where the fault correlation corre-
sponds tod-precision. Such a loss of precision may be
studied (and possibly avoided) by applying the frame-
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work developed in this paper. In particular, reasoning
in terms of reformulation may suggest that the set of
faultsEf should be better split in (small) subsets that
are not necessary singletons; moreover, it may help in
the choice of additional sensors that ensure precision.

5.2 Temporal decomposition
When the temporal window on which the diagnosis is
defined is large, it may be more convenient to split it
in smaller windows that can be diagnosed separately.
Consider on the one hand a hypothesish ∈ H which
states that a specific faultf occurred in the time win-
dowW during which the whole observationθ was col-
lected; it is possible to define two hypothesesh′

1
and

h′
2 each of which states thatf occurred during a sub-

windowsW1 andW2 respectively.
The reformulationg(h) could be a disjunction

{{h′
1
}, {h′

2
}}, as it suffices that onehi is true forh

to be true.
Each hypothesish′

i is concerned with the occurrence
of eventf during windowWi, but some other observa-
tions received inW might be required for a precise di-
agnosis; however, it should be possible to ignore most
observation fragments in the subwindows associated
with h′

j 6= h′
i.

This has already been done in the chronicle-based
approach(Cordier and Dousson, 2000), where only
contextual observation fragments are used; it also re-
lates tofinite trackabilityin (Grastien and Anbulagan,
2009), where a decision about the behaviour at some
time can be made within a limited time window.

5.3 Aggregated faults
Consider that, in order to build a hierarchical model of
the system, we want to aggregate a set of components
c1, . . . , ck into a subsystemΓ. For the sake of simplic-
ity, let us assume that the model of each componentci

has its own fault eventfi which represents the failure
of ci, and let us ignore multiple fault hypotheses.
If hypotheseshi ∈ H represent the occurrence of sin-
gle faultsfi, we may want to map all the hypotheses
hi to the same hypothesish′

s ∈ H ′ which represents
the failure of the subsystems. If we let sem(h′

s) =
⋃

i=1,...,k sem(hi), such a reformulation is a correct
and overall precise aggregation (section 4.2).

From theorem 2, we know that diagnosis through
this kind of reformulation is d-correct. Moreover, the-
orem 6 tells us that, if hypotheseshi are mutually in-
distinguishable, it is also d-precise.
It is important to note that we may not be interested in
the precision of diagnosis (i.e. we may be willing to
apply reformulation even if hypotheseshi are not mu-
tually indistinguishable).
One reason is because we may not have a practical in-
terest in distinguishing the exact fault that occurred in
subsystems (see also the discussion below); in this
case, the reformulation framework gives us the formal
means to express our desired level of granularity of
diagnosis, which should be taken into account for per-
forming useful model abstractions(Sachenbacher and
Struss, 2005).
Another reason why we may accept imprecise diag-
nosis is because, after computing the diagnosis∆ρ

P
through reformulation, we may want to refine it with

further reasoning in the original spaceH , as it is typi-
cally done in hierarchical diagnosis. Also in this case
the reformulation framework can be helpful, because
the explicit definition ofρ gives us important informa-
tion on how (computationally) easy will be the refine-
ment step.

In (Cordieret al., 2007), the authors definemacro-
faults which correspond to sets of behaviours for
which a similar recovery procedure can be taken.
These macro-faults cover but, as in the present work,
do not form a partition of the set of behaviours, as a
single behaviour may be recovered from by different
procedures. The macro-faults correspond to aggrega-
tions of hypotheses, and do not need to be mapped
back. The authors put emphasis on precision at the
level of macro faults: the diagnoser should return
a macro-fault only if the system behaviour actually
matches the macro-fault. Interestingly, the correctness
property, as defined in the present paper, is not consid-
ered by the authors; if a behaviour belongs to several
macro-faults, the diagnoser needs to return only one of
these macro-faults.

In (Perrot and Travé-Massuyès, 2007), the authors
address the abstraction of static systems; their abstrac-
tions are defined as the aggregation of states (complete
assignments of health variables), which constitute their
diagnostic hypothesis space. Therefore, the abstrac-
tions studied in(Perrot and Travé-Massuyès, 2007)
can be viewed as reformulations (more specifically, ag-
gregations).
In such a context, the notions ofConcrete Solution
IncreasingandConcrete Solution Decreasingabstrac-
tions (taken from the literature on abstraction and men-
tioned by the authors) closely match our notions of r-
precision and r-correctness of reformulations.

6 CONCLUSION

In this paper, we have presented a framework for refor-
mulating diagnosis hypotheses in the context of DES
diagnosis.
As discussed in the examples, reformulations can open
the way to performing powerful model abstractions,
thus improving diagnosis efficiency; moreover, the
possibility of explicitly mapping an hypothesis space
into another one allows an improved control of the rel-
evant diagnostic information that is (is not) lost with
the transformation, and of the (computational) cost of
retrieving such information if desired.

We have paid a particular attention to reformula-
tions that fully preserve the correctness and precision
of diagnosis, identifying a number of sufficient condi-
tions which guarantee that a diagnosis procedure based
on reformulation exhibits such properties. In future
work, we would like to explore additional conditions
related to correctness and precision, focusing on effi-
cient ways of testing their truth for given diagnostic
problems; we would like to include in our study also
cases when it is not convenient (or desired) to com-
pletely preserve the correctness and/or precision of di-
agnosis across the reformulation.

Another future direction of the present research will
be to study more deeply the relation between reformu-
lations and the opportunities for model abstraction, so
that the choice of a reformulation can be guided not
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only in terms of the preservation of precision and cor-
rectness of diagnosis, but also in terms of the benefits
of the subsequent simplification of diagnostic reason-
ing.
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